
Specifying the Intertwining of Cooperation and

Autonomy in Agent-based Systems

Gerhard Weiß?, Matthias Nickles?, Michael Rovatsos†, Felix Fischer?

?Computer Science Department †School of Informatics
Technical University Munich University of Edinburgh
80290 München, Germany Edinburgh EH8 9LE, UK

{weissg,nickles,fischerf}@cs.tum.edu mrovatso@inf.ed.ac.uk

Abstract

Cooperation and autonomy are two antagonistic core variables of agent-based
systems, and a key challenge in designing such systems is to balance these
variables appropriately. This article describes a specification schema called
RNS2 that has been developed in response to this challenge. Being formally
grounded in deontic logic and informally inspired by social role theory, RNS2

shows several useful features which together make it unique and distinct from
related approaches. In particular, RNS2 is highly expressive and allows to
specify the intertwining of cooperation and autonomy at a very precise level,
and it facilitates the automated detection and resolution of autonomy-induced
cooperation conflicts at design time. The application of RNS2 is illustrated in
the context of an agent-based supply chain management system.

Keywords. Intelligent agents, multiagent systems, cooperation, autonomy, control,
RNS2.

1 Introduction

Cooperation and autonomy are two antagonistic core design variables for agent-
based systems. While cooperation is closely related to issues such as interdepen-
dence, sharing and integration, autonomy has much to do with issues such as in-
dependence, differentiation and separation (Keidel, 1995). At the heart of the an-
tagonistic nature of cooperation and autonomy is that they concern different types
of control: cooperation has its focus on exerting control on others and on acting

1

under external control as a member of a team; against that, autonomy has its focus
on freely choosing between actions and on acting independently and under inter-
nal control (i.e., self-control). A highly critical and challenging task in building an
agent-based system is to balance its internal and external control regime, as this
regime directly affects the system’s overall effectiveness and efficiency. This raises
the strong need for techniques that support developers of agent-based systems in pre-
cisely and systematically specifying the intertwining of internal and external control
of agents. Moreover, such techniques should enable developers to effectively deal
with autonomy-induced cooperation conflicts between agents. Without the avail-
ability of such techniques it is highly unlikely that agent-based systems get broadly
accepted as a standard technology in real-world industrial and commercial applica-
tions.

This article describes a formal specification schema called RNS2 that has been
developed in response to this need. (RNS2 stands for “Roles, Norms, Sanctions”,
with the “2” indicating that RNS2 is based on the specification approach called
RNS we proposed in (Nickles et al., 2002; Weiß et al., 2003).1) RNS2, which is
formally grounded in deontic logic (e.g., Meyer and Wieringa, 1993) and informally
inspired by social role theory (e.g., Biddle and Thomas, 1966), captures the notion of
cooperation in terms of requests for carrying out, or refraining from, certain activities
and allows to handle cooperation conflicts at design-time. The basic view underlying
RNS2 is that agents are embedded in a social frame that regulates their behavior.
This social frame, called role space, is composed of roles which are available to the
agents and through which an agent can try to achieve individual and joint objectives
either alone or in cooperation with other agents. An agent may own several roles
and a role may be owned by several agents at the same time. Roles serve as a
means for specifying desired behavior and for achieving behavioral predictability,
but not as a means for making sure that agents do never exhibit unexpected and
undesirable behavior. In particular, roles do not fully constrain individual behavior,
but leave room for individuality (i.e., agents may fill in the same role differently
by putting emphasis on different aspects). According to RNS2, a role consists of
activities to which norms and sanctions are attached. As the owner of a role an
agent is exposed to all norms and sanctions attached to the role-specific activities.
RNS2 distinguishes three types of norms (permissions, obligations, and interdictions)
and two types of sanctions (reward and punishment). While norms correspond to
behavioral expectations held by agents against other agents in their capacity as
role owners, sanctions correspond to potential consequences of norm-conforming
and norm-violating behavior. With that, through norms and sanctions a system
designer can explicitly specify the limits within which an agent is supposed to act
autonomously.

1RNS2 significantly extends and improves RNS in several respects. A key difference is that RNS2

allows for the automated handling of cooperation conflicts, while RNS does not due to syntactic
and semantic ambiguities.

2

The article is organized as follows. Section 2 gives an overview of related work.
Section 3 describes the schema RNS2. Section 4 focusses on RNS2-enabled design-
time identification and resolution of autonomy-induced cooperation conflicts be-
tween agents. In sections 3 and 4 key concepts and aspects of RNS2 are illustrated
in the context of an agent-based supply chain management system. Section 5 dis-
cusses the benefits and shortcomings of RNS2. Section 6 concludes the article with
more general considerations on balancing agent cooperation cooperation and auton-
omy.

2 The Schema RNS2

2.1 Basic Constructs

The following basic notation is used throughout this article. RNS2-specific syntac-
tic keywords and special symbols are written in underlined TYPEWRITER FONT, and
italic font is used to indicate RNS2-specific variables. The vertical bar, |, separates
alternatives, and separated alternatives are enclosed by angle brackets, 〈 and 〉.

2.1.1 Role Space

RNS2 requires to specify the autonomy of computational agents in terms of roles
which are available to these agents and through which these agents can try to achieve
their goals. The set of available roles is called a role space. A role space is specified
in the form

ROLE SPACE role space id { role id list }

where role space id is a character string uniquely identifying the role space under
consideration and role id list is a comma-separated list of character strings called
role identifiers that uniquely identify roles. Conceptually, a role serves as a beha-
vioral guideline which helps to achieve behavioral predictability without excluding
behavioral freedom. Formally, a role is treated as a collection of activities, and
for each role identifier, role id , being included in ROLE SPACE there must be a role
specification in the form

ROLE role id { activity spec list }

where activity spec list is a list of specifications of the activities being part of this
role. Details on how to specify activities are shown in section 2.2.

Example. For an agent-based electronic supply chain management system the fol-
lowing four roles (among others not described here) are identified by the system
designers: USsupplier (“supplier located in the US”); EUROsupplier (“supplier lo-
cated in Europe”); AssemblyMg (“assembly manager”); MemBoardDir (“member
of the board of directors of the overall management system”); and SpaceMg (“role

3

space manager”, being responsible for activities affecting the structure and contents
of the role space). In RNS2, this is captured by:

ROLE SPACE eSUPPLY
{ USsupplier , EUROsupplier , AssemblyMg , MemBoardDir , SpaceMg }

2.1.2 Domain- and Problem-Specific Variables

A variable that is specific to the application (i.e., the domain and the problem)
under consideration is specified through

variable-id [domain-elem-list]

where variable-id is a variable identifier and domain-elem-list is either a comma-
separated list of domain values (strings and numbers) or a numerical interval.

Example. Assume that the eSUPPLY system is restricted to specific kinds of ma-
terial, namely, steel, silver, gold and platinum. Using RNS2, this restriction corre-
sponds to the following variable specification:

material[steel, silver, gold, platinum]

As another example, assume that within eSUPPLY material can only be ordered
and delivered up to a certain limit (say, 2000 units). This could be captured by the
numerical-interval variable:

quantity[0 .. 2000] .

2.1.3 Status Range

RNS2 distinguishes three types of norms – permissions (P), obligations (O), and
interdictions (I) – and two types of sanctions – reward (RE) and punishment (PU)
– that apply in the case of norm conformity and violation. Norms can be coupled
with conditions (i.e., Boolean expressions) so that it is possible to specify the cir-
cumstances under which they apply. Norms and sanctions serve as different means
for specifying the boundaries of agent autonomy: while obligations and interdictions
allow to state which activities are outside an agent’s range of behavioral choice and
control, permissions allow to state which activities are within this range. In other
words, an agent may, but needs not to execute a permitted activity – the execution
is neither mandatory (as in the case of an obligation) nor forbidden (as in the case
of an interdiction). Whether or not an agent executes a permitted activity solely
depends on his own decision about how to pursue his goals. By enabling a designer
to explicitly specify sanctions, RNS2 takes care of the fact that generally – and in
particular in open applications – agents as autonomous entities do not necessarily
act in accordance with the available norms, but may ignore and violate them (by
chance or intentionally). Based on the distinction of different types of norms and

4

sanctions, a status range is attached to each activity which describes activity-specific
norms and associated sanctions. More specifically, a status range specification is of
the form

STATUS RANGE status statement list

where status statement list is a list of so called status statements each describing
a norm-sanction pair. Status statements are said to be attached to an activity. A
key feature of RNS2 is that it facilitates the explicit modeling and specification
of cooperation requests , that is, requests for (refraining from) executing particular
activities. This feature induces the distinction of two kinds of status statements
attached to an activity:

• Independent status statements (indicated by the keyword IND) – these are
status statements (and thus norm-sanction pairs) an agent becomes subject
to as a direct consequence of entering the role to which the activity belongs.

• Dependent status statements (DEP) – these are status statements an agent as
the owner of the role to which the activity belongs becomes subject to as a
direct consequence of another agent’s explict request for executing or refraining
from this activity. In other words, dependent status statements are activited
through (“depend on”) cooperation requests.

The common syntax of independent status (IS) statements and dependent status
(DS) statements is as follows:

<status type> : NORM <norm type> <condition>

︸ ︷︷ ︸

norm specification

+ SANC <sanction type> <sanction>

︸ ︷︷ ︸

sanction specification
︸ ︷︷ ︸

norm-sanction pair

where status type ∈ {IND, DEP role id} discriminates between IS and DS statements,
norm type ∈ {P, O, I}, condition is a Boolean expression making it possible to
formulate conditioned norms, sanction type ∈ {RE, PU}, and sanction is an iden-
tifier referring to a sanction of type sanction type. Though syntactically almost
identical, IS and DS statements differ significantly in their semantics. First consider
IS statements, that is, statements of the form

<IND> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

Dependent on norm type, such a statement attached to an activity reads as follows:

• norm type = {P}: “An agent owning the role of which this activity is part of
is permitted to execute this activity provided that the condition condition is
fulfilled. The sanction associated with this permission is of type sanction type
and is given by sanction.”

5

• norm type = {O}: “An agent owning the role of which this activity is part
of is obliged to execute this activity provided that the condition condition is
fulfilled. The sanction associated with this obligation is of type sanction type
and is given by sanction.”

• norm type = {I}: “An agent owning the role of which this activity is part of
is forbidden to execute this activity provided that the condition condition is
fulfilled. The sanction associated with this interdiction is of type sanction type
and is given by sanction.”

Against that, DS statements, that is, statements of the form

<DEP role id> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

read as follows (assume that the DS statement is attached to activity α and that
this activity is part of role ρ):

• norm type = {P}: “If an agent owning the role role id requests to execute
activity α from an agent owning role ρ, then the requested agent is permitted
(by the requesting agent and through the request) to execute α provided that
the condition condition is fulfilled. The sanction associated with this permis-
sion is of type sanction type and is given by sanction.” Hence, in this case the
cooperation request induces a conditioned permission or, to say it the other
way round, the conditioned permission is assigned (or “activated”) through
the cooperation request.

• norm type = {O}: “If an agent owning the role role id requests to execute α,
then the requested agent is obliged to execute α provided that the condition
condition is fulfilled. The sanction associated with this obligation is of type
sanction type and is given by sanction.”

• norm type = {I}: “If an agent owning the role role id requests to not execute
this activity, then the requested agent is forbidden to execute it provided
that the condition condition is fulfilled. The sanction associated with this
interdiction is of type sanction type and is given by sanction.”

DS statements make it possible to capture situations in which cooperation requests
(e.g., from different agents) do have different normative and sanctioning impacts on
a requested agent.

Examples. Assume that the status statement

<IND> : NORM <P> <NO> + SANC <NO> <NO>

is attached to the activity “deliver material” which is part of the role USsupplier.
(A formal specification of a “deliver” activity is provided in 2.2). In that case, each
agent acting as an USsupplier is permitted (as indicated by P) to carry out this

6

activity (i.e., to deliver material) without any restriction (as condition is NO) and
with no sanction coupled to this permission (as sanction type is NO).2 As this is an
independent status statement (IND), an agent becomes subject to this permission
automatically when entering the role USsupplier. As a second example, assume that

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>

is a further status statement attached to the deliver activity of USsupplier. As
indicated by “<DEP AssemblyMg>”, this status statement depends on a cooperation
request by an assembly manager, and as indicated by “<I><material = steel>”,
this is a request to cooperate by not delivering steel. Moreover, this status statement
says that a violation of this request to not deliver (i.e., of the interdiction to deliver)
results in a punishment (PU) in form of a fine to be payed (as indicated by the
identifier “pay fine”).

2.2 Activities

As said above, each role is specified through a list of activities. According to RNS2,
four types of activities are distinguished:

• Basic activities, that is, resource and event handling activities (Type I).

• Cooperation requests, that is, requests for (not) executing activities (Type II).

• Sanctioning activities, that is, activities that result in a punishment of behavior
deviating from available obligations and interdictions, as well as activities that
result in a rewarding of behavior going conform with permissions, obligations
and interdictions (Type III).

• Change activities, that is, activities that result in changes of status statements
being part of the status range of an activity of any type (Type IV). As a status
statement consists of a norm specification and a sanction specification, change
activities can be also characterized as activities that result (i) in changes of
norms attached to an activity and/or (ii) in changes of sanctions associated
with such norms.

Each of these four types of activities may be subject to (or “the target of”) an
activity of any of the types II, III, and IV. This means, in particular, that RNS2

allows to formulate crossed and self-referential constructs such as requests for coop-
eration requests, requests for sanction and norm changes, changes of norms attached
to changing activities (as well as requests for such changes), and changes of sanc-
tions attached to sanction-changing activities (as well as requests for such changes).
Examples of such constructs, called referential constructs , are provided below. In
the following, the four activity types are described in detail. Figure 1 overviews the
RNS2-specific activity types.

2Generally, the keyword NO used as an instantiation of condition (of sanction type and sanction)
indicates that the norm is unconditioned (that there is no associated sanction).

7

REQUEST

BASIC

CHANGE
(norms, sanctions)

SANCTION

Figure 1: RNS2 activity types and their relationships.

2.2.1 Basic Activities

Basic activities are activities concerning the management and consumption of re-
sources and events. Two types of resources are distinguished, namely, consumable
ones (e.g., time, money, and any kind of raw material to be processed in a manufac-
turing process) and non-consumable ones (e.g., data, protocols, and communication
support services such as blackboard platforms and translation systems). Examples of
such activities are provide(CPU time), deliver(material,quantity), access(database),
and run-protocol(English-auction). The RNS2 specification of this type of activities
has the general form

ACT BASIC activity id (variable id list)

{ VAR variable spec list ;
STATUS RANGE status statement list }

where variable id list is a comma-separated list of variable identifiers and vari-
able spec list is a comma-separated list of variable specifications (namely, of all vari-
ables employed in this activity). The first line of any activity specification, i.e., “ACT
... (...)”, is called the activity header , and the part enclosed in {.} is called the
activity body .

Example. Assume that one of the basic activities of the role USsupplier is:

ACT BASIC deliver (material , quantity)

{ VAR

material[steel, silver, gold, platinum] ,
quantity[0 .. 2000] ;

STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>
<DEP EACH> : NORM <O> <quantity ≤ 100> + SANC <PU> <withdraw role>

}

The first and the second status statement already have been explained above (see
the examples at the end of 2.1.3). The third status statement, “<DEP EACH> ...”

8

says that a request from any agent – no matter what role the requesting agent plays
(as indicated by the keyword EACH) – to deliver quantity units of material must (O)
be fulfilled, provided that the requested quantity is not above 100.3 Furthermore,
the statement says that the requested agent must withdraw the role USsupplier (i.e.,
is not longer allowed to act as a USsupplier) in the case of violating this obligation.

2.2.2 Cooperation Requests

Cooperation requests are specified as follows:

ACT REQUEST activity id

(〈 agent id list | EACH 〉 ;
〈 role id list | EACH 〉 ;
〈 NOT activity id | activity id (variable id list) 〉)

{ VAR variable spec list ;
STATUS RANGE status statement list

NORMATIVE IMPACT norm specification list }

The activity header says that cooperation requests can be directed towards any
agent who is referred to in agent id list and who owns at least one of the roles listed
in role id list . Thereby agent id list and role id list are lists of comma-separated
agent identifiers and role identifiers, respectively. The header also identifies the
activity being subject to the cooperation request (activity-id). The keyword NOT

is optional and is to be used only in the case of interdiction (i.e., in the case of
requests for not executing some activity). The activity body consists of a sta-
tus range part (STATUS RANGE, as defined above) and a normative impact part
(NORMATIVE IMPACT). The normative impact part is a list of conditioned norms
which the cooperation request imposes on the requested activity.

Examples. As an illustrating example based on the delivery activity specified above,
consider the following request activity specification being part of the role Assem-
blyMg:

ACT REQUEST ManagerDeliverReq1
(MrsMeyer ; USsupplier ; deliver (material, quantity))
{ VAR

material[steel, silver, gold, platinum] ,
quantity[0 .. 2000] ;

STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

NORMATIVE IMPACT

NORM <O> <quantity ≤ 100> }

The activity header says that this cooperation request can be directed toward the US
supplier Mrs. Meyer w.r.t. her deliver activity. In other words, an assembly manager

3Generally, the keyword EACH used as an instantiation of role id matches all roles within the
role space under consideration.

9

can request Mrs. Meyer in her capacity as a US supplier to deliver a certain quantity
(up to 2000 units) of some material (steel, silver, gold or platinum). According to the
status range, an assembly manager is permitted to carry out this cooperation request
without any restriction. Moreover, no positive or negative sanction is associate
with this permission. According to the normative impact part, it is obligatory for
the requested agent (i.e., Mrs. Meyer) to carry out the requested deliver activity,
provided that the deliver quantity is not greater than 100.4 (Note that the induced
conditioned norm, i.e., <O> <quantity ≤ 100>, is part of a DS statement within
the status range of the deliver activity of the role USsupplier.)

As a second example, assume that the following request activity specification is
also part of the role AssemblyMg:

ACT REQUEST ManagerNotDeliverReq1
(EACH ; USsupplier, EUROsupplier ; NOT deliver)
{ VAR

material[steel, silver, gold, platinum] ;
STATUS RANGE

<IND> : NORM <P> < (material = steel) AND (rating(material) = poor)> +
SANC <NO> <NO>

<DEP MemBoardDir> : NORM <O> <NO> + SANC <PU> <reprimand>
NORMATIVE IMPACT

NORM <I> <material = steel> }

The keyword EACH in the activity header says that the request can be directed
towards each agent owning the roles USsupplier or EUROsupplier. (If role id list
were also instantiated with EACH, then this would mean that each agent – without
any role restriction – can be requested to deliver.) The status range includes an IS
and a DS statement. The IS statement says that an agent as an assembly manager is
permitted to request to not execute the deliver activity, provided that the material
to be not delivered is steel and the current price of steel is rated as poor. (In other
words, this IS statement says that an assembly manager is permitted to request a
US supplier to not deliver steel, if the current pricing of steel is poor.) The DS
statement means that this request activity becomes obligatory for an agent owing
the role AssemblyMg if it is requested by an agent owning the role MemBoardDir
(“Member of Board of Directors”); in the case of not following this obligation, an
assembly manager receives an official reprimand. Within the role MemBaordDir
several cooperation requests can correspond to this DS statement. An example of
such a corresponding cooperation request by a member of the board of directors is:

ACT REQUEST DirectorReqOfRequest1
(EACH ; AssemblyMg ;
ManagerNotDeliverReq1 (EACH ; EUROsupplier ; NOT deliver))

{ STATUS RANGE

<IND> : NORM <O> <decided by board> + SANC <PU> <board exclusion>

4Because of this condition it would be also possible to specify the variable “quantity” as quan-
tity[0 .. 100].

10

NORMATIVE IMPACT

NORM <O> <NO> }

According to the activity head, this cooperation request can be directed to each
agent acting as an assembly manager. The requested activity (ManagerNotDeliver-
Req1) is also a cooperation request, and so this example also illustrates how nested
requests (i.e., “requests for requests for . . .”) can be formulated in RNS2. Note that
within the request activity “DirectorReqOfRequest1” the requested activity “Man-
agerNotDeliverReq1” is restricted to European suppliers, while in general “Man-
agerNotDeliverReq1” concerns US suppliers, too.

2.2.3 Sanctioning Activities

Through sanctioning activities it is possible to specify explicitly what agents are
empowered to sanction other agents in response to norm-conform and norm-violating
behavior. Activities of this type are specified as follows:

ACT SANCTION activity id

(agents ; roles ; activities ; statement)
{ STATUS RANGE status statement list }

where agents , roles , activities and statement are defined as

〈 agent id list | EACH 〉
〈 role id list | EACH 〉
〈 activity id list | EACH 〉
〈 status-statement | EACH 〉

respectively, with agent id list , role id list and status-statement being defined as
above and activity id list being a comma-separated list of activity identifiers. The
sanction included in status-statement (or all sanctions in the case of EACH) is the one
whose execution is empowered through the sanctioning activity. In other words, the
sanction included in the status statement is the one that “becomes reality” through
the execution of the sanctioning activity.

Examples. Assume that all sanctioning activities are bundled within a special role
called SpaceMg (“role space manager”), and that one of the sanctioning activities
is defined as:

ACT SANCTION DeliverPunish
(EACH ; EACH ; deliver ;

<DEP EACH> : NORM <O> <quantity ≤ 100> + SANC <PU> <withdraw role>)
{ STATUS RANGE

<IND> : NORM <P> <NO> + SANC <RE> <earn bonus>
<DEP MemBoardDir> : NORM <I> <NO> + SANC <PU> <withdraw role> }

According to the activity head, this sanctioning activity concerns each agent play-
ing any role which includes the activity “deliver”. Moreover, the status statement
included in the activity head uniquely identifies the type of sanction covered by this

11

sanctioning activity: to punish (through widthdrawing role ownership) the violation
of the obligation to fulfill deliver requests with an order volume ≤ 100. Now con-
sider the status range of this sanctioning activity. The IS statement says that an
agent owning the role SpaceMg is unconditionally permitted to execute this sanc-
tion, and that he earns some bonus in the case he does (i.e., actually sanctions).
The DS statement says that the sanctioning activity may become subject to an un-
conditioned interdiction as the result of an “interdiction request” by a member of
the board of directors; a role space manager violates this interdiction at the risk of
being punished by the withdrawal of role ownership.

As a more hypothetical example that illustrates the expressiveness of RNS2,
assume that the following sanctioning activity is part of the role SpaceMg:

ACT SANCTION UniversalSanction (EACH ; EACH ; EACH ; EACH)
{ STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO> }

According to this activity, each agent owning the role SpaceMg is unconditionally
permitted to sanction every norm conformance/violation in accordance to the sanc-
tion attached to the norm.

2.2.4 Change Activities

Change activities affect the status range of activities. Three types of change activi-
ties are distinguished: delete (DEL), replace (REP) and add (ADD) a status statement
being part of the status range of an activity. Change activities are specified as
follows:

ACT CHANGE activity id

(roles ; activities ; change-cmd)
{ STATUS RANGE status statement list }

where roles and activities are as defined above and change-cmd is defined as

〈 ADD status-statement |

DEL status-statement |

REP status-statement BY status-statement 〉

Change activities imply the distinction between the initial status range (i.e., the
status range at design time) and potential future status ranges (i.e., status ranges
that derive from the initial status range through change activities) of an activity.
The set of all potential future status ranges of an activity A, together with initial
status range of A, is called the status range set of A and is denoted by SRS(A) in
the sequel. (SRS(A) is finite, if the number of change activities is so.)

Example. Assume that the following change activity specification is part of the role
SpaceMg:

12

ACT CHANGE

(USsupplier, EUROsupplier ; deliver ;
REP<IND> : NORM <P> <NO> + SANC <NO> <NO>

BY <IND> : NORM <O> <NO> + SANC <PU> <pay fine>)
{ STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP MemBoardDir> : NORM <I> <NO> + SANC <PU> <space exclusion>
}

According to the activity head, an agent acting as a role space manager is permit-
ted to replace the IS statement “NORM <P> ...” by the IS statement “NORM <O>

...” within the deliver activity being part of the roles USsupplier and EUROsup-
plier. According to the DS statement in the status range, an agent owning the role
MemBoardDir may forbid this change activity (i.e., each member of the board of
directors is authorized to request to not execute it); the consequence of violating
this interdiction is the exclusion from the role space. Generally, RNS2 enables to for-
mulate requests on change activities, and, reversely, it enables to formulate changes
of status statements belonging to request activities.

3 RNS2-enabled Automated Conflict Handling

RNS2 allows to formally distinguish three fundamental classes of autonomy-induced
cooperation conflicts in agent systems and, in particular, to detect and resolve them
already at design time.

3.1 Norm-based Conflicts

Norm-based conflicts are cooperation conflicts that result from inconsistent status
statements. More precisely, let S1 and S2 refer to two status statements that are
part of the status range of an activity of any type (“basic”, “request”, “sanctioning”,
“change”), and let NT (Si) and NC(Si) denote the norm type and the norm condi-
tion of Si, respectively (i ∈ {1, 2}). S1 and S2 are said to constitute a norm-based
conflict if (i) and (ii) do hold:

(i) NT (S1) 6= NT (S2), that is, S1 and S2 show one of the following three norm
constellations (i, j ∈ {1, 2} with i 6= j):

– NT (Si) = O and NT (Sj) = I (“OI conflict”)
– NT (Si) = P and NT (Sj) = O (“PO conflict”)
– NT (Si) = P and NT (Sj) = I (“PI conflict”)

(ii) it can happen that NC(S1) and NC(S2) evaluate to TRUE at the same time
(i.e., both S1 and S2 are valid simultaneously).

PO and PI conflicts are weak in the sense that their incidence during runtime can
be suppressed by the agents. This is because a permission implies behavioral choice

13

on the side of the agents, and a permitted activity may be executed (which would be
in accordance with an obligation to carry out that activity) or may not be executed
(which would be in accordance with an interdiction). Against that, OI conflicts are
hard, as neither obligations nor interdictions leave room for action choice.

The detection of norm-based conflicts reduces to a pairwise comparison of status
statements. For a given RNS2 specification the following pseudo-notation algorithm
can be applied to detect all norm-based conflicts at design time:

for each role R
{ for each activity A ∈ R
{ for each status range SR ∈ SRS(A) /* SRS = status range set */
{ for each S1 ∈ SR

{ for each S2 ∈ SR \ S1

{ if NT (S1) 6= NT (S2)
then if NC(S1) = NC(S2) = TRUE

then test whether NC(S1) and NC(S1)
may be fulfilled simultaneously } } } } }

According to this algorithm, at most l ·m ·n2 tests are required, where l is the total
number of activities for all roles, m is an upper bound for the cardinality of the status
range sets (i.e., for |SRS(A)|), and n is an upper bound for the number of status
statements included in the activities’ status ranges. The complexity of the single
tests depends on the mathematical logic used to formulate the norm conditions.
In particular, if propositional logic is used then the algorithm is guaranteed to
terminate for all RNS2 specifications (as this logic is decidable), and if first-order
predicate logic is used then the algorithm is guaranteed to terminate for all RNS2

specifications that are free of norm-based conflicts. With that, RNS2 allows to
map the problem of detecting norm-based conflicts to the well known decidability
problem in mathematical proof theory.

Examples. The two DS statements within the status range of the above defined
basic activity “deliver” constitute an OI conflict, as they may be activated simulta-
neously. The two status statements included in the status range of the above defined
cooperation request activity “ManagerNotDeliverReq1” constitute a PI conflict.

3.2 Sanction-based Conflicts

Sanction-based conflicts are cooperation conflicts that are induced by sanctioning
activities concerning the same norm-conform or norm-violating behavior. More pre-
cisely, let

ACT SANCTION activity id 1 (agents 1 ; roles 1 ; activities 1 ; statement 1) { ... }

ACT SANCTION activity id 2 (agents 2 ; roles 2 ; activities 2 ; statement 2) { ... }

be two sanctioning activities referred to as A1 and A2, respectively. A1 and A2 are
said to constitute a sanctioning conflict if (i) to (iv) do hold:

14

(i) agents 1 ∩ agents 2 6= ∅
(ii) roles 1 ∩ roles 2 6= ∅
(iii) activities 1 ∩ activities 2 6= ∅
(iv) statement 1 ∩ statement 2 6= ∅
where ∩ is the standard set intersection with x ∩ EACH = x. If A1 and A2 belong
to the same role, then the conflict is called an intra-role conflict, otherwise it is
called an inter-role conflict. (Against that, norm-based conflicts are always intra-
role conflicts.) According to (iv) two sanctioning activities are not conflictive if they
sanction conformity to, or violation of, the same norm differently. For instance,
assume that the status range of a basic “deliver” activity includes the two status
statements

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>
<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <withdraw role>

If both status statements are activated through the corresponding cooperation re-
quests, delivering steel violates the interdiction in both statements. As an effect, two
different sanctions are applicable. According to (iv), the corresponding sanctioning
activities are not in conflict although they concern the same “offense”, namely, the
violation of an interdiction. Analogously, according to (iv) none of the following
two pairs of status statements induces a sanction-based conflict:

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>
<DEP SpaceMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>

and

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>
<DEP SpaceMg> : NORM <I> <material 6= gold> + SANC <PU> <withdraw role>

If it should be desirable in a given application to treat these kinds of “multiple
sanctioning” as conflicts, then this can be easily realized by replacing (iv) through
the refined condition (iv)*:

(iv)* NT (statement 1) = NT (statement 2) and
NC(statement 1) and NC(statement 2) may be TRUE at the same time

where NT and NC are as defined above.

The following algorithm can be applied at design time to detect all intra- and
inter-role sanctioning conflicts (let SSA denote the set of all sanctioning activities
in all roles):

for each sanctioning activity A1 ∈ SSA

{ for each sanctioning activity A2 ∈ SSA \ A1

{ test whether A1 and A2 fulfill the conditions (i) to (iv)/(iv)* } }
As with norm-based conflicts, the (semi-)decidability of sanction-based conflicts (and
thus the efficiency with which these conflicts can be identified) depends on the type
of mathematical logics used for formulating the norm conditions.

15

3.3 Change-based Conflicts

Change-based conflicts are cooperation conflicts that are induced by change activi-
ties. Let S and T be two status statements and let

ACT CHANGE activity id 1 (roles 1 ; activities 1 ; change-cmd 1) { ... }

ACT CHANGE activity id 2 (roles 2 ; activities 2 ; change-cmd 2) { ... }

be two change activities referred to as A1 and A2, respectively. A1 and A2 constitute
a change-based conflict if:

(i) roles 1 ∩ roles 2 6= ∅
(ii) activities 1 ∩ activities 2 6= ∅
(iii) change-cmd 1 and change-cmd 2 show one of the following three

constellations:

– change-cmd 1 = “ADD S” and change-cmd 2 = “DEL S”
– change-cmd 1 = “DEL S” and change-cmd 2 = “REP S BY T ”
– change-cmd 1 = “ADD S” and change-cmd 2 = “REP S BY T ”

If S and T belong to the same role, then the conflict is an intra-role conflict; oth-
erwise, it is an inter-role conflict.

An algorithm for detecting all change-based conflicts at design time is the fol-
lowing (let SCA denote the set of all change activities):

for each change activity A1 ∈ SCA

{ for each change activity A2 ∈ SCA \ A1

{ test whether A1 and A2 fulfill the conditions (i) to (iii) } }

This algorithm terminates after n · (n−1) tests, where n is the total number change
activities.

3.4 Strategies for Resolving Cooperation Conflicts

Design-time conflict detection enables design-time conflict resolution. One approach
to resolve conflicts is to modify the roles and the activities so that the conflicts dis-
appear in a system specification.5 Another, very powerful approach offered by RNS2

is to apply the following domain- and problem-independent resolution strategies:

• “Norm ordering” (N-ordering for short) – define a preference order, ≺N , on
the three norms I, O and P, determining which of two norms overrules the
other in the case of a conflict. This ordering can be partial (e.g., “I ≺N O and
P ≺N O”) or total (e.g., “I ≺N O ≺N P”).

5A general difficulty with such modifications is that they run the risk of resulting in specifications
that do not reflect the real system requirements.

16

resolution strategies
conflict types

N-ordering R-ordering A-ordering S-ordering

norm-based
√ √

sanction-based
intra-role

√
inter-role

√

change-based
intra-role

√
inter-role

√

Table 1: Conflict types and resolution strategies. “
√
” indicates which conflict types

can be resolved through which resolution strategy.

• “Role ordering”(R-ordering) – define a precedence order, ≺R, on the roles,
determining which of two roles involved in a conflict dominates the other.
R-ordering can be partial or total.

• “Activity ordering” (A-ordering) – define a precedence order, ≺A, on con-
flicting activities (e.g., on the cooperation requests or the change activities),
determining which of two conflicting activities is preferred to the other. A-
ordering can be complete (i.e., all pairs of conflicting activities are ordered) or
incomplete.

• “Status statement ordering” (S-ordering) – impose a preference order, ≺S, on
conflicting status statements. This ordering can be complete or incomplete.6

These strategies differ in the level of concreteness and specificity at which they re-
solve conflicts. This level increases from N-ordering over R-ordering and A-ordering
to S-ordering. Moreover, as summarized by table 1 the strategies differ in the types
of conflicts they resolve. As this table also shows, it is possible to resolve all norm-,
sanction- and change-based cooperation conflicts through applying the four strate-
gies in appropriate combination.

4 Discussion

RNS2 offers several desirable key features. First, RNS2 is strongly expressive and
allows to capture cooperation, autonomy and the interplay of these two design vari-
ables at a highly precise level. Expressiveness and precision derive from the following
features:

• Through its concept of (positive and negative) sanctions RNS2 enables a de-
veloper to explicitly specify consequences of both norm-conforming and norm-
deviating behavior. The importance of specifying these consequences results

6In the case of two conflicting DS statements, S-ordering corresponds to an ordering of the
corresponding cooperation requests.

17

from the fact that autonomy, taken seriously, implies autonomy against norms
(Conte et al., 1999) – an agent as an autonomous entity can not be guaranteed
to always act in accordance with all available norms.

• Through its concept of change activities RNS2 supports the explicit modeling
and specification of potential dynamic changes in norms and sanctions and
thus in behavioral autonomy.

• Through its concept of a status range RNS2 enables a developer to specify
different normative impacts on the same activity. This makes it possible to
cope with situations in which the normative status of an activity depends
on the request context, that is, on who requested the activity under what
condition. With that, RNS2 allows to explicitly capture context sensitivity of
norms and thus of autonomy.

• RNS2 supports the specification of complex activities through various activity
reference constructs. While some possible reference constructs (e.g., “a request
for requesting a certain resource handling activity”) may be only of marginal
interest in an application at hand, others (e.g., “a request for sanctioning a
norm violation”) may be of particular importance.

• As it is based on the role concept, RNS2 does not imply constraints on the
type and structure of the individual agents. Instead, it enables a developer to
abstract from architectural aspects of agency. This is of particular importance
in the case of open applications, because here it often is not known in advance
which agents will enter into the running system.

• RNS2 is neutral w.r.t. autonomy, that is, it is neither biased in favor of nor
against autonomy and so supports a developer in specifying autonomy at any
level considered as appropriate.

Second, it facilitates the automated detection and resolution of potential cooper-
ation conflicts at design time. The RNS2-specific conflict resolution strategies con-
stitute an effective alternative to the high-level run-time conflict-resolution strate-
gies – negotiation, mediation, and arbitration – typically considered in the agents
area (see, e.g., Müller and Dieng, 2000; Tessier et al., 2000). To have an alternative
to these high-level strategies is important, because they are not always applicable
in real-world contexts (e.g., due to the lack of communication bandwidth or due to
the lack of knowledge needed for identifying potential compromises).

Third, RNS2 is particularly qualified for requirements elicitation and analysis.
Using RNS2 in the early phase of agent-oriented systems development has several ad-
vantages: in particular, it both enables and forces a developer to carefully reflect on
the role of autonomy and autonomous behavior, it helps to avoid misunderstandings
among analysts, stakeholders and programmers when communicating about agent

18

autonomy, and it can be used as a basis for clarifying security issues and issues of
legal liability posed by agents acting autonomously (on behalf of human users).

Fourth, RNS2 is domain- and application-independent. This means that RNS2

can be used to specify the kind and degree of cooperation and autonomy the agents
should show in their behavior, regardless of the type of application and the domain
in which the application runs.

RNS2 leaves room for further improvement. We think a deficiency of RNS2 is the
lack of support of explicitly capturing advanced relationships between the individual
roles, such as generalization, aggregation, peer and inheritance. Such a support is
necessary to enable designers and developers to build agent-based systems that are
structurally and functionally transparent. In solving this deficiency, the broad body
of available work on the organizational design of agent-based systems is likely to
be very helpful (e.g., Bond, 1990; Castelfranchi, 1995; Do et al., 2003; Drogoul and
Collinot, 1998; Kolp et al., 2001; Moss et al., 1996; Zambonelli et al., 2001).

Another main deficiency we see is that RNS2 in its current form does not sup-
port the specification of temporal constraints on cooperation and autonomy. For
instance, RNS2 does not allow to state explicitly that two activities (belonging to
the same or to different roles) should not be executed at the same time, that a
cooperation request expires after a certain period of time, and that a norm or a sta-
tus statement attached to some activity is only valid within a certain time interval.
Various approaches to continuous and discrete time/event modeling are available
in traditional (distributed) systems theory, and we are confident that RNS2 can be
extended appropriately with the help of these approaches.

5 Related Work

To our knowledge RNS2 is the first available formalism designed to explicitly capture
the complex interplay of agent cooperation and autonomy. There are, however,
several approaches that are closely related to RNS2 in that they aim at, or are
appropriate to, a formal specification of autonomous agent behavior. Generally,
RNS2 differs from these approaches in its combination of desirable features. In
particular, none of these approaches is comparable to RNS2 w.r.t. expressiveness
and automated design-time resolution of autonomy-induced cooperation conflicts.
Differences in detail are pointed out in the following.

An approach called OperA that shows several interesting parallels to RNS2 is
described in (Dignum, 2004). OperA is a very powerful formal framework for the
description of agent societies in the context of open knowledge management. Like
RNS2, OperA is strongly based on the concepts of roles, norms and sanctions and
considers agents as black boxes (i.e., no demands on the architecture and the in-
tentions of the individual agents are made). OperA allows to express cooperation
requests, but only at the level of communication ontologies. Moreover, in OperA
cooperation requests per se have no normative impact on the requested agents; in-

19

stead, norms are strictly attached at the level of roles. Unlike RNS2, OperA does not
deal with norm changes, that is, the set of norms is static. Similar to RNS2, OperA
covers certain agent-role and role-role conflicts. OperA allows to specify (as part
of so-called interaction contracts) how conflicts should be resolved during runtime,
although OperA is rather unspecific about conflict resolution. In particular, OperA
does not deal with design-time and automated conflict resolution.

Another approach showing interesting parallels to RNS2 is described in (Lopez
y Lopez et al., 2002). The focus of this work is on norm compliance and on the
question what motivations an agent might have to comply with norms. Like RNS2,
this approach is based on the view that agents as autonomous entities may decide
to not act in accordance with norms. Moreover, similar to RNS2 this approach
considers the issue of positive and negative sanctions. A main difference is that this
approach does make several strong and in some sense restrictive assumptions on
the cognitive structure and processes within the individual agents (e.g., by treating
sanctions as the agents’ goals and by defining autonomy in terms of motivations hold
by agents). Against that, RNS2 does not make restrictive assumptions on “things
occurring within agents”, but concentrates on the role level.

Another approach showing interesting parallels to RNS2 is presented in (Lupu
and Sloman, 1997). This approach focuses distributed systems management through
policies. A policy in this approach is understood as a behavior-influencing informa-
tion being located outside of the managers themselves, and is specified in terms
of normative concepts (authorizations and obligations). Similar to RNS2, this ap-
proach employs the role concept and supports a specification of context sensitivity.
Main differences are that this approach does assume that agents always do behave
norm-conforming (thus sanctioning is not considered) and that the specification of
dynamic norm (and sanction) changes is not supported.

Two related works from the area of electronic institutions are (Salceda, 2003)
(here a formal framework called HARMONIA for modeling institutions is presented)
and (Esteva, 2003) (here a language called ISLANDER for specifying institutions
is described). Similar to RNS2, HARMONIA and ISLANDER employ the concepts
of norms and roles. Moreover, similar to RNS2 HARMONIA (but not ISLANDER)
takes care of the need for explicitly representing sanctions as a consequence of
norm-violating activities. Unlike HARMONIA and ISLANDER, RNS2 does not
deal with the issue of agent-agent communication. Unlike RNS2, HARMONIA and
ISLANDER do not address the problem of dynamically changing norms.

A related approach rooted in deontic logic is described in (Pacheco and Carmo,
2002). This approach concentrates on collective agency and offers, similar to RNS2,
a normative system perspective. An important difference is that RNS2, though
employing norm concepts known from deontic logic, works on the basis of standard
propositional or predicate logic, rather than a deontic calculus (axioms and inference
rules). Another important difference is that this approach does neither consider
the possibility of norm-deviating behavior nor the issue of dynamic norm change
activities.

20

Other logic-based approaches related to RNS2 are (Barbuceanu et al., 1999;
Dignum, 1999). Unlike RNS2, these approaches do neither support the specifica-
tion of dynamic changes in norms and sanctions nor do they support the specifi-
cation of referential activities. Moreover, these approaches are not role-based, that
is, they do not offer roles as an abstraction level. Instead, norms and sanctions are
directly attached to agents and assumptions are made on agent-internal (cognitive)
processes.

6 Conclusion

Although it is commonly agreed that cooperation and autonomy are equally impor-
tant to the concept of intelligent agents, the field has primarily dealt with coop-
eration as a design variable. The reason for this onesidedness is that cooperative
behavior has been always understood as a functional property that can be real-
ized constructively, whereas autonomous behavior has been usually assumed to be
a non-functional property an agent possesses “automatically”. (Interestingly, this
functional/non-functional view of cooperation and autonomy is also predominant in
the field of conventional distributed computer systems.) Based on practical expe-
riences with agent-based applications, since some years this assumption gives away
to the insight that it is highly problematic to expect the desired kind and level of
autonomous behavior to emerge as a byproduct during system development and ap-
plication. As a consequence of this insight, autonomous behavior is more and more
understood as a constructive/functional rather than an emergent/non-functional
agent property. We think this shift in the way autonomy is viewed, which is also
reflected by a steadily growing number of respective publications (see, e.g., Hexmoor
et al., 2003; Nickles et al., 2004), is a necessary condition for successfully meeting
the challenge of appropriately intertwining cooperation and autonomy.

This article described a formalism for expressing the intertwining of agent coop-
eration and autonomy. What is needed in addition to such formalisms are method-
ologies that support and guide developers in the process of determining the right
intertwining and the right levels of cooperation and autonomy. To provide such
methodologies is not trivial and calls for extensive research efforts, because they
must take into consideration a number of performance-critical criteria (and the de-
pendencies among them) that are affected by the “more-cooperative-versus-more-
autonomous design” decision. On the one hand, these are IT- and application-
specific criteria such as communication bandwidth, failure modes, fault tolerance,
security, administrative constraints and development costs. On the other hand,
these are agent-specific criteria such as communication languages and protocols,
agent architectures and organization structures, and learning and planning abilities.
A promising starting point for developing such “intertwining methodologies” appear
to be analysis and design methods available in the area of agent-oriented software
engineering (e.g., Bergenti et al., 2004; Weiß, 2002).

21

References

M. Barbuceanu, T. Gray, and S. Mankovski. The role of obligations in multiagent
coordination. Journal of Applied Artificial Intelligence, 13(2/3):11–38, 1999.

F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and software
engineering for agent systems. Kluwer Academic Press, Boston et al., 2004.

B.J. Biddle and E.J. Thomas, editors. Role theory: Concepts and research. John
Wiley & Sons, Inc., New York, London, Sydney, 1966.

A.H. Bond. A computational model for organizations of cooperating intelligent
agents. In Conference on Office Information Systems (COIS’90), 1990.

C. Castelfranchi. Commitments: from individual intentions to groups and orga-
nizations. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), pages 41–48, 1995.

R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm acceptance. In
J.P. Müller, M.P. Singh, and A. Rao, editors, Intelligent Agents V. Proceedings
of the Fifth International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-98), Lecture Notes in Artificial Intelligence Vol. 1555, pages 99–
112. Springer-Verlag, 1999.

F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7:
69–79, 1999.

V. Dignum. A model for organizational interaction: Based on agents, founded in
logic. PhD thesis, Institute of Information and Computing Sciences, Utrecht
University, 2004.

T.T. Do, M. Kolp, and A. Pirotte. Social patterns for designing multi-agent systems.
In Proceedings of the 15th International Conference on Software Engineering and
Knowledge Engineering (SEKE-2003), 2003.

A. Drogoul and A. Collinot. Applying an agent-oriented methodology to the design
of artificial organizations: a case study in robotic soccer. Autonomous Agents and
Multi-Agent Systems, 1(1):113–129, 1998.

M. Esteva. Eletronic institutions: from specification to development. PhD thesis,
IIIA, Spain, 2003.

H. Hexmoor, C. Castelfranchi, and R. Falcone. Agent autonomy, volume 7 ofMultia-
gent Systems, Artificial Societies, and Simulated Organizations (MASA). Kluwer
Academic Publishers, 2003.

22

R.W. Keidel, editor. Seeing organizational patterns. Berrett-Koehler Publishers,
San Francisco, 1995.

M. Kolp, J. Castro, and J. Mylopoulos. Organizational patterns for early require-
ments analysis. In Fifth IEEE International Symposium on Requirements Engi-
neering (RE01), 2001.

F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy through
norms. In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2002), 2002.

E. Lupu and M. Sloman. Towards a role based framework for distributed systems
management. Journal of Network and Systems Management, 5(1):5–30, 1997.

J.-J. Meyer and R.J. Wieringa, editors. Deontic logic in computer science. Normative
system specification. John Wiley and Sons, Chichester, 1993.

S. Moss, H. Gaylard, S. Wallis, and B. Edmonds. SDML: A multi-agent language
for organizational modelling. CPM Report 97-19, Centre for Policy Modelling,
Manchester Metropolitan University, United Kingdom, 1996.

H.J. Müller and R. Dieng, editors. Computational conflicts. Conflict modeling for
distributed intelligent systems. Springer-Verlag, Berlin, 2000.

M. Nickles, M. Rovatsos, and G. Weiß. A schema for specifying computational
autonomy. In Proceedings of the Third International Workshop on Engineering
Societies in the Agents’ World (ESAW-02), Lecture Notes in Computer Science,
Vol. 2577, pages 82–95. Springer-Verlag, 2002.

M. Nickles, M. Rovatsos, and G. Weiß, editors. Agents and computational autonomy.
Potential, risks, and solutions, volume 2969 (Hot Topics) of Lecture Notes in
Computer Science, Berlin u.a., 2004. Springer-Verlag.

O. Pacheco and J. Carmo. A role based model for the normative specification
of organized collective agency and agents interaction. Autonomous Agents and
Multi-Agent Systems, 2002. to appear.

J.V. Salceda. The role of norms and electronic institutions in multi-agent systems
applied to complex domains. PhD thesis, Technical University of Catalonia, Spain,
2003.

C. Tessier, L. Chaudron, and H.-J. Müller, editors. Conflicting agents. Conflict
management in multiagent systems, volume 1 of Multiagent Systems, Artificial
Societies, and Simulated Organizations (MASA). Kluwer Academic Publishers,
2000.

23

G. Weiß. Agent orientation in software engineering. Knowledge Engineering Review,
16(4):349–373, 2002.

G. Weiß, M. Rovatsos, M. Nickles, and C. Meinl. Capturing agent autonomy in
roles and XML. In Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2003), pages 105–112,
2003.

F. Zambonelli, N.R. Jennings, and M. Wooldridge. Organisational abstractions
for the analysis and design of multi-agent systems. In P. Ciancarini and M.J.
Wooldridge, editors, Agent-oriented software engineering. Proceedings of the First
International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence,
Vol. 1957, pages 235–252. Springer-Verlag, 2001.

24

