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Taking autonomy seriously means to aept that any �stritly normative� (in the sense ofin�exible ation-presribing) soial-level exertion of ontrol must be abandoned � instead, desiredor persistent interation patterns an only be modeled as revisable, basially unertain desriptionsof possible or desired behavior whih might or might not our in atual operation. Agents anthus only use models of interation as expeted ourses of soial ation that are always hypothetialunless when atually enated by them, their o-ators, and designer-ontrolled entities (e.g., asetools). A ombination of normative and deliberative motives in agents' ations (the former resultingfrom previous system behavior, the latter from agents' autonomy) [7℄ makes ertainty about futureinterations impossible.Starting from these observations, this artile identi�es a novel level of modeling agent interationsand thus of analyzing, designing and in�uening agent behavior and multiagent systems: theexpetation level . Expetation-Oriented Modeling (EOM) is introdued as a oneptual and formalframework for the modeling and in�uening soial interations using agent expetations [20, 24℄ asthe primary modeling abstration. The intention behind EOM is to equip pro-ative, autonomousentities in a MAS (ordinary agents as well as the system designer) with the means to representthe soial (i.e., ommuniation) level of the MAS (sine, in the most general sense, expetationsan be seen as the most fundamental representation of ommuniation strutures), and to takeation on this level towards their goals in a �minimally-invasive� but e�etive manner.To this end, we aim at making expetation-level knowledge about the antiipated, dynamiinterational behavior of agents expliit and available to agents as well as to the system analystand designer. This o�ers the possibility for modeling and in�uening interation strutures andautonomous entities whih an not be ontrolled ompletely and whih show a high degree ofbehavioral dynamis, and allows to retain a high degree of autonomy by using expetations asvaluable knowledge for reduing ontingeny about eah other's behavior and (publi) goals.Our approah omprises i) the introdution of expetations for the passive and ative modelingof agents and soial interation (in strong demaration from the usual modeling of agents usingassumed mental attitudes of the modeled agents), ii) more spei�ally, the de�nition of expeta-tion as a dynami mental attitude that is both obtained empirially from observation and subjetto deliberate manipulation (in order to represent and ommuniate desirable events), and iii) thepresentation of priniples and tehniques for analyzing and setting up expetations in an evolu-tionary proess of modeling and in�uening agent interation.Doing so, we over a wide range of aims and types of expetation-holders: from the optimization ofthe soial behavior of �ordinary�, self-interested arti�ial agents that make use of EOM internallyfor their ognition and planing, up to the design of a whole MAS or important onstituents likebehavior poliies and protools from the standpoint of a human designer.Conretely, we present1
• a formal framework for adaptive, empirial, normative and adaptive-normative expetationswithin dynami soial ontexts, and spei�ally the annotation of expeted events with theirrespetive degree of expetedness, degree of normativeness, and deviany (divergene of ex-peted and atual events). This allows to represent both empirially obtained probabilities(agent belief in terms of preditions) and to speify desired probabilities in an integrated,adjustable manner.
• formal representation languages for ontext-sensitive and orrelated expetations in form ofExpetation Networks (ENs).ENs allow to represent interation patterns (e.g., protools and poliies) with gradual �exibil-ity and adaptivity, and to measure the atual adherene of autonomous entities to behavioralspei�ations (predited as well as desired) at runtime.Another partiular feature of ENs is that they are aompanied with algorithms for theirlearning and inremental revision from ongoing experienes the MA makes, apart from the1For lak of spae, some details an be found in [24℄ only.2



possibility to set them up manually.ENs also represent the so-alled empirial semantis [29, 23, 27, 28℄ of agent ommuniation,f. Setion 2.4.6.
• means for the learning and revision of expetations from seletively-overheard agent om-muniations, and for the enatment and ommuniation of expetations faing other agents(in form of so-alled Soial Mirrors [20, 30℄ and Expetation Engines).At this, expetation-oriented modeling is performed from the viewpoint of modelers, so-alledModeling Agents (MAs). A MA observes agents and interations, and maintains and revises ex-petations obtained from these observations and previous beliefs, intentions and desires, in orderto e�etively model and in�uene his soial environment. An MA an be the MAS developer oran arti�ial agent that ats on behalf of the designer, but also a self-interested �ordinary� agentsituated in a soial environment.By representing even the designer of an agent-based appliation as an agent oneptually, weonstitute a novel paradigm in agent-oriented software engineering in so far as this suggests thatthe designer of open MAS should not and an not be granted the omnisient, almighty position aswith ordinary software. Rather, we see her in the role of a primus inter pares among other agents,that, although equipped with more power than �real� agents, should aim for her goals soially (i.e.,ommuniatively) in interation with the other agents as far as possible. In addition, the opennessof open MAS suggests that the development of suh systems an only be done in an evolutionarymanner, with the need to monitor the system and to improve its model even after deploymentduring runtime. A way to put the oneptualization of system designers as agents into pratie ina semi-automati manner is to assign the designer an intelligent, agent-like ase tool, as proposedin [5℄ and in setion 3.1.As far as we know, EOM is the �rst approah to the spei�ation, predition, analysis andin�uening of soial interation that aims at takling the level of expetations expliitly and sys-tematially. EOM adopts the onept of agent expetation from [20, 24℄ and is also stronglyin�uened by the EXPAND methodology (Expetation-Oriented Analysis and Design) [5℄ andthe onept of Mirror-Holons[30℄23. EOM also possesses a strong soiologial bakground; morespei�ally, its underlying view of soiality is quite lose to Luhmann's Soial Systems Theory [22℄,as it has been adapted to arti�ial ageny.The remainder of this artile is strutured as follows. The next setion presents the generioneptualization of expetations and so-alled Expetation Networks as representation meansfor interation strutures. Setion 3 desribes EOM, and shows how a feasible and adequateinremental proess an be derived that exploits the importane of the expetation level. Thisis followed by an exempli�ation of the usefulness of our approah in a ase study based on a�ar-trading platform� appliation senario in Setion 4. Finally, Setion 5 provides more generalonsiderations on the hallenge of the modeling of autonomous systems and expliates relationshipsto other methods and approahes.2 ExpetationsAn expetation an both express how muh a future event will happen and/or should happen.The di�erene of both is represented by the degree of adaptivity (or inversely: normativity) of theexpetation: The expetation of a desired or intended repeatable event will hange less in ase of2Mirror-Holons are higher-level agents whih represent all their beliefs and goals in form of expetations, andan eah exeute entire soial programs emergent from ommuniation proesses.3In ontrast, EOM is not diretly related to the approah by Tran [36℄, whih is based on a di�erent meaningof the term �expetation�, and deals primarily with the pereption layer of agents. Both approahes might beomplementary to eah other, but further researh would be neessary to make out the exat relationship.3



a disappointment of the expetation.Expetations are related to the ourrene of antiipated behavioral or other events (�event� in abroad sense, e.g., �agent x utters message m to agent y�, �agent y performs ation a� or �the alarmbell is ringing�). A major onsequene of the autonomous behavior of agents is that a ertainagent appears to agent and non-agent observers more or less as a blak box whih annot fully bepredited and ontrolled. This obsurity and unontrollability is partiularly salient in open multi-agent systems (open MASs). Beause only the ations of an autonomous agent in its environmentare known to an observer, while its mental state remains obsure, beliefs and demands diretedto the respetive other agent an basially be stylized only as mutable behavioral expetationswhih are ful�lled or disappointed in future events. In the ase of disappointment, an expetationan either be revised in order to onsider the new pereption aurately (so-alled fully-adaptiveexpetations), or the expeter deides to keep this expetation even ontra-fatually (so-alled nor-mative expetations), or to revise (resp. maintain) it only to a ertain degree (adaptive-normativeexpetations). In the two latter ases, the expetation holder likely also deides to take ationin order to make further disappointments of this expetation less probable (by, e.g., santioningunexpeted - so-alled deviant - behavior). And in any ase, the expetation an be strength-ened/weakened if an expeted repeatable event turns out to be useful/useless afterwards.Thus, expetations an not only express how the respetive other agent will likely behave, but alsohow he should behave from the viewpoint of the expetation-holder. In addition, expetations anaddress the behavior of the expeter himself also, whih an be useful for the expeter in order tomodel his self-ommitments, and to ommuniate them to other agents in form of uttered expe-tations. As we will see in 2.4.6, expetation an also be used as an event semantis, expressingthe meaning of events (espeially of agent ommuniation messages) in terms of expeted events(empirial semantis [29, 23, 27, 28℄).Expetations are alled empirial (or emergent, when alluding to their newness from theexpetation-holders viewpoint) if they are formed empirially from observations of events. Inontrast, an MA an form expetations not only from her previous or empirial knowledge abouther soial environment, but also from her individual intentions and desires, resulting in so-allednormative or adaptive-normative expetations4. In ase the MA is or represents the MAS de-signer, these kinds of expetations an represent for example soial norms, obligatory poliies,protools and agent ommuniation language semantis, and organizational strutures, or fosterthe maximization of soial welfare and system oherene.The dihotomy of adaptivity vs. normativity re�ets the ambiguous meaning of the term �ex-petation� in natural language, whih omprises both the antiipation of probable as well as ofdesired or planned behavior, with an adjustable transition of both stylizations. This makes ex-petations espeially appropriate to the modeling of autonomous systems, where an adjustmentof the MA's goals and onstraints on the one hand, and the deliberate allowane, unavoidabilityor unpreditability of autonomous behavior on the other has to be found.Sine empirial expetations are usually adaptive also, and adaptive expetation beome empirialduring the ourse of observation, the attributes adaptive and empirial are more or less exhange-able in pratie.For the purpose of this paper, we use the terms agent �goals� and �desires� olloquially, andfound the formal approah in the agent's �beliefs� and �intentions� only, the later thus indiretlyalso omprising goals and desires in a quite broad, �exible understanding of the term intention. Atthis, �intentions� are used to model states or events an agent ommits himself to reah, inludingsuh states/events he annot bring about himself diretly. Therefor, the ommitments of otheragents show up indiretly as self-ommitments of the MA, i.e., if the (possibly insinere) otheragent is somehow ommitted to perform some ation in favor of the MA, the MA might be self-ommitted to atually bring about this ation indiretly by in�uening the other agent. �Agent4Sine an expetation might be hold purely subjetively and hidden, and even normative expetations have nolegislative power per se, we do not identify normative expetations with soial norms [22℄, exept from the asethe expeter represents the MAS or is some entity with normative power. But adaptive-normative and normativeexpetations are a way to represent norms, of ourse. 4



a1 intends that agent a2 performs ation x � is thus to read as �a1 intends to get agent a2 torealize a possible state in whih done(agent a2 performs ation x) is true. We feel that refrainingfrom a formal use of �desire� and �goal� is reasonable in view of this usage of �intention�, sine atleast persistent and onsistent goals are overed this way [8℄. Note that having an intention inthis sense does not imply knowing how to at onretely in order to make the intended state true(but to assume that there is some way).All in all, from the viewpoint of the MA, expetations are formed retrospetively from utter-anes of observed agents in the soial ontext of the MA, other observed events (e.g., �physial�agent ations like �Closing the window�) and previous knowledge, goals and intentions, and heldin order to antiipatorily
• represent her environment in terms of preditions (fully-adaptive and adaptive-normativeexpetations),
• represent intentions and goals (adaptive-normative and normative expetations) in terms ofdesired preditions,
• ommuniate desires and assertions direted to other agents, in order to in�uene theirbehavior (ommuniated expetations),
• �lter out undesired (untypial, temporary...) e�ets, or onversely emphasize desired e�ets(adaptive-normative and normative expetations) (f. 2.4.2).A major feature of Expetation-oriented Modeling is thus that in form of expetations a rel-atively large spetrum of attitudes (mental and ommuniative) an be diretly related to soialevents, using a single notion. This allows for the MA's ognition, belief aquisition and revi-sion, and planing diretly on the level of soial interation, in ontrast espeially to the reasoningabout the hidden mental states of the modeled agents, suggesting that it is justi�ed, and eveninevitable, to integrate expetations as a modeling abstration into the reasoning, analysis anddesign proesses of agents, multiagent systems and autonomous software systems in general. Thisis not to say that EOM should replae ommon models like BDI (Belief-Desire-Intention). Rather,EOM should be seen as an additional means for the modeling and in�uening of soial interation.It is very important in this regard to see that we intend expetations obtained from observationto be also the primary means for modeling single agents (i.e., even aside from its embeddednessin soial relationships, whih are our main onern) from the MA's point of view. What an beexpeted from a blak-box agent is not just additional knowledge, but in a way, from an observersperspetive, the other agent is at a point of time what an be expeted from him in the respetivesoial situation, probably enrihed with previous knowledge and presumptions, like that this agentis rational) (please refer to [24℄ for details). Therefor, we apture even agents in their entirety asexpetation strutures, inluding what other agents want the MA to expet and the limitationsof suh expeted expetations. Please note also that foussing (but not restriting) ourselves onation expetations does not mean to neglet propositional information, sine on the expetationlevel, suh knowledge an be aptured indiretly via expeted assertive ommuniation ats in theform of, e.g., �agent x asserts that p holds�.2.1 Soiality, Communiation and Expetation StruturesBeause we are fousing on systems with multiple inter-operating agents, we are primarily inter-ested in expetations whih onstitute soiality: if it omes to an enounter of two or more agents,the desribed situation of mutual indeterminism is alled double ontingeny [22℄. To overome thissituation, that is, to determine the respetive other agent and to ahieve oordination (inludingthe apability of on�itive behavior), the agents need to ommuniate. A single ommuniationis the whole of a message at as a ertain way of telling (e.g., via speeh or gesture), plus a om-muniated information, plus the understanding of the ommuniation attempt. Communiation5



is indiretly observable as a ourse of interrelated symboli agent ations (i.e., messages in a agentommuniation language, or demonstrative behavior). Beause ommuniations are the only wayto overome the problem of double ontingeny (i.e., the isolation of single agents), they are thebasi onstituents of soiality and they form the soial system in whih the ommuniating enti-ties are embedded [22℄. EOM adopts this view, and assigns ommuniation a key role in systemsomposed of interating software agents.Inter alia, one important pratial onsequene from this viewpoint is that in ontrast to mostother modeling and design methods for multiagent systems and organizations, in the enter ofEOM are interation proesses rather than fully-exposed agents, roles and groups. In fat, anagent role and even an arti�ial agent partiipating in soial interation is, from the MA's view-point, no more (and no less) than the sum of the behavioral expetations triggered by its observedprevious behavior. Our modeling of agent roles in 2.4.5 re�ets this proess-oriented paradigm.Another important point is that ommuniation and thus the strutures of MASs as modeledusing EOM need not to be ollaborative. In fat, even from on�its stable and useful struturesan emerge.As ation expetations are related to ommuniations and thus to soiality, soial strutures (in-luding, e.g., organizational strutures) an be modeled as expetation strutures [20, 26, 27, 28℄.Basially, expetation strutures are interrelated expetations regarding a spei� set of events(e.g., the behavior or a ertain agent). Expetation strutures an be tailored to loal agent envi-ronments and topial ommuniation domains.We distinguish four types of expetation strutures: (i) soial agents as sets of all urrentbehavioral expetations regarding single agents (i.e., a soial agent abstrats from the atual agentwith its opaque mental properties, and rather represent the interation-related, externally-asribed�publi intentional stanes� of atual agents [24℄5); (ii) roles as plaeholders that are assoiatedwith ertain kinds of expeted behavior and that an be instantiated by di�erent agents; (iii) soialprograms as �exible interation shemes for multiple interating soial agents and/or roles; and(iv) soial values as ratings of expeted generalized behavior (e.g., �Con�itive behavior is alwaysbad�). The fous of EOM is on soial programs [22℄ with soial agents and roles, sine these arepartiularly suited for desribing proesses that our between agents. Fousing on soial values,in ontrast, would suggest a rule-based approah.By proessing existing expetations, agents determine their own ations, whih, then, in�uenethe existing expetations in turn. So ommuniation is not only strutured by individual agentgoals and intentions, but also by expetations, and the neessity to test, learn and adopt expe-tations for the use with future ommuniations. The proess of ontinuous expetation strutureadaption by means of agent interation (or ommuniation, espeially) and inremental, deliber-ative modi�ations of expetation strutures by the MA is alled expetation struture evolution.As desribed in setion 3, this kind of evolution plays a key role in EOM.2.2 Making Expetations Expeted�Expetations of expetations� [22℄ are neessary if expetations are formed in order to expet whatothers expet. We do not treat the MA's expetations of expetations expliitly (only impliit asthey show up in the expeted behavior of the other agents), but we have to deal with the fat thatsome of the expetations held by the MA need to be expeted themselves by the other agents tobe able to have any in�uene on the system.The establishment of suh �expetations of expetation� an be ahieved through the ommuni-ation of the MA's expetations to the agents and/or through the publishing of the expetationsvia an appropriate agent-external instane within the multiagent system. One ahieved, agents5The publi identity the modeled agent would like to present via ommuniation is an important onstituent ofthe soial agent, but of ourse usually not idential with it.6



an �expet� what �is expeted�. As desribed in setion 3, EOM tehnially realizes this throughso-alled �Mirrors� and �Expetation Engines�, whih are also responsible for the aquisition ofempirial expetations from observed MAS ommuniations.Expetations are ommuniated to the agents by the MA mainly for the following reasons:
• To inform the agents about atual soial strutures and proesses they would otherwise notbe aware of (e.g., beause they evolved outside their loal interation environment, but arenevertheless relevant). This is espeially important if the MA holds a higher position thanthese agents, and overhears a large part of the MAS ommuniation (e.g., being the systemdesigner, or a middle agent, or a manager agent in an organizational MAS).
• To inform the agents about the MA's goals and intentions, and possibly about the expetableonsequenes in ase of ating against them or refusing ollaboration.
• Even to deliberatively pretend atually disbelieved knowledge about soial strutures inorder to in�uene agent behavior.2.3 The Sope of Expetation-oriented ModelingIn this work, we de�ne and use expetations for the purpose of modeling and in�uening soialstates of a MAS (i.e., the interational behavior of other agents), from the standpoint of MAs.This leads to the following EOM tasks from the perspetive of an MA, whih will be desribed indetail later.a. Modeling planned or desired events/event ourses The MA enodes all or some of theseas (adaptive-)normative expetations, denoting desired or intended event ourses. Typially,suh expetations are direted to the behavior of other agents in order to in�uene them,but they an also be in regard to the own behavior of the MA, or any other events.b. Modeling empirial events This is done using fully-adaptive and also adaptive-normativeexpetations, as a part of the belief of the agent.This task and the previous task are usually tightly interwoven, sine the gradual blend ofempirial and intentional expetations, and the run-time determination and minimization ofthe di�erene of both expetations is a speial feature of EOM.. Overhearing and monitoring of MAS ommuniations The MA observes agent inter-ations and ategorizes them as desired, undesired and unassessed events.d. Adaption of expetation strutures, if neessary. Fully-adaptive expetation struturesare adapted if they have been disappointed, and (adaptive-)normative expetation struturesmight need to be modi�ed if they turned out to be not realizable, or not useful in order toreah the MA's desires.e. Optionally, taking ation in order to in�uene the MAS, by:- Communiation of expetations to other agents At this, the MA ommuniates seletedexpetations to other agents, making them �expetations of expetations�, for the otheragents, for the reasons listed in 2.2. These information do not have to be intentionally au-rate or orret, nevertheless, but an be ostensible (f. Figure 4). In [24℄ more informationan be found about the enatment of expetations.- Positive/negative santioning of deviant behavior, argumentation, negotiationAdditional tasks whih annot be separated from the ommuniation of expetations ingeneral.
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2.4 Key Aspets of Expetations2.4.1 Strength, Normativity, DevianyExpetations an be weighted in two omplementary ways, namely, w.r.t. their strength and w.r.t.their normativity (or inversely, their adaptability). The strength of an expetation indiates its�degree of expetedness� (also alled expetability): the weaker (stronger) the expetation is, theless likely is or should be its expeted ful�lment (violation). Against that, the normativity of anexpetation (both weak and strong expetations) indiates its intentional �degree of hangeability�:the more normative (adaptive) an expetation is, the smaller (greater) is the hange in its strengthwhen being ontradited by unpredited atual ations. With that, the strength of a lowly norma-tive expetation tends to hange faster, whereas the strength of a highly normative expetationis maintained in the longer term even if it is obviously inonsistent with reality (i.e., with theobserved agents' atual ativities), whereat the term �adaptive-normative expetation� denotes anexpetation with normativity greater zero and lower one, and �fully-adaptive� (�(fully-)normative�)means normativity zero (one). Fully-normative expetations ignore the atual ourrenes of theirmodeled events ompletely, as long as they are not adapted �manually� by the MA. The ideaof expetation weighting based on strengths and normativity is adopted by EOM, and it is alsoassumed that there is a ontinuous transition from weak to strong strength and from low to highnormativity. The di�erene between the probability and the expetability (normativity-biasedprobability) of a ertain event is alled deviany (f. below). So, if EOM is used to model soialnorms, these an be both gradual and, to some degree, auto-adaptive - in ontrast to, e.g., binarymodalities like obligation and permissibility as in deonti logi.Here are some examples of quite extreme ombinations of expetation strength and normativity,mostly related to deonti modalities: rules that govern riminal law (strong/non-adaptable: evenhundreds of atual murders will not alter the respetive laws, and most people think of murderas a rather exeptional event); habits (strong/adaptable: before the times of fast food, peopletook full servie in restaurants for granted, but as fast food beame popular, they were willing toabandon this expetation); publi parking regulations (strong/hardly adaptable: almost everyoneviolates them even if they are, in priniple, rigid); and shop lerk friendliness (weak/adaptable:most people expet bad servie but are willing to hange their view one enountering friendlysta�).Thus, the term �expetation� is inherently ambiguous, as it deliberatively ombines subjetive,demanding expetations (re�eting the goals and intentions of the expeting agent) and the empir-ial likeliness of events (desired or not). In this regard it is worth to state that even the strengthsof fully-adaptive expetations are not neessarily probabilities (from a frequentist point of view),beause expetations are maintained (�expeted�) as a part of the belief a subjetive observerhas, and do not neessarily take into aount enough �real world� fats to determine expetationstrengths objetively when he sets up his expetations. So, not only (adaptive-)normative, butalso fully-adaptable expetations ould theoretially be used to represent individual, ontra-fatualpreferenes (�desired probabilities�, so to say) instead of likelihoods. But suh ontra-fatual yetnon-normative expetations onverge immediately to probabilities, sine they are �willing to learn�,so to say.2.4.2 The Semantis of ExpetationComputational expetations have two dimensions: What the MA expets at a ertain time, andhow she will adapt this expetation in the ourse of time, in ase the expeted event is repeat-able. The latter is treated in 2.4.3. So, what does �to expet an event� at the urrent time pointmean exatly? So far, we've haraterized the meaning of �expetation� intuitively as a gradedblend of atual event probability and �desired probability�. (Adaptive-)normative expetationsare maintained even ontra-fatual for some time (i.e., if they deviate from knowledge). In thisase, the only way for a rational and �non-ignorant� agent to reah the intended belief is to hangethe reality, i.e., to at in order to minimize the deviany. An other interpretation would be to8



understand a normativity as the degree of distrust in a probability, thus a kind of higher-orderprobability.Starting from these observations, we de�ne the semantis of an expetation held by the MA agentas his intention to make (or keep) his gradual belief regarding the ourrene of a ertain eventidential with the expetability of this expetation. This intention is weaker than to intent aertain probability of the event, but as we will see later, in the most ommon ase we atuallyget by with de�ning normative and adaptive-normative expetations as the intention to make thereality (in form of a probability orresponding to the frequeny of some event) onforming to theexpeted state (in form of an expetability).At this, �intending a probability� an be understood as either aiming at bringing about a ertainfrequeny of a repeatable event, or as the will to provide ourrene onditions for the event thatmake it probable to a ertain degree.Formally, an agent's expetation (denoted as Expect) is a mental attitude, represented as a logimodality, and de�ned as follows:De�nition 1.
Expect(agent, event|context, ψ) = e :⇔



















Bel(agent, event|context) = e

∨Int(agent,Bel(agent, event|context) = e))if ψ > 0

Bel(agent, event|context) = e otherwiseHereby, e is the expetability, ψ ∈ [0; 1] is the normativity of the expetation,
Bel(agent, event|context) = b denotes that agent believes that event ours with probability b in
context 67, and Int(agent, p) denotes that agent intends p to beome true (if agent is not apableto bring about the desired fat or ation diretly by herself, this shall inlude the intention tomake other agents bring about p et., i.e., to use them like a tool)We write Expect(agent, event|context) as an abbreviation of Expect(agent, event|context, 0), and
Expectt for Expect, when the time point t at whih the expetation is held matters and an notbe derived from the ontext (for ψ, Int and Bel analogously). Note that t is not the time pointat whih the event (should) our(-s). If we would like to express that some event will or shouldhappen at a ertain time, we would have to enode this time within context.The exat normativity (exept from distinguishing if it is above zero or not) is not used inthe de�nition above, beause the normativity presribes how an expetability auto-evolves in theourse of time with new information, if the expetability it is not set �manually�. If the norma-tivity is zero, the expetation is set equal to the belief of the MA immediately. Otherwise, theexpetability adopts gradually to the belief when both di�er, with a �learning rate� of the expe-tation inverse to the normativity. Cf. 2.4.3 for details.Our de�nition of expetation is build straightforwardly upon probabilisti versions of the KD45and Belief-Intention axioms usually used for multi-modal logis of mental attitudes (e.g. [14℄), andis related to Sadek's want attitude [35℄.Given the agent's belief (e.g., obtainable from an expetation via the so-alled deviany, f.below), the following proposition obviously holds, with e = Expect(agent, event|context, ψ):Proposition 1.6We an use this syntax also to denote expeted expetations: Expect(agent1, Expect(agent2, ...)...).7context here has, in general, to be distinguished from the empirial �ontext� the MA has been used toobtain the expetability, although context ould have been a ourse of pereived events leading to onlude
Bel(agent, event|context) = e. It is in general also not the ontext in whih the agent holds the expetation.9



Int(agent,Bel(event|context) = e) if (ψ > 0 ∧Bel(agent, event|context) 6= e)

Bel(agent, event|context) = e otherwiseTo the ommon axioms, we add the following bridge axiom (adopted from RelIntBel2 in [14℄):Axiom 1.
Int(agent,Bel(agent, event|context) = e)
∧Bel(agent, event|context) 6= e⇒ Int(agent, occurs(event|context, e))Axiom 1 denotes that disbelief in the ourrene of an event with probability e while intendingto belief the event ours with this probability fores the agent to intend the event to our withprobability e (denoted as Int(agent, occurs(event|context, e))). This also expresses that in asethe agent has no partiular belief regarding the ourrene of this event, she an bring abouther introspetive intention to belief in the event even without intending the event itself (e.g., byexploring new pereptions, or by improving her reasoning proess).If we would either drop the usual Bel(p) → ¬Int(p) axiom in Belief-Intention logis, or intro-due alternatively maintenane intentions [4℄ (denoted as IntM ), de�nition 1 would hange toDe�nition 1-M.
Expect(agent, event|context, ψ) = e :⇔

{

IntM (agent,Bel(event|context) = e)) if ψ > 0

Bel(agent, event|context) = e otherwiseThe agent an ahieve the intention to hange his belief in several ways, whih an also bepursuit onurrently.i. Change the world This is onsidered to be the usual way to enfore adaptive-normative andnormative expetations, either by exeution of the expeted events direted to the MAhimself, or by bringing about the intended events indiretly (e.g., by asking other agents).ii. Explore The agent an try to obtain new pereptions in order to hange his belief by explo-ration. Here, the (adaptive-)normative expetation serves as a kind of hypotheses, and theagents strives after new evidene in order to support or refute it.iii. Wait This is atually not overed by the original intention at time t, but is a way to au-tomatially derease the �strength� of the intention (i.e., the degree and duration of theself-ommitment) in onseutive time steps instead: If the normativity is below 1, in thelonger term the expetation learns (i.e., adapts to the urrent probability), provided theprobabilities of a ertain event remain stable enough to be learnable (f. 2.4.3). Pratially,this happens if the expetation holder failed to derease the deviany atively (due to insuf-�ient soial power, for example). The adaptation of the expetability to the probability inthis ase an nevertheless be desired, and it an even be a prerequisite for the enforementof less �exible and thus likely more important expetations.iv. Ignore the deviation Here, the agents simply believes in the expetation, possibly ignoringreality thereby:
Bel(agent, event|context) = Expect(agent, event|context, ψ) holds in any ase then.Suh deliberative ignorane appears to be irrational for intelligent agents, but is a ommonattitude of human agents and obviously somewhat funtional for them. In any ase, theidenti�ation of ertain expetations with beliefs regardless of deviane might be reasonablefor arti�ial agents in ase the event belief is obtained from an unreliable soure.A less debatable use for suh deliberative ignorane is to set the normativity greater zero10



in order to �lter out (��atten�) temporal and insigni�ant �utuations of probabilities. In2.4.3, a onrete way to adapt expetabilities is shown whih �attens a graph depiting thehanging probabilities of some event.In all ases exept from iv., we assume that the expetability is equal to the probability (inase the normativity is zero).Note that even for the ases i.-iii. so far no assumptions have been made on how e has beenobtained - the MA is basially free to hold any expetabilities she likes / is interested in from hersubjetive and possibly irrational viewpoint.De�nition 2.The deviany ∆ of an event regarding a ertain expetation (or vie versa of an expetationregarding an event) is de�ned with
∆(event, context) = Expect(agent, event|context, ψ) −Bel(agent, event|context).The deviany an intuitively be seen as an indiator of the e�ort that would be required tomake a normatively expeted event happen, and as a measure for the ompliane of the event-generating agent with the expetation, whereas the normativity is intuitively a kind of �stamina�of the intention (the strength of a self-ommitment. Please remember in this regard, that we allowintentions also to be denoted as desired behavior of other agents).There is also a onjuntion with the utilities of events: If the normativity is larger zero, theutility for the MA to reah the spei�ed probability is ertainly larger zero also. The expetabilitymight orrespond to the utility of the event in this ase (but this is to state a heuristi only,suggesting further researh).Proposition 2.Exept from the ase iv. above (belief despite ignorane of event ourrenes)
Int(agent,∀ti, t ≤ ti ≤ t+ h : ∆t+i(event, context) = 0)holds at time step t. At this, h is a possibly in�nite intention horizon whih determines how longthe expetation is maintained.Finally, we want to further simply the semantis in ase the probability of an intended eventis irrelevant:Proposition 3.
(Expect(agent, event|context, ψ) = e ∧Bel(agent, event|context) < e) → Int(agent, event)To sum up, our notion of expetation is (to our knowledge) the �rst omputational means for aoverage of both agent belief and intention using a single attitude, with the possibility of a gradualadjustment of the emphasis of either aspet. This orresponds to the double-faed ommon-sensemeaning of expetation in natural language, and to the meaning of this term introdued in [20℄.Apart from having single �points of attak�, eah allowing to express how muh a believed event isintended or an intended event is believed, and how strong the ommitments direted to intendedevents (i.e., to redue the devianes of (adaptive-)normative expetations) should be.The desribed semantis of expetation of ourse only applies in ase the expetations are heldas mental attitudes by the MA. In ase the expetation is used to be ommuniated to other agents(to make it an �expetation of expetation�) instead, its semantis hanges, f. 3.2 and [24℄.11



2.4.3 Unattended Adaption of ExpetationsFor lak of spae, the empirial derivation of fully-adaptive expetation (their expetabilities, resp.)and the probabilisti part of adaptive-normative expetations is omitted in this paper, please referto [27, 28℄. We desribe the adaption of adaptive-normative expetations here, though.After the expetabilities and normativities of adaptive-normative expetations have been obtainedfrom goals and intentions, they are exposed to reality, so to say. The following shows how suhan expetation an be adapted automatially, depending from its normativity (degree of ommit-ment). The following de�nition overs expetations with normativity zero and one also.To this end, it is assumed that for an event event|context orresponding to a ertain ENnode an initial expetation strength θ(event, context) = P0(event|context) exists. Analogously to
Belt(), Pt(event|context) denotes a probability stated at time t, not the probability of an eventhappening at time t. Given a normativity ψt and a probability Pt(event|context) obtained em-pirially at time step t, the expetation strength at this time step an be alulated reursivelyas follows. This way to alulate Expectt is not to be seen as anonial, other de�nitions forthe adaption of adaptive-normative expetations might be reasonable too, depending from theonrete appliation also.De�nition 3.

Expectt(agent, event|context, ψt) =
{

θ(event, context) if t < 1

Expect′t+1(agent, event|context, ψt) otherwisewith Expect′t(agent, event|context, ψt) =


















Expect′t−1(agent, event|context, ψt)

−∆′
t−1(event, context)(1 − ψt)if t > 0

θ(event, context) otherwise
∆′(event, t) is alulated as
Expect′t(agent, event|context, ψt) − Pt(event|context)8.This (non-mandatory) way to alulate Expectt reminds of the eonometris tehnique ofExponential Smoothing used for the smoothing and extrapolation of non-linear time series. Italulates a �attened version (with a �attening degree depending on the normativity) of the graphof Pt(event|context), and lets Expectt(agent, event|context, ψt) onverge to Pt(event|context) atleast if Pt(event|context) remains onstant with inreasing t, and ψt remains onstant also. Thenormativity (i.e., the expetation adaption rate) itself does not hange.If, e.g., ψt = 1, the expetation strength
Expectt(agent, event|context, ψt) = θ(contex, event) will remain onstant, whatever the empirialevidene is. In ontrast, if ψt(agent, contex, event) = 0,
Expectt(agent, event|context, ψt) = Pt(event|context) applies at all time steps.Example: Figure 1 shows the time and normativity dependent expetabilities of an event a, with
ψ0..20 = 0.95 and θ(a, context) = 0.4. Being a �tive event, the potential e�et the announementof these values to the event generator (a ommuniation partner of the MA, for example) wouldhave, is not onsidered. The agent parameter has been omitted.8Calulating Expectt(...) using Expect′t+1

(...) is done just in order to get rid of the delay of one time step inthe adaption of Expectt(...) to Pt(...) that would exist otherwise.12
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Figure 1: Unattended adaption of an expetability (t→)2.4.4 Computational Representation of Expetations and Interation ProessesSettling on partiular representation formalisms naturally a�ets the level of abstration and withit the sope of expetation strutures. Here, we fous on non-deterministi soial programmes(with regular protools and poliies as speial ases), for whih a graphial notation � so-alledExpetation Networks (ENs) [20, 27, 26℄ � is presented 9. The main harateristis of ENs arethat they represent expetations embedded within expliit soial ontexts, and model probabilis-ti event ourses (i.e., beliefs regarding events), ation intentions and normative protools in aseamlessly integrated manner, and (in ontrast to Hidden Markov Models (HMMs)) interrelatestohasti events instead of stohasti states. At this, ENs are intuitive (as we believe), and anbe set into straightforward relation to several other formalisms, espeially HMMs and stohastiautomata, Dynami Logi, Dooley Graphs [32℄ and Interation Frames [34℄.Expetation Networks an be given a formal semantis as desribed in 2.4.2, but also a so-alled Empirial Semantis of events and event proesses [29, 23, 27, 28℄, as desribed in 2.4.6.The "onsequentialist" (a-posteriori) onept of meaning of ommuniation among arti�ial agentswas, to our knowledge, �rst artiulated in [20℄.Informally, the empirial semantis assigns an event a meaning in terms of its likely onse-quenes, as represented by EN sub-trees. E.g., the empirial semantis of some message fromsome agent ommuniation language would be the expeted e�et the utterane of this messagehas.In regard to EOM, the use of ENs is not mandatory, although ENs are probably the most suit-able representation formalism. In priniple, other formalisms ould be used also, as long as theyare apable to make expliit the onseutive states of agent interation (e.g. Interation Frames[34℄).Figure 2 depits a very simple EN (in a notation alled DG-EN whih allows for yles in thegraph). The nodes orrespond to ontextualized events (espeially agent message ats and otheragent ations for our purpose, but also �physial� events pereived in the agents' environment)that are uttered and addressed to/by agents, probably ating as instanes of roles (ri). Time9The signi�ant di�erenes of the EN data struture presented in this work (based on [20℄) and older realizationsof ENs (e.g. [26℄) are the treatment of normativity, generalizations and variables. The notation in this work isdownwards-ompatible with [27℄. 13
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Figure 2: A soial program as DG-ENstamps ould be part of node labels, but for our purpose, we want nodes to represent repeatableevents (i.e., we form expetations about events like �Agent x performs ation y in the future�instead of singular events like �Agent x performs ation y at time step 100�). Events are alwaysontextualized, i.e., the same event an our multiple times within a ertain EN, probably withdi�erent expetation strengths depending on the respetive ontext (in this regard, the relation-ship of Expetation Networks and HMMs and stohasti automata beomes obvious when pathsin the network are assoiated with states). Tehnially, an (event) ontext is the EN path up toand inluding the parent of the node that is annotated with the event label. The direted edgesrepresent the expetation that a ertain event is followed by a ertain subsequent event. Eahedge is labeled by a triple s:n:d of real values, where s (ranging between 0 and 1) denotes itsexpetability (strength of the expetation), summing up to 1 for edges leading to sibling nodes.
n (ranging between 0 and 1 also) denotes the normativity. The deviany is denoted as d, rangingbetween -1 and 1 (informally, the di�erene of s and the strength this expetation would have inase of n = 0). n and/or d an be omitted if they are not of interest in a spei� appliationontext. Note that outgoing edges of a node always do have the same normativity, beause thedegree of expetability-hange represented by the normativity is the same for all sibling nodes. ⊥denotes the expeted end of the ommuniation proess.In tree ENs, an expetability e at the inoming edge of a node v within an EN ent maintainedby an MA at time step t means that at this time step, the MA expets the event represented by vwith expetability e assuming he already has or would have observed the ourse of all events alongthe path leading to v. This path up to the parent of v is alled the ontext of the event. In asethe expetation holder makes new observations, he probably needs to modify this expetability.The ontext thereby allows partially to foresee the e�et optional observation would have: If, e.g.,you expet today that the sun will shine tomorrow afternoon if it is foggy tomorrow morning, theEN determines the exat expetability you'll have tomorrow morning in regard to sunny weatherin the afternoon (in ase you keep this EN until then). On the other hand, the expetabilitieswithin an EN are of ourse not fully determined by the EN itself: If you experiene heavy raintoday, you might want to derease the EN's expetability for sunny weather tomorrow, even inase of fogginess. It this regard, it is important to see that the ontext might be only a part ofthe probabilisti ondition for the probability P (eventv|condition) an expetation represents (i.e.,the expetability minus its deviane, f. below). In fat, all relevant observations and in�uenesexperiened/known until time t have to be inluded additionally to form a proper probabilityondition10.10It is in priniple also possible to use ENs for modeling the past as a ourse of already observed or otherwisebelieved events, eah with expetability 1. 14



We will introdue the following kinds of EN representations, in order to allow the tailoring ofthe representation formalism to di�erent needs in di�erent appliation ontexts. All of them anbe redued to so-alled ground Tree-ENs in order to de�ne their semantis.Ground Tree-ENs: Graphial trees without variables. If we refer to an �EN� in this work, wedenote a ground Tree-EN if not stated otherwise.(full) Tree-ENs: As before, but optionally with variables for nodes, sub-trees, and node andedge labels.KB-onditioned Tree-ENs: Tree-ENs where graph edges an be annotated with logial ondi-tions from a knowledge base KB. Please refer to [26℄ for these kinds of EN.DG-ENs: Direted graphs, allowing for nodes with multiple inoming edges (denoting eventswith di�erent ontexts but the same empirial semantis) and ylesTextual ENs: Representing ENs using the formal language (ENL)Probabilisti ENs: ENs with normativity 0 for all edges.EN sets: A set of multiple ENs an be stated either extensionally (by enumeration), or inten-tionally by way of plaing free variables within an EN, suh that di�erent instantiationsresult in di�erent ENs, whereat the variables an be existentially quanti�ed (e.g., to be usedto query other ENs), or all-quanti�ed. EN sets an be used to represent onurrent eventsequenes. They are not onsidered in this work for lak of spae.For the understandability of EOM, it is su�ient to know Tree-ENs as far as explained above.Thus, readers not interested in details about ENs and empirial semantis an safely jump tosetion 3 now.Formally, a so-alled ground Tree- Expetation Network is de�ned as follows:De�nition 4. An ground Tree-Expetation Network en ∈ EN (E) over a ertain event termlanguage E is a (possibly in�nitely deep or broad) tree
(V,C, E ,Expectability ,Normativity ,Deviancy ,nodelabel , edgelabel)where

• V , |V | > 1 is the set of nodes,
• C ⊆ V × V are the edges of EN .
• E is the event term language (a speeh-at-oriented agent ommuniation language, for ex-ample, to denote agent messages. But terms denoting non-symboli events are allowed also,e.g. �physial� agent ations, or events like �the sun is shining�).
• Expectability : C → [0; 1] returns the expetation strength (expetability) for the followingevent, with ∑

Expectability((vparent, vi)) = 1 for eah set of sibling nodes vi,
• Normativity : C → [0; 1] returns the normativity of the orresponding expetability,
• Deviancy : C → [−1; 1] yields the orresponding deviany,
• nodelabel : V → E ∪ {⊥,⊲} is the label funtion for nodes. The labels of sibling nodes mustbe mutually di�erent (i.e., denoting di�erent events).Optionally, ⊥ denotes the expeted end of a onversation, and ⊲ denotes �no ation� (nothinghappens). As we will see later, the latter is useful as a dummy root node representing thestart of a onversation. 15



• edgelabel : C → {”s : n : d” : s ∈ [0; 1], n ∈ [0; 1], d ∈ [−1; 1]} is the label funtion foredges, with edgelabel(c) = Expectability(c) : Normativity(c) : Deviancy(c). Edge labelsare usually omitted if the edges' expetability and normativity are both 1. Normativity anddeviany an also be omitted if these are not of interest.
EN (L) shall denote the set of all ENs over an event term languages L.If the normativity for every edge within an EN is 0, we speak of a probabilisti EN, useful fordenoting adaptive stohasti protools.Given an Expetation Network ent maintained at time t, with
ent = (V,C, T ,Expectability ,Normativity ,Deviancy ,nodelabel , edgelabel),we set Expectability(c) = Expectt(agent, event|path,Normativity(c)), and

Deviancy(c) = ∆t(path, action) for eah edge c ∈ C leading to the node orresponding to theevent event reahed from the EN's root node following path. agent is the MA who holds theexpetations/the EN. The set of ontexts Context is provided as the set of paths within the EN,denoted unambiguously (sine the labels of the hildren of eah EN node have to be mutuallydi�erent) as linear lists of onseutive event labels (event1 ⊔ ... ⊔ eventn).Ground Tree-ENs an be extended to (full) Tree-ENs with variables by allowing plaeholdersfor agents (in order to allow for agent roles), and for other message term onstituents and evensub-trees. Suh variables an be used with all other kinds of ENs also, by allowing them in plaeof nodes, edge labels and within node labels. This extension is shown only for textual ENs below,sine it is ompletely straightforward for other EN types.Obviously, an EN an be represented in a ompressed way without loss of expressibility as adireted graph by a merging of idential sub-trees. This also re�ets that the empirial semantisof EN paths lays in their ontinuations expressed by subsequent sub-trees, and beause of this,two paths with the same ontinuation have the same meaning (f. 2.4.6). These so-alled DG-EN salso allow graph yles, as an abbreviation for in�nitely deep sub-trees. Sine the enhanementof ground Tree-ENs to DG-ENs is trivial, and DG-ENs an be mapped to ground Tree-ENs fullypreserving their semantis (by manifolding sub-trees with more than one parent node), we omit aformal de�nition of DG-ENs here.Sine an EN might be quite umbersome to draw betimes, we now introdue the following ENrepresentation language ENL.ENL → BranhBranh → Event| [ Event Children ℄Event → 'Epattern' | Variable | ?Variable | ?Children → [ Weight Branh ℄ Children | ǫWeight → Expetability| ( Expetability, Normativity )| ( Expetability, Normativity, Deviany )Expetability → {e : e ∈ R, 0 ≤ e ≤ 1} | Variable | ?Variable | ?Normativity → {n : n ∈ R, 0 ≤ n ≤ 1} | VariableDeviany → {d : d ∈ R,−1 ≤ d ≤ 1} | Variable
Epattern → Performative(Agent, Content)| PhysialAtion(Agent, AtionDesription)16



| UnintendedEvent(...)Agent → agent1 | agent2 | ... | Variable | ?VariablePerformative → request | deny | accept | assert | ... | Variable | ?VariableAtionDesription→ turnLeft | closeDoor | leaveRoom | ... | Variable | ?VariableContent → LogialStatement | Variable | ?Variable...This deliberatively inomplete syntax of Epattern (orresponding to node labels) is just for exam-ple - basially, any message or ation language an be used.For simpliity, we will use ertain non-terminals of the grammar in plae of the sets of the re-spetive produed words. Sine every event (term) and every sub-tree ("Branh" in the grammarabove) in a textual EN orresponds to a node (branh) in the equivalent ground Tree-EN, we referto event (terms) within a textual EN sometimes as �nodes�.To demarate variables (alphanumerial terminals starting with big letters or "?"), we usuallyuse small letters for non-variable parts of Epattern. Variables starting with "?" are alled igno-rane variables.Words in ENL and words in Epattern are alled ground i� they do not ontain variables. Othervariables are either bounded using a substitution list (with eah variable possibly having morethan one instane simultaneously), or free in order to retrieve sets of ENs (as existentially quanti-�ed query variables, or as universally quanti�ed variables). Free (non-ignorane) variables are notonsidered in this work for lak of spae.To redue ENs with variables to a known type of EN we provide a mapping o ground Tree-ENs.Mapping a textual EN ten ∈ ENL does not yield, as one might expet, a set of ENs in ase tenontains variables. Rather, the apability of ENs to represent non-deterministi alternative a-tions is used to �in�ate� ten to a single, possibly in�nite ground EN (2.4.5 desribes the oppositetask of �de�ation� by introduing new variables). This proeeding has the advantage that thesemantis and handling of ENs an be de�ned in a lear ut way without the neessity to aountfor variables later (and thus to deal with instantiations, uni�ation et.). In addition, fousingon single ENs avoids handling multiple ENs possibly denoting mutually inonsistent probabilitydistributions and on�iting normativities (every single EN is inherently onsistent as it an, byde�nition, not represent mutually inonsistent beliefs or �norms�). Of ourse, a omplete in�ationis in general not meant to be performed atually, if only for the reason that the resulting groundEN might be in�nitely large.De�nition 5. A textual EN ten ∈ TEN(E) over the event term language E is de�ned as astruture (enl, ϑ, Inflate) where
• enl ∈ ENL is a word from the language de�ned using the grammar above, with E being thesubset of all ground terms in Epattern.For sibling sub-trees onstraints analogous to those de�ned for graphial ENs apply (i.e.,their expetabilities have to sum up to 1, and two or more siblings with the same groundevent term are forbidden (but not those with same event terms as long as these transformto di�erent ground terms by means of substituting the same variable with di�erent values,whih is allowed)). But for onveniene, in ase the sum of sibling expetabilities is below 1,we assume an impliitly given additional sibling "?" (denoting "unknown additional eventsexpeted here"), ompleting the expetability gap.
• ϑ : ENL → θ resulting in the environment of a sub-tree,with θ being the set of all lists of the form
〈〈Variable/inst,Variable/inst, ...〉, 〈Variable/inst,Variable/inst, ...〉...〉. The environment of17



a sub-tree is thus a list of variable substitution lists, to be applied from the position in enlon determined by a path ∈ ENL, path being a pre�x in enl, until the next losing ℄-braketthat has no aompanying opening braket ounted from path on (i.e., substitutions extendover sub-trees).A ertain variable, if not a variable for edge weights, an our in multiple sublists within
ϑ(path) at the same time for the same path (denoting non-deterministi instantiation), butnot within the same sublist. E.g., in
〈〈Variable1/inst11

,Variable2/inst21
, ...〉, 〈Variable3/inst31

,Variable2/inst22
, ...〉〉, V ariable2is bounded to inst21

and to inst22
simultaneously.For onveniene, we insert the ϑ diretly at their proper positions, e.g.,[〈〈Role1/agent1,Role2/agent8〉〈Role1/agent2〉〉 'request(Role1, servie)'[0.3 'deny(agent3, servie)'℄[0.7 ['aept(agent2, servie)'[〈〈Role1/agent3,ProbabilityPay/0.8〉〉(ProbabilityPay, 0, 0) 'pay(Role1, servie)'℄℄℄℄.The extent of the respetive substitutions is hinted by under-/overlines. Note that in thisexample, the last role substitution (Role1/agent3) is never applied, beause at this position,

Role1 is already bound by either agent1 or agent2.The preise semantis of ϑ is de�ned via Inflate (f. below). Please observe that both thissemanti and the syntax is di�erent to those proposed earlier for similar looking variablesubstitutions in [26℄.
• Inflate : TEN(E) yields a semantially equivalent textual EN. The required de�nition of

Inflate is given below.If the result of Inflate is ground (i.e., all variables exept from ignorane variables are boundby ϑ, and a repeated appliation of these substitutions results in ground values eventually),then resulting EN is equivalent to a ground Tree-EN.Term variablesInformally, an 'event term pattern' ontaining a variable in plae of Agent / Performative /Content... is eventually in�ated to a set of sibling nodes, eah for one of all possible instantiationsof this variable. To this end an environment ϑ an provide more than one instane value of eahvariable, whereat the instanes an be any (not neessarily ground) terms syntatially allowed inplae of the variable. The hildren of eah generated sibling are those of the un-in�ated event termpattern, whereat the variable is bounded exlusively to the respetive hosen instane within thewhole sub-tree rooting in this sibling. In ase the variable is an ignorane variable, their impliitset of instanes is the set of all syntatially appropriate substrings within the ground subset of
Epattern.E.g., in a MAS with three agents, ['Ask(agent1, a)' [ 1 'Reply(?Agentx, b)'℄ ℄ is in�atedto ['Ask(agent1, a)' [ 0.33 'Reply(agent1, b)'℄ [ 0.33 'Reply(agent2, b)'℄[ 0.33 'Reply(agent3, b)'℄℄, the agenti (the addresses of the speeh ats are omitted for sim-pliity).In ase of a �nite set of resulting sibling nodes (e.g., using a propositional event term lan-guage), the expetability of eah sibling resulting from suh an in�ation is the expetability forthe un-in�ated sub-tree, divided by the number of generated siblings (i.e., denoting uniform dis-tribution of the siblings). For in�nite sets, expliit numerial expetabilities annot be stated forthis uniform distribution.Expetability and normativity variablesUsing "?"s in plae of expetabilities denotes uniform distribution of the respetive hildren(i.e., all siblings have the same expetability). Following a Bayesian viewpoint, uniform distribu-tion stands for �Don't know�, whereby possibly the respetive parts of the EN beome less entropi18



in the ourse of the revision of the EN by learning. Named variables an also be used in plaeof expetabilities, normativities and devianies, but multiple values for the same variable are notallowed in this speial ase, beause otherwise, the in�ation would result in idential events withdi�erent expetabilities, violating the semantis of ground Tree-ENs. Ignorane variables for ex-petabilities are treated like "?", but will be bound to the resulting numerial value in the wholesubsequent sub-tree.Sub-EN variablesIn order to support modularization, variables an also our in plae of a whole node (respe-tively �Event� for textual ENs). They are be replaed with �sub-ENs� (not just single nodes),more spei�ally, they are in�ated to a set of sibling sub-trees eah, analogous to the in�ationof variables in event term patterns (but note that the result is in general not the same as of thein�ation of a variable in plae of an event term, as desribed before). Suh a variable an bebounded by ϑ, whereby the instanes are ENs to be inluded in plae of the variable (denotedin ϑ as words from ENL, not neessarily ground), or be an ignorane variable, standing for the(possibly in�nite) set of all ENs over E (TEN(E)). So, "?" in plae of a node an be interpretedas an �unknown ourse of events�. An omplete graphial or textual representation of the resultingEN is of ourse not feasible in the general ase.A "?" in plae of a node / event stands for an unnamed ignorane variable.DG-ENs are espeially suitable for the �folded� graphial representation of ENs ontaining vari-ables. If, e.g., the same (non-ignorane) sub-EN variable appears as a leaf node multiple times,the in�ated leafs an be merged graphially, using multiple edges leading to the same node thatresulted from the former leafs.Preisely, variables are in�ated as follows:De�nition 6. Inflate : TEN(E)

Inflate = inflatek([ ⊲ [1 enl℄℄, ϑ, 〈〉)11At this, we hoose k :⇔ inflatek(enl, ϑ, 〈〉) = inflatek+1(enl, ϑ, 〈〉) (i.e. suh that
inflatek(enl, ϑ, 〈〉) is a �xpoint of inflate), and de�ne
inflate : ENL × θ∗ × θ → ENL

inflate(event, ϑ, ϑ′) = event,
inflate([father child1 ... childn℄, ϑ, ϑ′) =[father merge(child1 ... childn−1 child

′
n1

... child′nm
)℄at whih childn = [(expectn, ...) [deflatedEventn grandchildn1

...grandchildng
℄℄, and the child′nibeing de�ned with11For onveniene, we denote the resulting graphial EN as a ground textual EN.Prepending the empty ation ⊲ to enl here is required beause otherwise it would not be possible to in�ate theroot node of enl.
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[(expectni
, ...) inflate(instanciated ′

ni
, ϑ, ϑ′′ni

⊔ ϑ′)℄with instanciated ′
ni

= instanciatedni
+ (grandchildn1

... grandchildng
)if instanciatedni

∈ ENL[(expectni
, ...) inflate([instanciatedni

grandchildn1
... grandchildng

℄, ϑ,
ϑ′′ni

⊔ ϑ′)℄, expectni
= expectn

|{rootEvent(instanciated′

ni
):1≤i≤m}|otherwiseusing 12

instanciatedni
= (ϑ′ ⊔ ϑ′′ni

)(deflatedEventn), ϑ′′ni
:⇔ {ϑ′′ni

: 1 ≤ i ≤ m} = ϑ′′

ϑ′′ = ϑ(pathchildn
) ⊔



















〈〈?vr/e〉 : e ∈ E , ?vr ⋐ deflatedEventn〉if deflatedEventn ∈ Epattern

〈〈?vr/e〉 : e ∈ TEN(E}), ?vr ⋐ deflatedEventn〉otherwiseAt this, the funtional appliation of a loal environment ϑ′ is de�ned as the appliation of thesubstitution lists within ϑ′ in turn. E.g.,
〈〈Rolex/agent3, Obligationy/task7〉, 〈Rolex/agent9, Obligationy/task7〉〉('request
(Rolex, Obligationy)') results in the two siblings'request(agent3, task7)', 'request(agent9, task7)'.Sine substitution lists range to the end of the whole sub-tree from their position, and add toprevious substitution lists, we ould have abbreviated these substitutions as
〈〈Obligationy/task7〉〉〈〈Rolex/agent3〉, 〈Rolex/agent9〉〉.
⊔ denotes list (string) onatenation, sx ⋐ sy yields true i� sx is a sub-list (a substring) of sy.
ϑ1 ⊔ ϑ2 onatenates two substitution lists. If a substitution list resulting from suh an operationis applied, and it ontains two substitutions for the same variable, only the �rst substitution isused. Applying (ϑ′ ⊔ ϑ′′ni

)(deflatedEventn) thus ensures that variables bound by previous alls of
inflate ranging over the urrent sub-tree annot be rebounded by ϑ′′ni

.
ϑ(pathchildn

) yields the list of substitution lists next to the position of childn within enl.
merge(child1 ... childn) obtains the argument, but with only one among those hildren sub-treesthat start with the same event, thereby keeping only the largest (in terms of string length) of thesedoublet hildren. In ase the argument results from substituting a bounded variable in ϑ, suhdoublets ould have been avoided manually. Against that, if a ignorane variable is EOMed, itin�ates to all possible instanes syntatially allowed, inluding those that are already present assiblings, making a merging neessary. If the instane variable in�ates to the elements of TEN(E),
merge keeps for eah subset of TEN(E) with elements having the same root node only the largestone.In addition, merge([(expect1...) child1℄ ... [(expectn...) childn℄) also replaes "?"s at the posi-tions of expetabilities (denoting �expetability unknown�), obtaining expect′i for eah "?":

expect′i =
1−
P

{expectj :expectj 6=”?”}

|{expectj :expectj=”?”}|The operator+ in instanciatedni
+(grandchildn1

...grandchildnm
) �adds� the sub-trees grandchildj1to the textual EN instanciatedni

multiple times by adhering to every leaf of instanciatedni
the set12We show the in�ation of variables for whole event terms, whole events, and of "?" for expetabilities. Variablesfor parts of event term patterns, like for agent identi�ers, for normativities and devianies, and ignorane variablesfor expetabilities in�ate analogously in a straightforward manner.20



of all grandhildren as hildren (avoiding doublet siblings using merge() as desribed above).Again, it is important to see that the syntatial transformations done in Inflate are notgenerally intended or possible to be atually performed globally for a whole EN.2.4.5 Generalization and Role Emergene by EN De�ationLikewise Expetation Networks an be in�ated by variable instantiation, they an be de�ated alsoby the merging of multiple sub-trees resulting in a single sub-tree. De�ating an EN an be usefulin order to ompress ENs for better manageability, to alulate the entropy of an EN (whih anbe informally haraterized as the reiproal of the size of the smallest semantially equivalenttextual EN), and - most important - to derive interation patterns and agent roles from a set ofonrete ommuniation proesses. If a set of multiple interation proesses is desribed using asingle interation pattern (represented as a textual EN with variables), this pattern is alled a gen-eralization of the proesses. Analogously, agent roles (represented by agent variables) desribingthe temporary behavior of multiple, not neessarily spei�ed, agents are generalizations of singleagents.For these purposes, we de�ne a reursive funtion generalize based on a method of agent roleformation in ENs introdued in [20℄. It is a speial ase of �nding the Least General Generalization[33℄. generalize operates on a list of ground textual EN sub-trees.De�nition 7. generalize : ENL+ × θ → ENL

generalize((branchi : 1 ≤ i ≤ m), ϑ′) =
[headGeneralization ϑ′′13

[
P

expects(part1)Pq

p=1

P
expects(partp)

generalize(part1, ϑ
′′)]

... [
P

expects(partq)Pq

p=1

P
expects(partp)

generalize(partq, ϑ
′′)]], with

(headGeneralization, ϑ′′) = generalize′((headi : 1 ≤ i ≤ m), ϑ′), with
branchi = [headi[weighti1 ci1 ] ... [weightini

cini
]],

headi =′ performativei(agent i, content i)
′,

(part1, ..., partq) = subPartition(cs), suh that cs ⊇ ⊎q
i=1 parti, with

cs = {ckj
: 1 ≤ j ≤ nk, 1 ≤ k ≤ m}(f. below for an exemplarily subPartition funtion.) expects(partk) yieldsthe set of expetabilities of all nodes within partk.

generalize′((′performativei(agent i, content i)
′ : 1 ≤ i ≤ n), ϑ′) =

(′PerformativeGeneralization(
AgentGeneralization,ContentGeneralization), ϑ′ ⊔ ϑp ⊔ ϑa ⊔ ϑc), with14






































AgentGeneralization = agent1, ϑa = 〈〉if ∀i, 1 ≤ i ≤ n− 1 : agent i = agent i+1


















AgentGeneralization = var, ϑa = 〈〉if ∃var, 〈〈var/agent i〉 : 1 ≤ i ≤ n〉 ⊆ ϑ′

AgentGeneralization = V arnew,

ϑa = 〈〈V arnew/agent i〉 : 1 ≤ i ≤ n〉 otherwise otherwise(PerformativeGeneralization and ContentGeneralization de�ned analogous.)At this, V arnew denotes a new variable.13We inlude ϑ′′ here to denote that from here on the environment ϑ′′ applies.14Of ourse, event terms other than speeh at-like message terms ould be generalized analogously.21



In ase the set of sub-trees branchi orresponds to a full set of sibling sub-tree-roots, a replae-ment by their resulting generalization would yield a semantially equivalent result (just add upthe expetabilities of the original sub-trees). Otherwise, we have to manifold the resulting sub-treeand link it at di�erent loations with di�erent expetabilities to di�erent parent nodes. The latterdoes yield a transformation of the original EN whih is in general not semantially equivalent tothe original EN.Note that repeated appliation of generalize on a single sub-tree an ��atten� this sub-tree untileventually the sub-tree beomes a linear list.The list of substitutions that ould be applied in order to retrieve a sub-tree branchj bakfrom the generalization an be alulated as
mgu(branchj , generalize((branchi : 1 ≤ i ≤ m))), with mgu yielding a most general uni�er of thesub-tree and its generalization. But note that this re-transformation an be lossy, i.e., does notneessarily retrieve the original sub-tree.If we would replae the variables yielded by a generalization by ignorane variables (i.e., ?V arinstead of V ar), the generalization would apply to all possible instantiations (e.g., all synta-tially possible agent identi�ers), whih is useful in order to derive stohasti protools for opensystems (i.e., with a �utuating set of partiipants) from a set of example interation ourses.Reasoning on suh a generalized EN allows for onlusions by analogy, whih is also the basis of,e.g., ase based reasoning, with the argument sub-trees of generalize orresponding to the aseshere (loosely speaking). A that way resulting generalized EN would of ourse not be semantiallyequivalent to its non-generalized predeessor.As a rule of thumb, sub-trees ould be good andidates for being merged via generalization,if the resulting generalization i) does not ontain variables for performatives, ii) relatively manyagents are replaed by new role variables during generalization, iii) but relatively few new variablesare introdued over all, and iv) the expetabilities of merged hildren do not di�er too muh.The following exemplarily partition funtion realizes i) and iv): subPartition(s) = p1 ⊎ ...⊎ pqsuh that

∀k, 1 ≤ k ≤ q : ∀ci, cj ∈ pk : Performative(ci) = Performative(cj) ∧ σ(pk) < ε.(σ(pk) denoting the standard deviation of the elements in pk. ε is some tolerane onstant.)Variables in a generalization generated this way with agents as instanes re�et harateristiourses of behavior that an be used to onstitute agent roles, orresponding to these variables.An example using this partition funtion is shown as Figure 3 (with variables given desriptivenames). The generalization step yields from the three argument sequenes (�Enter shop...�) interalia that �frequent buyers� (as a role) also normally pay for their goods, whih is not the ase for�infrequent buyers� here. Note that the underlined expetabilities 0.2 and 1 on the left side havenot the same meaning as the orresponding expetabilities above, sine the generalized hild ofnode x (y, respetively) is de�ned for other agents than the original hild, even if we would applyrestriting environments for the generalized hild (e.g.,
〈〈Prospects/a1, Sellers/a4, F requentBuyers/a1〉〉 between �x� and �Prospets : Enter shop�).Information loss is thus a possible side e�et of this kind of generalization. The �gure depits aDG-EN. Textually, the generalizing sub-tree ould be represented as an sub-EN variable appearingat di�erent positions.
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Figure 3: A generalization step transforming a probabilisti Tree-EN into an DG-EN, reating rolevariables, The step into the opposite diretion would be the in�ation of the DG-EN.
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2.4.6 Event and Communiation Proess Semantis (Empirial Semantis)So far, we have provided a semanti for single expetations. Starting from there, we an ask forthe semanti of the expeted events (e.g., agent utteranes) in terms of expetations. Informally,the semantis of the event ourse (an event in its ontext of preeding events) represented by anEN path is given as its expeted ontinuation (thus we ommit ourself to a dediated pragmatialviewpoint, in linguistis terms) [20, 26℄. Formally:De�nition 8. The EN-related Empirial Semantis of an event et in a ontext e0 ⊔ ... ⊔ et−1(a sequene of previous events, with ⊔ denoting timely suession as represented by EN paths) isde�ned as the probability distribution Υen,e0⊔...⊔et
. The distribution is de�ned using

Υen,e0⊔...⊔et
(w′) =

∏

i,1≤i≤|w′|

P(w′
i|e0 ⊔ ... ⊔ et ⊔ w

′
1 ⊔ ... ⊔ w

′
i−1)

∑

e′∈E+

∏

i,1≤i≤|e′|

P(e′i|e0 ⊔ ... ⊔ et ⊔ e
′
1 ⊔ ... ⊔ e

′
i−1)

,for any �nite w′ ∈ E+, w′ = w′
1 ⊔w

′
2 ⊔ ..., and e′ = e′1 ⊔ e

′
2 ⊔ .... The numerator thus represents theprobability that the sequene e0 ⊔ ... ⊔ et for whih we alulate the semantis is onluded by asequene w′, and the denominator is used to normalize this value.Intuitively the semantis of an event sequene is thus depited by the sub-tree starting with thenode orresponding to that event. Please refer to [29, 23, 27, 26, 28℄ for details on empirialsemantis of agent ommuniation.A pratial approah to empirial semantis using ENs in form of a onrete way to learnadaptive expetations and thus Υ from observed agent interations is desribed in detail in [27℄.By replaing in this de�nition the P with the expetability, we gain an �expeted Semantis�onsequently. In ase the normativity of at least one edge is greater than zero, the �expeted se-mantis� might deviate from the empirial semantis, being a desired empirial semantis instead:

ΥExpect
en,e0⊔...⊔et

(w′) =

∏

i,1≤i≤|w′|

Expectability(e0 ⊔ ... ⊔ et ⊔ w
′
1 ⊔ ... ⊔ w

′
i−1 ⊔ w

′
i)

∑

e′∈E+

∏

i,1≤i≤|e′|

Expectability(e0 ⊔ ... ⊔ et ⊔ e
′
1 ⊔ ... ⊔ e

′
i−1 ⊔ e

′
i)The arguments of Expectability denote edges represented as event sequenes (e0 orresponding tothe EN's root node).3 The EOM proessBased on the given desription of omputational expetations, this setion presents the tasks ofEOM to be performed by the MA in detail. EOM is tailored to general ative and passive modelingtasks, from the viewpoint of both software agents and human designers.The ativities of identifying, evaluating, adapting and propagating soial-level expetations in anevolutionary, yli proess are ruial to EOM. EOM supports these ativities by two means:so-alled i) Soial Mirrors, heneforth brie�y alled Mirrors, and ii) agent-internal ExpetationEngines.3.1 The Mirror oneptMirrors are software omponents within the MAS, with the tasks to observe ommuniations, de-rive expetations strutures, and �re�et� modi�ed/enrihed versions of them bak to the observedagents in form of new ommuniations, all on behalf of MAs. Thus a Mirror funtions a bit like a24



(possibly distorting) real mirror, with ommuniations instead of light beams. Mirrors are ratherpassive oordination media, and do not take ation pro-atively. They are thus meant to supportthe aquisition and enatment of expetations on behalf of MAs, and being rather un-intelligentthemselves, they are espeially suited as tools for human MAs (a MAS designer, for example). Inthis ase, a Mirror is orresponding to an EOM-spei� CASE tool.Tehnially, a Mirror is to its main part a �soial knowledge� base with observation apabilitywhih empirially derives soial-level expetation strutures from ommuniations and makes thempro-atively available to both the partiipating agents and the MA. A Mirror has three majorpurposes:1. monitoring agent ommuniation proesses,2. deriving emergent soial-level expetation strutures from these observations, and3. making expetation strutures visible for the agents and the MA (the former is the so-alledre�etion e�et of the Mirror, enabling the self-observation of the system).It is important to see that not all strutures that are made visible to the agents need to be emergentand derived through empirial system observation. Rather, the Mirror an also be strutured bythe MA to �re�et� deliberatively designed, non-empirial expetation strutures as well. In bothases, the agents an aess the Mirror very muh like a database and atively use the expetationstrutures provided by it as �guidelines� in�uening their reasoning and interativity. Without thehelp from a Mirror, even empirially derived expetation strutures are onsidered to be likely oftenhidden to single agents due to the agent's engagement in loally bounded interation ontexts,their observability restritions and their limited soial reasoning apabilities.For example, agents an partiipate in soial programs whih seem to be useful to them, orrefrain from a ertain behavior if the Mirror tells them that partiipation would violate some(adaptive-)normative expetation. Soial programs (or strutures in general) in whih agentsontinue to partiipate beome stronger, otherwise weaker. (The degree of hange in strengthdepends on the respetive normativity.) Thus, the Mirror re�ets a model of a soial system andpropagates it to the agents. As a onsequene, the Mirror in�uenes the agents � very muhlike mass media do in human soiety. Conversely, the Mirror ontinually observes the atualinterations among the agents and adopts the announed expetation strutures in its databaseaordingly. In doing so, the Mirror never restrits the autonomy of the agents. Its in�uene issolely by means of providing information (possibly about expetable santions and norms, though),and not through the exertion of ontrol15.The Mirror, and thus EOM, realizes the priniple of evolutionary software engineering [1℄.More preisely, within the overall EOM proess (i.e., within the EOM phases desribed below)two Mirror-spei� operations are ontinuously applied in a yli way:1. it makes the soial-level expetations derived by the MA from his goals expliit and knownto the agents; and2. it monitors the soial-level expetation strutures whih emerge from the ommuniationsamong the software agents, and makes them expliit and known to both the MA and theother agents.These two operations onstitute the ore of the overall EOM proess, and together they allowan MA to ontrol and to in�uene the agents' realization and adoption of her spei�ations. ForEOM, the term �evolution� thus applies to expetation struture hanges aused both �top-down�by the MA's interventions and �bottom-up� by autonomous variations in the observed agents'behavior.Further details on Mirrors are provided in [20, 30℄.15An expliit notion of santions in terms of expetations is omitted here (f., e.g., [38, 10℄ for approahes to thedeonti or ontrat-based regulation and santioning of autonomous agents): In general, Expetation Networks aninorporate information about every kind of treatment of agents as long as it an be represented as a (sequene of)events, i.e. nodes of the expetation network. 25



Figure 4: Data�ow in a MA with Expetation Engine3.2 Expetation EnginesExpetation Engines are MA-internal modules with a funtionality similar to that of Mirrors. Theyserve as a omplement of ommon agent failities for belief aquisition, planing, and ating. Theirtasks are the reording, revision and enatment of expetations, ontributing a distint level for themodeling and in�uening of the soial behavior and the soial environment of the agent modeledas expetations. An Expetation Engine maintains three ENs (or alternative data strutures forthe representation of expetations):1. As a part of the MA's belief, an EN for empirial expetations learned from overhearingagent ommuniation and previous knowledge.2. As a part of the MA's belief and intentions an intentionality-biased EN. It is generated fromthe empirial EN, plus intentions in form of normativities. It represents those beliefs andintentions of the MA whih relate to soial ativities, and usually ontains thus not onlyfully-adaptive expetations, but adaptive-normative and fully-normative expetations also.3. An EN whih represents the ostensible beliefs and intentions [25℄ of the MA in form ofexpetations. This EN is ommuniated to the other agents. It represents what the MAwants other agents to belief about his beliefs and intentions (his ommuniation attitudes,so to say). It is important to see that realizing this EN (atively aiming at making theommuniation attitudes redible, and pursuing the ostensible intentions) might be only26



Figure 5: The EOM phasespretended, and might be of ourse only one means among others aiming at the real goals ofthe MA. For the speial ase the MA is sinere, this third EN ould of ourse be identialwith the seond EN.Please �nd details about ostensible mental attitudes in [24℄.The arhiteture of an MA with an Expetation Engine is depited in Figure 4.3.3 The EOM Phases3.3.1 Phase I: Speifying soial-level goalsIn the �rst phase, the MA models the soial level of a part of or the whole multiagent systemaording to her goals in the form of spei�ations whih fous on �soial behavior� (i.e., desiredourses of agent interation) and �soial funtionality� (i.e., funtionality whih is ahieved as a�produt� of agent interation, suh as interative problem solving) in the widest sense. For thistask, the usual spei�ation methods and formalisms might be used, for instane, the spei�ationof desired environment states, poliies, onstraints, soial plans, protools et. Of ourse, thisspei�ation ould be done diretly in terms of soial-level expetation strutures, like soialprograms.3.3.2 Phase II: Setting up and enating appropriate expetation struturesIn the seond phase, the MA models and derives soial-level expetation strutures from thespei�ations and stores them in the Mirror/Expetation Engine. If the spei�ations from phaseI are not already expetation strutures (e.g., they might be given as rules of the form �Agent Xmust never do Y�), they have to be transformed appropriately. While soial behavior spei�ationsare expetation strutures per se, soial funtionalities (for instane: �Agents in the system mustwork out a solution for problem X together�) possibly need to be transformed, most likely into27



soial programs. Sometimes a full equivalent transformation will not be feasible. In this ase, theMA models expetation strutures whih over as muh requirements as possible.Soial-level spei�ations an be modeled as fully-adaptable or adaptive-normative expeta-tions. The former an be used for the establishing of hints for the other agents whih are able toadapt during the struture evolution, the latter for the transformation of onstraints and othermore or less �hard� requirements into expetations. It should be kept in mind that even a fully-normative expetation derived from a onstraint does by itself not fore the agents to behaveonforming to the rule, sine it is �only� an expetation. If a (adaptive-)normative expetationis onstantly violated by the agents (i.e., the deviany of the expetation rises), the MA aneither deide to try to argue in favor of the (adaptive-)normative expetation, or to enfore it(introduing santions and propagate them with assoiated additional santion expetations), orto drop it (hange the normativity). If the normativity is lower 1, the Mirror/Expetation En-gine also hanges the expetability of the adaptive-normative expetation at least in the long term.After the MA has �nished the expetation modeling, she ommuniates them (either sinerely,or in form of ostensible expetations) to the other agents via the Mirror/Expetation Engine.Whereby EOM does not presribe or provide an expliit notion of santions or argumentation, wean use the fat that (adaptive-)normative expetations need to be ommuniated to the agents toahieve a semi-automati enforement of (adaptive-)normative expetations using the EMPRATalgorithm. This way, we make (adaptive-)normative expetations pro-ative, so to say. For lakof spae details had to be omitted here, please refer to [24℄.3.3.3 Phase III: Monitoring struture evolutionIn the third phase of the EOM proess, it is up to the MA to observe and evaluate the evolutionof expetation strutures whih beomes visible to her through the Mirror/Expetation Engine.In partiular, she has to pay attention to the relationship of the ontinuously adapted soial-levelexpetation strutures and her objetives from phase I, whih means that she analyzes the expe-tation strutures with regard to the ful�lment of (adaptive-)normative expetations establishedby the MA and the ahievement of her goals. Beause the Mirror/Expetation Engine is onlyintended to obtain and deploy expetation strutures, it ould be neessary to support it with asoftware for the (semi-)automatial �re-translation� of expetation strutures into other forms ofspei�ation like rules, and vie versa.As long as the expetations strutures develop in a positive way (i.e., they math the MA's goals,devianies are su�iently low) or no emergent strutures an be identi�ed that deserve being madeexpliit to improve system performane, the MA does not intervene. Otherwise she proeeds withphase IV.3.3.4 Phase IV: Re�nement of expetationsIn the last phase, the MA uses her knowledge about the positive or negative emergent properties ofthe interation system to improve the soial-level expetation strutures. Usually, this is ahievedby setting up expetation whih disourage �bad� events, and, if neessary, the introdution of newexpetation strutures as desribed at phases I and II. In addition, expetation strutures whihhave proved to be useful an be atively supported by e.g. inreasing their expetation strengthand/or their normativity. The proess proeeds with phase III until all relevant MA goals areahieved or no further improvement seems probable at least for the moment (per de�nition, opensystems never settle on a �nal equilibrium while ative).
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4 Case Study: The Internet Car Trading Platform4.1 Senario OverviewIn the following we present an example for EOM, with the MA being the MAS designer. Imaginea web site that brings together ar dealers, private pre-owned ar sellers and potential buyers whotrade ars online (f. www.imotors.om , www.autoweb.om, www.autointernet.om, www.auto-tradeenter.om). There is an "o�ers" setion in whih sellers an display images, tehnialdetails and pries of ars for sale. In the "requests" area, buyers an post requests for ars thatthey would be interested in. A forum is available, in whih inquiries an be plaed, disussions,bargaining and negotiations may take plae publily or privately (as forum users wish), et.4.2 Making Top-Level Design DeisionsHaving made a deision on taking an agent-based approah, the MA (the website designer in thisase) must develop a top-level desription of the system whih will, to the least, inlude deisionsregarding infrastruture, interation environment and, above all, partiipating agents (or agenttypes).Here, we will assume that the designer of the platform is designing a semi-open system: on theone hand, the system o�ers user interfae agents that monitor the platform on behalf of users,pro�le users to derive interests/needs and draw their attention to interesting information on theplatform. A seond, pre-built type of agents are searh agents that onstantly re-organize theplatform's database and an searh it e�iently. These an be ontated by user interfae agentsas well as by humans for searh purposes. We assume that all interations with these searh agentsare benevolent, sine they are not truly autonomous (they simply exeute others' requests). Onthe other hand, there is a number of agent types that have not been designed by the designer ofthe platform. There an (and should) exist human and non-human agents representing individualsor organizations that interat with the platform in a "soially" unpresribed way (only restritedby implementation-level protools and standards, e.g. FIPA ompliane). Generally, these agentsare blak-boxes for the system designer.Further re�nement of these initial design deisions will require looking at a multitude of issues,ranging from ommuniation failities and standards and apabilities of in-built pro�ling andsearh agents to database models et. For our purposes, we an restrit this identi�ation ofrequirements to soial level harateristis of the platform sine these are the subjet of the EOMproess.4.3 Identifying Soial Level RequirementsAs soial-level goals, we onsider the following motives of a ar trading platform (CTP) provider:1. Maximum quality of servie should be provided: the range of o�ered and requested ars hasto be broad and their spei�ations must relate to their pries; the reliability of transationsmust be high; trust between buyers and sellers and between all users and the platform mustbe at a reasonable level.2. Transation turnover should be maximized, beause it indiates (in our example) high returnon investment for the CTP provider stakeholders.3. Tra� on the platform must be maximized, to ensure high advertisement returns.In the following, we sketh how the EOM proess model an be applied in the analysis and designof suh a system.The dilemma in designing the soial level of suh a platform is obvious: system behavior shouldmeet the design goals and at the same time it shouldn't ompromise partiipating external agents'private goals by being overtly restritive. An expetation-level model of soial strutures is neededto ope with this situation. We next sketh the appliation of the suggested analysis and designproess to the CTP. 29



4.4 Implementing the EOM Proess4.4.1 Phase I: Speifying the soial levelIn the �rst step the soial strutures are modeled in the form of (formal or informal) designspei�ations. They might inlude the following (we use natural language for onveniene andonentrate only on a few design issues for lak of spae):1. Agents ommitting themselves to purhase/sell ations towards other must ful�l all resultingobligations (deliver, pay, invoie et.)2. Unreliable behavior indues relutane to enter business relationships on the side of others.Fraudulene leads to exlusion from the platform.3. Interest in o�ers and requests must be shown by others in order to provide motivations tokeep up the use of the platform.The �rst spei�ation is very important in order to foster trust among agents in suh a platform.If ommuniation were only induing a bunh of loose pseudo-ommitments that are never kept,the CTP risks beoming a playground instead of a serious, e�ient marketplae. This prinipleis re�ned by item 2: the "must" in the �rst rule an obviously not be deontially enfored on au-tonomous agents, so it has to be replaed by a "softer" expression of obligation: by speifying thatunreliable behavior dereases the probability of others interating with the unreliable individualin the future, we provide an interpretation of the former rule in terms of "onsequenes". Also, wedistinguish "sloppy" from "illegal" behavior and punish the latter with exlusion from the plat-form, a entralized santion that the platform may impose. The third spei�ation is somewhatmore subtle: it is based on the assumption that agents will stop posting o�ers and requests, ifthey don't reeive enough feedbak. Sine we have to ensure both a broad range of o�ers as well asreasonable tra� on the site, we want to make agents believe that their partiipation is honoredby others so that they keep on partiipating (for private buyers this might be irrelevant, sinethey buy a ar one every 5 years, but it is surely important to have plenty of professional dealersfrequent the site).The proess of speifying suh possible soietal behaviors should be iterated on the basis of�senarios� for all ourses of ommuniation that are of interest and seem possible, so as to yieldrequirements for the soial system that is to be implemented.4.4.2 Phase II: Deriving and enating appropriate expetation struturesClearly, the three requirements above an be analyzed in terms of expetations, that is, as var-iedly normative, possibly volatile rules that are made known to agents and evolve with observedinteration. The seond phase of the EOM proess onsists of making these abstrat requirementsonrete as expeted ommuniation strutures. Two suh expetation strutures derived fromthe above requirements 1. and 3. are shown in Figures 6 and 7.The �rst example depits an expetation struture of an order-deliver-pay-proedure in theCTP. It enapsulates high delivery and payment expetations (i.e., high transation reliability),but also a more spei� expetation as onerns availability statements that are made by dealers:although it is equally probable that the requested ar will be available upon a �rst order, it ishighly unexpeted that a ar that had not been available is suddenly available upon a seond,idential order (in our model, responses to ommuniation are supposed to our in time-spansthat are muh shorter than those needed to hange stok). Thus, the �rst response is given muhmore weight, and a notion of �honesty� in responding to orders is assumed.The seond example is losely related to design goal 3 introdued above. Here, the expetationstruture is used to express that few posted o�ers go unanswered by interested ustomers, and thatthe enquiries of suh ustomers are responded to with high probability. By using suh a struture,the designer an reassure both dealers and ustomers that it is worthwhile posting orders and30
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Figure 6: Soial program �order-deliver-pay� (buyer ations are shown in itali font, seller ationsin plain fae, as in all following �gures, speeh at arguments are omitted for lak of spae):expetations about availability are balaned; in the �available� ase, dealers are expeted to deliverand ustomers are expeted to pay. In the �not available� ase, dealers are expeted to on�rmtheir prior statement if asked a seond time (even though the probability of suh a seond requestis low).enquiries to orders. If followed by the users of the CTP, suh a struture would imply thatpostings will be answered even if the other party is not atually interested in the o�er/question,and is just replying out of a sense of �politeness�, to the end of making everyone feel that theirontributions are honored. Assoiated with suh onventions would be the designer's goal to keepthe CTP frequented, by presenting the soial strutures as open and rih.These simple examples given, we an return to our EOM design proess model. We have shownhow two soial struture spei�ations were turned into onrete expetation strutures (phases Iand II). For lak of spae, we have onentrated on soial programmes and negleted roles, soialagents and values. Preassuming that the CTP is implemented and observed during operation, wean now proeed to phase III.
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Figure 7: �Initiatives are honored� program: it is expeted that dealers reeive some response totheir o�ers by potential ustomers, and that they reat to enquiries themselves.
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4.4.3 Phase III: Monitoring struture evolutionUnlike phases I and II, this phase fouses on observation of the system in operation in order tofurther re�ne expetation strutures and their proessing. It is essential to keep in mind thatthe systemi expetation �Mirror� (as a software omponent) leaves plenty of hoies not onlyas onerns the hoie of employed expetation strutures, but also with respet to how thesestrutures are proessed , that is, how they evolve through monitored agent behavior in systemoperation. To stress this seond aspet, we onentrate on this proessing of expetations in thefollowing examples.Suppose, �rst, that we observe that atual behavior largely deviates from that assumed inFigure 6 in that there are many fraudulent ustomers who do not omply with their obligationto pay one the ar has been delivered unless the dealer threatens with legal onsequenes severaltimes. Obviously, identifying suh a problem preassumes that interation is traked and thatinteration patterns are statistially analyzed and evaluated with respet to existing system goals.Therefore, the software engineer's primary duty is, at this stage, to spot interesting behaviors(both desirable and undesirable ones). One realized, we are faed with a problem. By default,even though payment was designed as a norm, the �expetation Mirror� would in show a highdeviany (and sine the normativity of �pay� is lower 1, it would in the long term even �truthfully�adapt the expetation strengths of this expetation so that the strength of �fail to pay� inreases).This would mean that an emergent, hidden struture would be made expliit in the system, but,unfortunately, this would be a struture that embodies a funtionality whih does not serve thesystem goals (even though it has been �seleted� through atual interation) beause it wouldmake future dealers doubt the reliability of the system.As a seond example, suppose that the expetation struture in Figure 7 orresponds to theatual system behavior, but not beause of some �polite� poliy of ustomers to show interest inany dealer posting � instead, demand in ars is simply (temporarily) so high (and maybe theCTP is for some other reasons very attrative for ustomers) that almost no o�er posting goesunanswered. Assume further, that our initial design was to enfore �politeness� by insinuating thatit was a onvention of the platform, even if ustomers would not have been polite at all, that is, wehad implemented this expetation struture as rather immutable (normativity of 0.5/1) regardlessof the agents' behavior.In both ases, we have identi�ed emergent (positive and negative) properties of the systemthat must be dealt with in phase IV.4.4.4 Phase IV: Re�nement of expetation struturesAs designers of the platform, we an reat to suh emergent properties in di�erent ways. To givea �avor for the kind of deisions designers have to make when re�ning expetation models, wedisuss the two examples mentioned above.In the ase of the �spreading fraudulent ustomers�, the most straightforward solution would beto impose santions on the fraudulent behavior observed (i.e., to add new expetation strutures).Let us assume, however, that an analysis has shown that it is too ostly to verify ustomers'solveny and payment reserves (e.g., by inquiring other E-ommere platforms about them). Onthe other hand, ignoring the hanges by keeping the old expetation struture (and asserting ahigh payment reliability in a �propaganda� way) might result in future inonsistenies: if too manyindividuals realize that it does not orrespond to the atual soial struture, they will use it less,and the �soial design� level will provide lesser possibilities to in�uene system behavior for thedesigner.Obviously, a trade-o� has to be found. One possible solution would be to extend the struturein the way suggested by Figure 8, suh that failure to pay results in relutane of dealers to aeptfuture orders from the unreliable ustomer. So, in phase IV we an speify a new funtionality thatfeeds into the system in the next yle. As onerns the seond, �positive� emergent property, wemight onsider lifting the onstraint of presenting an �immutable� politeness onvention, in orderto allow for optimization on the agents' side: making the rule normative implies that it wouldn't32
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Figure 8: Speifying a new funtionality.hange, even if, for example, dealers' o�ers hanged over time � hene, there is little pressure fordealers to atively try to meet ustomer demand. Thus, if we allowed this expetation to adapt tothe atual interest shown in o�ers (e.g., by updating expetation strengths as real probabilities,whih an be ahieved by dereasing the normativity value shown in Figure 7), dealer agents wouldstart notiing whih of their postings are good (ones whih inrease the rate of ustomer inquiry)and whih aren't. (After all, maximizing market e�ieny in this way might help maximizingCTP pro�ts, whih also depend on gross trade turnover.) We therefore deide to inrease theadaptivity of this expetation struture.Performing suh modi�ations to the expetation level design of a system niely illustrates howrather restritive soial strutures an give way to more emergent phenomena in �safe� non-riskysituations as the one depited here when optimization is the prominent issue, and not the redutionof haos.These simple examples underpin the usefulness of expliit modeling of soial strutures in theproposed EOM proess model. In partiular, they show how both designing soial struturesand designing the proessing of suh strutures plays an important role in the open systems weenvisage. Also, they illustrate the evolutionary intuition behind our design proess: agents seletsoial strutures through their interation, and designers selet them through design.5 ConlusionEOM is thought to be appliable in all �elds of agent-oriented researh and engineering, where anentity (a MA in our ase) needs to model and maybe in�uene the behavior of autonomous blak-or gray-box agents. Besides the possibility to implement EOM onepts within �ordinary� agentsin order to improve their soial ognition and interation abilities, as for the future spei�ationand extension of EOM, we aim espeially for the area of agent-orient software engineering andprogramming. Engineering agent-oriented software while at the same time taking autonomy as akey feature of ageny seriously is a great hallenge. On the one hand, it is (among other things)autonomy that makes the onept of an agent powerful and partiularly useful, and that makesagent orientation signi�antly distint from standard objet orientation. There is an obvious andrapidly growing need for autonomous software systems apable of running in open appliation en-vironments, given the inreasing inter-operability and inter-onnetedness among omputers andomputing platforms. On the other hand, autonomy in behavior may result in �haoti� overallsystem properties suh as unontrollability that are most undesirable from the point of view ofsoftware engineering and industrial appliation. In fat, it is one of the major driving fores ofstandard software engineering to avoid exatly suh properties. To ome up to eah of these two33



ontraditory aspets � the urgent need for autonomous software systems on the one hand andthe problem of undesirable system properties indued by autonomous behavior on the other �must be a ore onern of agent-oriented software engineering, and is the basi motivation un-derlying the work desribed here. A number of agent-oriented software engineering methods (see[13, 16℄ for surveys) as well as agent-oriented autonomy and organizational struture spei�ationformalisms (e.g., [2, 9, 11, 39, 31, 19, 12, 38℄) are now available. Like EOM, all these methods andformalisms aim at supporting a strutured development of �non-haoti� autonomous software.However, they do so in a fundamentally di�erent way, even ompared to the most elaborated ofthese frameworks whih grant the ators a high degree of autonomy (e.g. OperA [10℄): Besides thepossibility to speify soial strutures deliberatively, EOM also learns and revises soial struturesempirially from observed agent interations at run-time, resulting in a struture-level model ofthe multiagent system, and restrits autonomous behavior only if this turns out to be neessaryretrospetively during the evolutionary development proess, with as few as possible preognitionand pre-struturing required. Against that, most of the other methods and formalisms show alear tendeny toward (seriously) restriting or even exluding the agents' autonomy a priori.Di�erent mehanisms for ahieving autonomy restritions have been proposed, inluding e.g. thehardwiring of organizational strutures, the rigid prede�nition of when and how an agent has tointerat with whom, and the minimization of the individual agents' range of alternative ations.As a onsequene, methods based on suh mehanisms run the risk to reate software agents thateventually are not very distint from ordinary objets as onsidered in standard objet orientedsoftware engineering sine many years. EOM aims at avoiding this risk by aepting autonomyas a neessary harateristi of ageny that must not be ruled out headily (and sometimes evenan not be ruled out at all, as it is typial for truly open multiagent systems). With that, EOMis in full aordane with Jennings' laim to searh for other solutions than the above mentionedrestritive mehanisms [17, p. 290℄. Moreover, EOM with its grounding on Luhmann's theory ofsoial systems preisely is in the line of Castelfranhi's view aording to whih a soially orientedperspetive of engineering soial order in agent systems is needed and most e�etive [6℄. In additionto that, and more generally, this thorough soiologial grounding also makes EOM di�erent fromother approahes that apply soiologial onepts and terminology in a omparatively super�ialand ad ho manner. On these grounds, we hope that taking omputational expetations as a levelof soial reasoning, analysis and design opens a qualitatively new perspetive of agent-orientedsoftware.Aknowledgements. This work has been partially supported by DFG under ontrats no.Br609/11-1 and Br609/11-2.Many thanks to the reviewers for their very useful omments on a draft of this artile.Referenes[1℄ L. Arthur, editor. Evolutionary development: Requirements, prototyping & software reation.John Wiley & Sons, 1991.[2℄ M. Barbueanu, T. Gray, and S. Mankovski. The role of obligations in multiagent oordina-tion. Journal of Applied Arti�ial Intelligene, 13(2/3):11�38, 1999.[3℄ F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.Methodologies and software engineeringfor agent systems. Kluwer Aademi Press, Boston et al., 2004.[4℄ M. Bratman. Intentions, Plans and Pratial Reasoning. Harvard University Press, Cam-bridge, MA, 1987.[5℄ W. Brauer, M. Nikles, M. Rovatsos, G. Weiss, and K. Lorentzen. Expetation-orientedanalysis and design. In M. Wooldridge, G. Weiss, and P. Cianarini, editors, Agent-orientedsoftware engineering. Proeedings of the Seond International Workshop (AOSE-2001), Le-ture Notes in Arti�ial Intelligene, Vol. 2222, pages 226�244. Springer-Verlag, 2002.34



[6℄ C. Castelfranhi. Engineering soial order. In Working Notes of the First InternationalWorkshop on Engineering Soieties in the Agents' World (ESAW-00), 2000.[7℄ C. Castelfranhi, F. Dignum, C. Jonker, and J. Treur. Deliberate normative agents: Prini-ples and arhiteture. In Proeedings of the 6th International Workshop on Agent Theories,Arhitetures, and Languages (ATAL-99), 1999.[8℄ P. Cohen and H. Levesque. Intention is hoie with ommitment. Arti�ial Intelligene,42(3), 1990.[9℄ F. Dignum. Autonomous agents with norms. Arti�ial Intelligene and Law, 7:69�79, 1999.[10℄ V. Dignum. A model for organizational interation: based on agents, founded in logi. PhDthesis, University of Utreht, 2003.[11℄ V. Dignum, J. Vazquez-Saleda, and F. Dignum. Omni: Introduing soial struture, normsand ontologies into agent organizations. In R. H. Bordini, M. Dastani, and J. Dix, editors,Programming Multi-Agent Systems: Seond International Workshop ProMAS 2004, LetureNotes in Arti�ial Intelligene Vol. 3346. Springer-Verlag, 2005.[12℄ M. Esteva, D. de la Cruz, and C. Sierra. Islander: an eletroni institutions editor. InProeedings of the �rst international joint onferene on Autonomous agents and multiagentsystems (AAMAS 2002), 2002.[13℄ J. Gomez-Sanz, M.-P. Gervais, and G. Weiss. A survey onf agent-oriented software engineeringresearh. In F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors,Methodologies and softwareengineering for agent systems. Kluwer Aademi Press, Boston et al., 2004.[14℄ A. Herzig and D. Longin. A logi of intention with ooperation priniples and with assertivespeeh ats as ommuniation primitives. In Proeedings of the �rst international joint on-ferene on Autonomous agents and multiagent systems (AAMAS 2002), 2002.[15℄ C. Hewitt. O�es are open systems. ACM Transations on O�e Information Systems,4(3):271�287, 1986.[16℄ C. Iglesias, M. Garijo, and J. Gonzales. A survey of agent-oriented methodologies. In J. Müller,M. Singh, and A. Rao, editors, Intelligent Agents V. Proeedings of the Fifth InternationalWorkshop on Agent Theories, Arhitetures, and Languages (ATAL-98), Leture Notes inArti�ial Intelligene Vol. 1555, pages 317�330. Springer-Verlag, 1999.[17℄ N. Jennings. On agent-based software engineering. Arti�ial Intelligene, 117(2):277�296,2000.[18℄ N. Jennings and M. Wooldridge. Agent-oriented software engineering. In J. Bradshaw, editor,Handbook of Agent Tehnology. AAAI/MIT Press, 2002.[19℄ F. Lopez y Lopez, M. Luk, and M. d'Inverno. Constraining autonomy through norms. In Pro-eedings of the First International Joint Conferene on Autonomous Agents and MultiagentSystems (AAMAS 2002), 2002.[20℄ K. Lorentzen and M. Nikles. Ordnung aus Chaos - Prolegomena zu einer Luhmann'shenModellierung deentropisierender Strukturbildung in Multiagentensystemen. In T. Kron, ed-itor, Luhmann modelliert. Ansaetze zur Simulation von Kommunikationssystemen. VerlagLeske & Budrih, 2002.[21℄ M. Luk, R. Ashri, and M. D'Inverno. Agent-based software development. Arteh House, In,Norwood, MA, 2004.[22℄ N. Luhmann. Soial systems. Stanford University Press, Palo Alto, CA, 1995. Originallypublished in 1984. 35



[23℄ M. Nikles. An observation-based approah to the semantis of agent ommuniation.Forshungsberihte Künstlihe Intelligenz FKI-248-03, Department of Informatis, Tehni-al University of Munih, 2003.[24℄ M. Nikles. Exposing the ommuniation level of open systems: Expetations, soial attitudesand multi-soure assertions. Researh Report FKI-249-05, Tehnial University of Munih,2005.[25℄ M. Nikles, F. Fisher, and G. Weiss. Communiation attitudes: A formal approah to osten-sible intentions, and individual and group opinions. In W. van der Hoek and M. Wooldridge,editors, Proeedings of the Third International Workshop on Logi and Communiation inMultiagent Systems (LCMAS 2005), 2005.[26℄ M. Nikles and M. Rovatsos. Towards a uni�ed model of soiality in multiagent systems. InThe Fourth ACIS International Conferene on Software Engineering, Arti�ial Intelligene,Networking, and Parallel/Distributed Computing (SNPD-03), 2003.[27℄ M. Nikles, M. Rovatsos, and G. Weiss. Empirial-rational semantis of agent ommunia-tion. In Proeedings of the Third International Joint Conferene on Autonomous Agents andMultiagent Systems (AAMAS 2004), pages 94�101, 2004.[28℄ M. Nikles, M. Rovatsos, and G. Weiss. Formulating agent ommuniation semantis andpragmatis as behavioral expetations. In F. Dignum, R. van Eijk, and M.-P. Huget, editors,Agent Communiation Languages II, Leture Notes in Arti�ial Intelligene. Springer, 2004.[29℄ M. Nikles and G. Weiss. Empirial semantis of agent ommuniation in open systems. InSeond International Workshop on Challenges in Open Agent Environments (Challenges'03,2003.[30℄ M. Nikles and G. Weiss. Multiagent systems without agents: Mirror-holons for the ompila-tion and enatment of ommuniation strutures. In K. Fisher, M. Florian, and T. Malsh,editors, Soionis: Its Contributions to the Salability of Complex Soial Systems, LetureNotes in Arti�ial Intelligene. Springer, 2004. To appear.[31℄ O. Paheo and J. Carmo. A role based model for the normative spei�ation of organizedolletive ageny and agents interation. Autonomous Agents and Multi-Agent Systems, 2002.[32℄ H. V. D. Parunak. Visualizing agent onversations: Using enhaned dooley graphs for agentdesign and analysis. In Proeedings 2nd Intl. Conf. Multiagent Systems, 1996.[33℄ G. Plotkin. A note on indutive generalization. Mahine Intelligene, 5, 1971.[34℄ M. Rovatsos, G. Weiss, and M. Wolf. An approah to the analysis and design of multiagentsystems based on interation frames. In Proeedings of the �rst international joint onfereneon Autonomous agents and multiagent systems (AAMAS 2002), 2002.[35℄ M. Sadek. A study in the logi of intention. In Proeedings of the third international onfereneon priniples of knowledge representation and reasoning (KR'92), 1992.[36℄ B. Tran, J. Harland, and M. Hamilton. Observation expetation reasoning in agent systems.In Ninth International Conferene on Priniples of Knowledge Representation and Reasoning(KR2004), 2004.[37℄ G. Weiss. Agent orientation in software engineering. Knowledge Engineering Review,16(4):349�373, 2002.[38℄ G. Weiss, M. Rovatsos, M. Nikles, and C. Meinl. Capturing agent autonomy in roles andXML. In Proeedings of the Seond International Joint Conferene on Autonomous Agentsand Multiagent Systems (AAMAS 2003), pages 105�112, 2003.36



[39℄ M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-oriented analysisand design. Autonomous Agents and Multi-Agent Systems 3(3), 2000.

37


