
UPGRADE Vol. VIII, No. 6, December 2007 45© Novática

Free Software: Research and Development

 Keywords: Artificial Intelligence, Intelligent Agents,
Optimization, Rendering.

1 Introduction
Physically based Rendering is the process of generating

a 2D image from the abstract description of a 3D scene. The
process of constructing a 2D image requires several phases
including modelling, setting materials and textures, plac-
ing the virtual light sources, and rendering. Rendering al-
gorithms take a definition of geometry, materials, textures,
light sources, and virtual camera as input and produce an
image (or a sequence of images in the case of animations)
as output. High-quality photorealistic rendering of complex
scenes is one of the key goals of computer graphics. Unfor-
tunately, this process is computationally intensive and re-
quires a lot of time to be done when the rendering technique
simulates global illumination. Depending on the rendering
method and the scene characteristics, the generation of a
single high quality image may take several hours (or even
days!). For this reason, the rendering phase is often consid-
ered as a bottleneck in photorealistic projects.

To solve this problem, several approaches based on par-
allel and distributed processing have been developed. One
of the most popular is the render farm: a computer clus-
ter owned by an organization in which each frame of an
animation is independently calculated by a single proces-
sor. There are new approaches called Computational Grids
which use the Internet to share CPU cycles. In this context,
Yafrid is a computational Grid that distributes the rendering
of a scene among a large number of heterogeneous comput-
ers connected to the Internet.

This paper describes the work flow and the free software
tools used at the University of Castilla-La Mancha in sever-
al 3D rendering projects based on Open Source Cluster Ap-

3D Distributed Rendering and
Optimization using Free Software

Carlos González-Morcillo, Gerhard Weiss, David Vallejo-Fernández, and Luis Jiménez-Linares, and Javier Albusac-Jiménez

The media industry is demanding high fidelity images for 3D synthesis projects. One of the main phases is Rendering,
the process in which a 2D image can be obtained from the abstract definition of a 3D scene. Despite developing new
techniques and algorithms, this process is computationally intensive and requires a lot of time to be done, especially when
the source scene is complex or when photo-realistic images are required. This paper describes Yafrid (standing for Yeah!
A Free Render grID) and MAgArRO (Multi Agent AppRoach to Rendering Optimization) architectures, which have been
developed at the University of Castilla-La Mancha for distributed rendering optimization.

González, Weiss, Vallejo, Jiménez and Albusac, 2007. This article is distributed under the “Attribution-
Share Alike 2.5 Generic” Creative Commons license, available at <http://creativecommons.org/licenses/
by-sa/2.5/ >. It was awarded as the best article of the 1st. FLOSS International Conference (FLOSSIC
2007).

Authors

Carlos Gonzalez-Morcillo is an assistant professor and
a Ph.D. student in the ORETO research group at the Uni-
versity of Castilla-La Mancha. His recent research topics
are multi-agent systems, distributed rendering, and fuzzy
logic. He received both B.Sc. and M.Sc. degrees in Com-
puter Science from the University of Castilla-La Mancha in
2002 and 2004 respectively. <carlos.gonzalez@uclm.es>.

Gerhard Weiss is the scientific director at SCCH (Software Com-
petence Center Hagenberg GmbH), one of Austria’s largest inde-
pendent research centres. His main interests have been in compu-
tational intelligence and autonomous systems in general, and in the
foundations and application of agent and multi-agent technology
in particular. He is the co/editor of the reference book in this area
“Multiagent Systems” (MIT Press). <gerhard.weiss@scch.at>.

David Vallejo-Fernandez is an assistant professor and a Ph.D.
student in the ORETO research group at the University of Castil-
la-La Mancha. His recent research topics are multi-agent systems,
cognitive surveillance architectures, and distributed rendering.
He received his B.Sc. degree in Computer Science from the Uni-
versity of Castilla-La Mancha in 2006. <david.vallejo@uclm.es>

Luis Jimenez-Linares is an Associate Professor of Computer Sci-
ence at the University of Castilla-La Mancha. His recent research
topics are multi-agent systems, knowledge representation, ontol-
ogy design, and fuzzy logic. He received both M.Sc. and Ph.D.
degrees in Computer Science from the University of Granada in
1991 and 1997 respectively. He is member of the European So-
ciety of Fuzzy Logic and Technology. <luis.jimenez@uclm.es>.

Javier Albusac-Jimenez is a researcher and a Ph.D. student in
the ORETO research group at the University of Castilla-La Man-
cha. His recent research topics are multi-agent systems, cognitive
surveillance, and cognitive vision. He received his B.Sc. degree
in Computer Science from the University of Castilla-La Mancha
in 2005. <javieralonso.albusac@uclm.es>.

46 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

plication Resources (OSCAR) and Blender & Yafray render
engines), as well as our new research software distributed
under General Public Licence (GPL). Going into detail, the
global architecture of Yafrid and the optimization system
(based on principles from the area of multi-agent systems)
called MAgArRO are exposed. This last system uses ex-
pert knowledge to make local optimizations in distributed
rendering. Finally, some experimental results which show
the benefits of using these distributed approaches are pre-
sented. The paper is structured as follows. The following
section overviews the state of the art and the current main
research lines in rendering optimization. Thereby, the focus
is on the issues related to parallel and distributed render-
ing. The next sections describe the general architecture of
an OSCAR-based cluster, the Grid-based rendering system
called Yafrid and the Distributed Intelligent Optimization
Architecture called MAgArRO. In the next section, empiri-
cal results that have been obtained by using these systems
are shown. The final section is dedicated to a careful discus-
sion and concluding remarks.

1.1 Related Work
   There are a many rendering methods and algorithms,

each having different characteristics and properties [11][6]
[10]. However, as pointed out by Kajiya [6], all rendering al-
gorithms aim to model the light behaviour over various types
of surfaces and try to solve the so-called rendering equation
which forms the mathematical basis of all rendering algo-
rithms. Common to these algorithms, the different levels of
realism are related to the complexity and the computational
time required to be done. Chalmers et al. [3] expose various
research lines in rendering optimization issues.

Optimizations via Hardware. One method to decrease
time is to make special optimizations using hardware. In
this research line there are different approaches; some meth-
ods use programmable GPUs (Graphics Processing Units)
as massively parallel, powerful streaming processors which
run specialised code portions of a raytracer. The use of pro-
grammable GPUs out-performs the standard workstation
CPUs by over a factor of seven [2]. The use of the CPU in
conjunction with the GPU requires new paradigms and al-
ternatives to the traditional architectures. For example, the
architectural configurations proposed by Rajagopalan et al.
[8] demonstrate the use of a GPU to work on real-time ren-
dering of complex data sets which demand complex com-
putations. There are some render engines designed to be
used with GPU acceleration, such as Parthenon Renderer
[5], which use the floating-point of the GPU, or the Gelato
render engine, which works with Nvidia graphic cards.

Optimizations using distributed computing. If we
divide the problem into a number of smaller problems
(each of them being solved on a separate processor), the
time required to solve the full problem would be reduced.
In spite of being true in general, there are many distrib-
uted rendering problems that would be solved. To obtain
a good solution to a full problem on a distributed system,
all processing elements must be fully utilized. Therefore, a

good task scheduling strategy must be chosen. In a domain
decomposition strategy [3], each processing unit has the
same algorithm, and the problem domain is divided to be
solved by the processors. The domain decomposition can be
done using a data driven or a demand driven approach. In a
data driven model, the tasks are assigned to the processing
units before starting to compute. In the other alternative, the
demand driven model, the tasks are dynamically allocated
when the processing units become idle. This is done by im-
plementing a pool of available tasks. This way, the process-
ing units make a request for pending work.

In both models (data and demand driven), a cost estima-
tion function of each task is needed. This cost prediction
is very difficult to exactly calculate before completing the
image due to the nature of global illumination algorithms
(unpredictable ray interactions and random paths of light
samples).

The biggest group of distributed and parallel render-
ing systems is formed by dedicated clusters and rendering
farms used by some 3D animation companies. Depending
on the task division, we can talk about fine-grained systems,
in which each image is divided into small parts that are sent
to a processor to be independently done, or coarse-grained
(in case of animations) in which each frame of an animation
is entirely done by one processing unit. In this context, Dr.
Queue [17] is an open source tool designed for distributing
frames through a farm of networked computers. This multi-
platform software works in a coarse-grained division level.
In Section 2, our solution based on OSCAR open cluster
[18] is exposed.

New approaches of distributed rendering use a grid
design to allocate the tasks among a large number of het-
erogeneous computers connected to the Internet, using the
idle time of the processor [1]. This emerging technology
is called Volunteer Computing or Peer-to-peer computing,
and is currently used in some projects based on the BOINC
technology (such as BURP [16] Big and Ugly Rendering
Project). In Section 3, the main architecture of Yafrid and
its key advantages are exposed.

Cost prediction. The knowledge about the cost distri-
bution across the scene (i.e. across the different parts of a
partitioned scene) can significantly aid the allocation of re-
sources when using a distributed approach. This estimation
is absolutely necessary in commercial rendering produc-
tions, to assure deadlines and provide accurate quotations.
There are many approaches based on knowledge about cost
distribution; a good example is [9]. In Section 4.1, the cost
prediction mechanism used in MAgArRO is exposed.

Distributed Multi-Agent Optimization. The distribu-
tion of multi-agent systems and their properties of intelligent
interaction allow us to get an alternative view of rendering
optimization. The work presented by Rangel-Kuoppa [7]
uses a JADE-based implementation of a multi-agent plat-
form to distribute interactive rendering tasks on a network.
Although this work employs the multi-agent metaphor, it
does not make use of multi-agent technology itself. The
MAgArRO architecture proposed in Section 4 is an ex-

UPGRADE Vol. VIII, No. 6, December 2007 47© Novática

Free Software: Research and Development

ample of a free and Distributed Multi-Agent architecture
which employs expert knowledge to optimize the rendering
parameters.

2 OSCAR-based Cluster Approach
Nowadays, Universities have good practical class-

rooms provided with plenty of computers. This equipment
is frequently maintained and updated. Nevertheless, these
computers are inactive over vacation and at night. This ex-
isting hardware infrastructure can be co-ordinated during
idle time by using free software thus creating clusters and
low-cost supercomputers [14]. OSCAR [18] is a software
platform which allows the user to deploy clusters based on
GNU/Linux. In the next section, the general architecture of
the OSCAR-based system will be explained. This tool is be-
ing used at the University of Castilla-La Mancha to render
3D projects [20][22].

2.1 Architectural Overview
In our execution environment, the system is composed

of 130 heterogeneous workstations placed in different class-
rooms. Every classroom has a specific hardware type (based
on x86 architecture). The minimal requirements to belong
to the system are 500MB of RAM, a swap partition of 1GB,
and a connection of at least 100Mbits/s (all computers are
connected to one network using 100 Mbits/s switches). The
Figure 1 illustrates these requirements.

The classrooms, where OSCAR cluster is used, are ded-
icated to education. For this reason, the best choice is not
to permanently install any software in them. The subproject
Thin-OSCAR [19] allows us to use machines without a lo-
cal HD or a partition to install the operating system as mem-
bers of the OSCAR cluster.

Each rendering node is configured obtaining the con-
figuration parameters from the network. This is done by
using the Pre eXecution Environment (PXE) extension of
the BIOS. In our case, these data are the operating system
image in which will be executed.

The server has two key processes to handle the PXE
requests:
n	 DHCPD: the Dynamic Host Configuration Proto-

col daemon. This protocol is used to assign IP addresses to
clients and to load the operating system image.
n	 TFTPD: the Trivial Transfer Protocol daemon.

When the server receives a file request, it sends it to the cli-
ent by using some configuration tables.

In order to begin and finish the execution of the com-
puters in a controlled schedule, the WOL (Wake On Lan)
functionality of modern computers is used. These BIOS ex-
tensions are used with the help of the motherboard and the
software package Ether-Wake (developed by Donal Beck-
er). When the package generated by Ether-Wake arrives,
the computer boots and loads the operating system image.

Figure 1: OSCAR-based Rendering Farm at ESI-UCLM.

48 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

has finished, the ACPI interface is used to halt them. The
server establishes a ssh connection to each node and sends
it a shutdown command.

3 Yafrid: Grid-based Rendering
Yafrid is basically a system which takes advantage of

the characteristics of computational grids by distributing
the rendering of a scene through the Internet. The system
also has other important tasks related to the management of
the workunits and the controlled use of the grid.

3.1 Architectural Overview
The top-level components of Yafrid are basically the

following ones:
n	Server. The hub of Yafrid. Its basic component is

the Distributor which gets works from a queue and
sends them to the providers.

n	 Service Provider. This entity processes the client
requests.

n	 Client. A client is an external entity which does
not belong to the system in a strict sense. Its role is
to submit works to the providers. Those works are
stored in a queue used by the distributor to take the
next one to be scheduled.

In terms of access to the system, three user roles have
been defined to determine the user access privileges:
n	 Client. With this role, a user is allowed to submit

works to the grid. A client is also able to create and manage
render groups (clients and providers can subscribe to these

groups). When a project is created, it can belong to a group.
In this case, only providers belonging to the same group can
take part in the project rendering.
n	 Administrator. This role is needed for operating

the whole system and has complete privileges to access to
the information about all the users.
n	 Provider. The provider is a role user that has in-

stalled the software needed for receiving works. Providers
can access to their own information and some statistics.

Yafrid server. The server is the fundamental node for
setting the Yafrid render system up. Each one of the provid-
ers connects to this node in order to let the grid to use its
CPU cycles for rendering the scenes submitted by Yafrid
clients. Yafrid server consists of an architecture of four lay-
ers (Figure 2). This design is loosely based on the architec-
ture that appears in [4]. Those layers are “Resource Layer”,
“Service Layer”, “Yafrid Server”, and “User Layer” (from
lowest to highest level of abstraction).

Resource Layer. This layer has the lowest abstraction
level and it is the most related with operating system issues.
The resource layer has the following components:

n	 Database system. It is in this database where the
tables needed for the correct operation of the sys-
tem are maintained. Some of these tables are used
to obtain statistics about the system performance,
whereas other ones store the data associated to us-
ers, groups, projects, etc. The current implementa-
tion uses MySQL. 	

Figure 2: Yafrid General Architecture.

UPGRADE Vol. VIII, No. 6, December 2007 49© Novática

Free Software: Research and Development

n	 Filesystem. Sometimes, it is necessary to directly
access the file system from the high-level layers.
Basically, the system distinguishes two types of
directories. There are some directories which are
used to store the workunits of projects that will be
accessed via SFTP by providers. Those directories
compose the workunit POOL. The other category
of directories is composed by those directories that
contain information about users and projects.

n	 Network system. The module dedicated to com-
munications hides the use of network resources by
using a middleware (the current implementation
uses ZeroC ICE [25]).

Service Layer. Basically, this layer contains the differ-
ent servers that allow modules to access resources
that belong to lower layers. There are several serv-
ers at this level:

n	 HTTP Server. The Yafrid-WEB module is estab-
lished over this server. As Yafrid-WEB has been
developed using dynamic web pages written in a
web-oriented scripting language (the current im-
plementation uses PHP), the web server must sup-
port this language.

n	 Database server. This server is used by the differ-
ent Yafrid modules to access to the indispensable
data for the system operation.

n	 SFTP server. This server is accessed by the serv-
ice providers to obtain the files needed for carrying
out the rendering of the work units. Once the ren-
dering has finished, the SFTP server will be used to
send the resultant image to the Yafrid Server.

Yafrid Layer. This is the main layer of the server and
it is composed of two different modules (Yafrid-WEB and
Yafrid-CORE) working independently. Yafrid-WEB is the
interactive module of the server and it has been developed

as a set of dynamic web pages. Yafrid-CORE is the non-
interactive part of the server. This module has been mainly
developed using Python. Yafrid-CORE is composed of three
submodules: Distributor, Identificator, and Statistics.

n	 The Distributor is the active part of the server. It
implements the main algorithm in charge of do-
ing the indispensable tasks, such as generating the
work units, assigning them to providers, control-
ling the timeout, finishing projects, and composing
the results. With the results generated by the dif-
ferent providers, the distributor composes the final
image. This process is not trivial because slight dif-
ferences between fragments obtained from different
computers can be distinguished (due to the random
component of Monte Carlo based methods as Path-
tracing). For that reason, it is necessary to smooth
the joint between fragments which are neighbours
using a lineal interpolation mask. We define a zone
in the work unit that is combined with other work
units in the server. In Figure 3 on the left, we can
see problems when joining the work units if we do
not use a blending method.

n	 The passive part of Yafrid-CORE is called the
Identificator module. Its mission consists of wait-
ing for the communications from the providers.
The first time a provider tries to connect to the
Yafrid server, the Identificator generates an object
(the provider controller) and returns a proxy to this
object. Each provider has its own controller.

n	 Provider. The provider is the software used by the
users who want to give CPU cycles to the grid. It
can work in both visual and non-visual mode. First,
the provider must connect to the grid. Once acti-
vated, the provider waits until the server sends a
work unit to process. After finishing the rendering,

Figure 3: Artifacts without Interpolation between Workunits.

50 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

the provider sends the file via SFTP and informs
the controller that the work was done.

4 MAgArRO: Distributed Intelligent Opti-
mization

According to [12], an agent is a computer system that is
situated in some environment and that is capable of action-
ing in this environment in order to meet its design objec-
tives. MAgArRO uses the principles, techniques, and con-
cepts known from the area of multi-agent systems, and it
is based on the design principles of FIPA (Foundation for
Intelligent Physical Agents) standards [21].

MAgArRO has also been developed using the ICE mid-
dleware [25]. The location service IceGrid is used to indi-
cate in which computer the services reside. Glacier2 is used
to solve the difficulties related with hostile network envi-
ronments, being the agents able to connect behind a router
or a firewall.

4.1 Architectural Overview
As mentioned, the overall architecture of MAgArRO is

based on the design principles of FIPA standards. In Figure
4, the general workflow and the main architectural roles are
shown. In addition to the basic FIPA services, MAgArRO
includes specific services related to Rendering Optimiza-
tion. Specifically, a service called Analyst studies the scene
in order to enable the division of the rendering tasks. A
blackboard is used to represent some aspects of the com-
mon environment of the agents. Finally, a master service
called Master handles dynamic groups of agents who coop-
erate by fulfilling subtasks.

Figure 4 also illustrates the basic workflow in MAgAr-
RO (the circled numbers in this figure represent the follow-
ing steps).

1) The first step is the subscription of the agents to the
system. This subscription can be done at any moment; the
available agents are dynamically managed. When the sys-
tem receives a new file to be rendered, it is delivered to the
Analyst service.

Figure 4: General Workflow and Main Architectural Roles.

UPGRADE Vol. VIII, No. 6, December 2007 51© Novática

Free Software: Research and Development

2) The Analyst analyzes the scene, making some parti-
tions of the work and extracting a set of tasks.

3) The Master is notified about the new scene which is
sent to the Model Repository.

4) Some of the agents available at this moment are man-
aged by the Master and notified about the new scene.

5) Each agent obtains the 3D model from the repository
and begins to auction.

6) The (sub-)tasks are executed by the agents and the
results are sent to the Master.

7) The final result is composed by the Master using the
output of the tasks previously done.

8) The Master sends the rendered image to the user. Key
issues of this workflow are described in the following sec-
tion.

Analysis of the Scene using Importance Maps.
MAgArRO employs the idea of estimating the complexity
of the different tasks in order to achieve load-balanced par-
titioning. Complexity analysis is done by the Analyst agent
prior to (and independent of) all other rendering steps. The
main objective in this partitioning process is to obtain tasks
with similar complexity to avoid the delay in the final time
caused by too complex tasks. This analysis may be done in
a fast way independently of the final render process.

Once the importance map is generated, a partition is
constructed to obtain a final set of tasks. These partitions

are hierarchically formed at different levels, where at each
level the partitioning results obtained at the previous level
are used. At the first level, the partition is made taking care
of the minimum size and the maximum complexity of each
zone. With these two parameters, the Analyst makes a re-
cursive division of the zones (see Figure 5). At the second
level, neighbour zones with similar complexity are joined.
Finally, at the third level the Analyst tries to obtain a bal-
anced division where each zone has nearly the same com-
plexity/size ratio. The idea behind this division is to obtain
tasks that all require roughly the same rendering time. As
shown below in the experimental results, the quality of this
partitioning is highly correlated to the final rendering time.

Using Expert Knowledge. When a task is assigned to
an agent, a set of fuzzy rules is used to model the expert
knowledge and to optimize the rendering parameters for
this task. Sets of fuzzy rule are considered well suited for
expert knowledge modelling due to their descriptive power
and easy extensibility [13]. The output parameters (i.e. the
consequent part of the rules) are configured so that the time
required to complete the rendering is reduced and the loss
of quality is minimized. Each agent may model different
expert knowledge with a different set of fuzzy rules. For
example, the following rule is used (in a set of 28 rules)
for describing the rendering parameters of the Pathtracing
method: R_1: If C is {B,VB} and S is {B,N} and Op is VB
then Ls is VS and Rl is VS.

Figure 5: Importance Maps. Left: Blind Partitioning (First Level). Center: Join Zones with Similar Complexity (Second Level).
Right: Balancing Complexity/Size Ratio (Third Level).

Figure 6: Left: Yafrid. Rendering Time Related to Workunit Size. Right: MAgArRO. Different Levels of Partitioning with a Normal Optimi-
zation Level.

52 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

The meaning of this rule is “If the Complexity is Big
or Very Big and the Size is Big or Normal and Optimiza-
tion Level is Very Big, then the number of Light Samples
is Very Small and the Recursion Level is Very Small”. The
Complexity parameter represents the complexity/size ra-
tio of the task, the Size represents the size of the task in
pixels, and the Optimization Level is selected by the user.
The output parameter Recursion Level defines the global
recursion level in raytracing (number of light bounces), and
the Light Samples defines the number of samples per light
in the scene (higher values involve more quality and more
rendering time).

5 Experimental Results
In order to test the behaviour of the systems, 8 comput-

ers with the same characteristics were connected to Yafrid
and MAgArRO. These nodes (Intel Pentium Centrino 2
GHz, 1GB RAM) were used in both systems during the ex-
ecution of all the tests. The test scene contained more than
100,000 faces, 5 levels of raytracing recursion in mirror
surfaces (the dragon), 6 levels in transparent surfaces (the
glass), 128 samples per light source, and was rendered us-
ing the free render engine Yafray [23]. In addition, 200,000
photons were released in order to construct the Photon Map
structure. With this configuration, the rendering on a single
machine without optimizations took 121:17 (121 minutes
and 17 seconds).

In the case of Yafrid, as we can see in Figure 6 (Left), the
rendering time in the best case is nearly seven times better
using the grid, and less than twice as good in the worst case.
With these results, it is clear the importance of choosing
an appropriate workunit size. This occurs because there are
complex tasks that slow down the whole rendering process
even if the number of nodes is increased.

As we mentioned, MAgArRO uses Importance Maps

to estimate the complexity of the different tasks. Figure 6
(Right) shows the time required by using different partition-
ing levels. Using a simple first-level partitioning (similar to
the Yafrid approach), a good render time can be obtained
with just a few agents. However, when the number of agents
(processing nodes) grows, the overall performance of the
system increases because the differences in the complexity
of the tasks are relatively small.

As a final remark, note that intelligent optimization may
result in different quality levels for different areas of the
overall scene. This is because more aggressive optimiza-
tion levels (Big or Very Big) may result in a loss of detail.
For example, in Figure 7.e, the reflections on the glass are
not as detailed as in Figure 7.a. The difference between the
optimal render and the most aggressive optimization level
(Figure 7.f) is minimal.

6 Discussion and Conclusion
The computational requirements of photo-realistic

rendering are huge and, therefore, to obtain the results in
a reasonable time and on a single computer is practically
impossible (even more difficult in the case of animations).
Several approaches based on different technologies have
been exposed in this paper.

Our OSCAR-based cluster has some interesting char-
acteristics:

n	Very good throughput in the case of animations.
The system divides each frame of the animation
into different nodes of the cluster. The fine-grained
approach needs the programming of new features
in the main server.

n	 The processing nodes are used during idle time (at
night).

n	 The latency due to the file transfer is minimal
(thanks to the use of a Fast Ethernet network).

Figure 7: Result of the Rendering Using Different Optimization Levels. (a) No Optimization and Render in one Machine. (b) Very Small (c)
Small (d) Normal (e) Very Big (f) Difference between (a) and (e) (the Lighter Colour, the Smaller Difference).

UPGRADE Vol. VIII, No. 6, December 2007 53© Novática

Free Software: Research and Development

Otherwise, the cluster can only be used by submit-
ting tasks to the main server into the same organization.To
solve some of these problems, the Yafrid approach was
designed. This computational grid has some important
advantages:

n	 There is no cluster; the providers can be heteroge-
neous (software and hardware) and can be geo-
graphically distributed.

n	With the fine-grained approach, we can make local
optimizations in each frame.

n	One of the main advantages of this distributed ap-
proach is the scalability. The performance per-
ceived by the user depends on the number of sub-
scribed providers.

Some enhancements should be done to improve
the Yafrid performance. Some of them were added to
MagArRO:

n	MAgArRO enables importance-driven rendering
through the use of importance maps.

n	 It allows us to use expert knowledge by employing
flexible fuzzy rules.

n	 It applies the principles of decentralized control
and local optimization. The services are easily
replicable. Thus, possible bottlenecks in the final
deployment can be minimized.

There are many future research lines. In our current
work, we concentrate on the combination of the best char-
acteristics of Yafrid and MAgArRO to integrate the new
system (called YafridNG) in the official Blender branch
[15]. The source code of these systems, distributed under
GPL license, can be downloaded at [24].

Acknowledgments
This work has been funded by the Consejeria de Ciencia

y Tecnología and the Junta de Comunidades de Castilla-La
Mancha under Research Projects PAC-06-0141 and PBC06-
0064. Special thanks to Javier Ayllon for his support at the Su-
percomputation Service (University of Castilla-La Mancha).

References

[1] 	 D.P. Anderson, G. Fedak. The Computational and
Storage Potential of Volunteer Computing. Sixth
IEEE International Symposium on Cluster Com-
puter and the Grid (CCGRID ‘06). p. 73-80. May
2006.

[2]	 I.Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-
halian, M. Houston, P. Hanrahan. Brook for GPUs:
Stream Computing on Graphics Hardware. Proceed-
ings of SIGGRAPH ‘04, p.777-786.

[3] 	 A. Chalmers, T. Davis, E. Reinhard. Practical Par-
allel Rendering. Ed. A. K. Peters, 2002. ISBN: 1-
56881-179-9.

[4] 	 I. Foster, C. Kesselman, S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputing Applica-
tions 15, 3(2002).

[5] 	 T. Hachisuka. High-Quality Global Illumination
Rendering using Rasterization. GPU Gems 2: Pro-
gramming Techniques for High Performance Graph-
ics and General-Purpose Computation. Addison-
Wesley Professional, 2005.

[6] 	 J.T. Kajiya. The rendering equation. Computer
Graphics 20(4): 143-150. Proceedings of SIG-
GRAPH ‘86.

[7] 	 R.R. Kuoppa, C.A. Cruz, D. Mould. Distributed 3D
Rendering System in a Multi-Agent Platform. Pro-
ceedings of the Fourth Mexican International Con-
ference on Computer Science, 8, 2003.

[8] 	 R. Rajagopalan, D. Goswami, S.P. Mudur. Func-
tionality Distribution for Parallel Rendering. Pro-
ceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), p.
18-28, April 2005.

[9] 	 E. Reinhard, A.J. Kok, F.W. Jansen. Cost Prediction
in Ray Tracing. Rendering Techniques ‘96, p. 41-50.
Springer-Verlag, June 1996.

[10] 	E. Veach, L.J. Guibas. Metropolis light transport.
Proceedings of SIGGRAPH ‘97, p. 65-76. New
York, USA: ACM Press - Addison Wesley Publish-
ing Co.

[11] 	 T. Whitted. An improved illumination model for
shaded display. Proceedings of SIGGRAPH ‘79, 14.
New York, USA: ACM Press.

[12] 	M.J. Wooldridge. An introduction to multiagent
systems. John Wiley & Sons, 2002. ISBN: 0-471-
49691-X

[13] 	L.A. Zadeh. The concept of a linguistic variable and
its applications to approximate reasoning. Informa-
tion Science, 1975.

[14] 	Beowulf: Open Scalable Performance Clusters.
<http://www.beowulf.org>.

[15] 	Blender: Free 3D content creation suite. <http://
www.blender.org>.

[16] 	BURP: Big Ugly Rendering Project. <http://burp.
boinc.dk/>.

[17] 	Dr. Queue.: OS Software for Distributed Rendering.
<http://www.drqueue.org/>.

[18] 	OSCAR: Open Cluster Group. <http://www.open-
clustergroup.org/>.

[19] 	Thin-OSCAR. <http://thin-osccar.sourceforge.
net/>.

[20] 	Virtual Tour ESI UCLM. <http://www.inf-cr.uclm.
es/virtual/index_en.html>.

[21] 	FIPA. Foundation for Intelligent Physical Agents.
<http://www.fipa.org>.

[22] 	Virtual Visit - Hospital Ciudad Real. <http://dev.
oreto.inf-cr.uclm.es/www/vvhosp>.

[23] 	Yafray: Yet Another Free Raytracer <http://www.ya-
fray.org>.

[24] 	Yafrid Next Generation. <http://www.yafridng.org>.
[25] 	ZeroC ICE Middleware. <http://www.zeroc.com>.

