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tThis work introdu
es Expe
tation-oriented Modeling (EOM) as a 
on
eptual and formalframework for the modeling and in�uen
ing of bla
k- or gray-box agents and agent intera
tionfrom the viewpoint of modelers like arti�
ial agents and appli
ation designers. EOM is uniquein that autonomous agent behavior is not restri
ted in advan
e, but only if it turns out to bene
essary at runtime, and does so exploiting a seamless 
ombination of evolving probabilisti
and normative behavioral expe
tations as the key modeling abstra
tion and as the primarylevel of analysis and in�uen
e. Expe
tations are attitudes whi
h allow for the relation ofobserved and predi
ted a
tions and other events to the modeler's intentions and desires on theone hand and her beliefs on the other in an integrated, adaptive manner. In this regard, thiswork introdu
es a formal framework for the representation and the semanti
s of expe
tationsembedded in so
ial 
ontexts. We see the appli
ability of EOM espe
ially in open domainswith a priori unknown and possibly unreliable and insin
ere a
tors, where the modeler 
annot rely on 
ooperation or pursue her goals through the exertion of stri
tly normative power,e.g. the development and assertion of �exible intera
tion poli
ies for trading platforms in theInternet, as illustrated in a 
ase study.To our knowledge, EOM is the �rst approa
h to the spe
i�
ation, predi
tion, analysis andin�uen
ing of so
ial intera
tion that aims at ta
kling the level of expe
tations expli
itly andsystemati
ally, and allow for representing the beliefs and the intentions of agents in terms ofempiri
al and desired predi
tions.Keywords: Open Environments, Computational Autonomy and Trust, Agent Communi
ation,Poli
y and Proto
ol Spe
i�
ation, Agent-oriented Software Engineering, So
ial AI1 Introdu
tionA key fo
us of 
ontemporary agent-oriented resear
h and engineering is on open multiagent systems[15℄ 
omposed of intera
ting truly autonomous agents [17, 3, 18, 21, 37℄. This poses new 
hallenges,as entities in open systems are usually more or less mentally opaque (e.g., possibly insin
ere), and
an 
ome and go at their will. Thus, intera
tions among su
h bla
k- or gray-box entities usuallyimply heavy 
ontingen
ies in behavior - in the most general 
ase, neither a peer agent nor thesystem designer 
an be guaranteed to know what goes on inside a truly autonomous agent, withwhat observable result. These 
ontingen
ies 
an 
ause improved performan
e at run-time (e.g., byin
reased system adaptivity and �exibility, and the emergen
e of unforeseen problem solutions),but 
an also be a sour
e of potential unpredi
tability and undesirable behavior at the so
ial level.Pra
ti
ally, this means that even for the most powerful parti
ipants and 
ontrolling instan
esin open systems, it is neither realisti
 to assume that full 
ontrol over autonomous entities beingparts of the system (temporarily or permanently) 
an be guaranteed under all 
ir
umstan
es, northat the other agents 
an ever be fully predi
ted. Even if it would be possible to 
ontrol a MASfully, this would obviously mean loosing desirable system abilities whi
h are based on autonomousde
entralized 
ontrol, su
h as the abilities to self-organize, to self-manage and to self-stru
ture.1



Taking autonomy seriously means to a

ept that any �stri
tly normative� (in the sense ofin�exible a
tion-pres
ribing) so
ial-level exertion of 
ontrol must be abandoned � instead, desiredor persistent intera
tion patterns 
an only be modeled as revisable, basi
ally un
ertain des
riptionsof possible or desired behavior whi
h might or might not o

ur in a
tual operation. Agents 
anthus only use models of intera
tion as expe
ted 
ourses of so
ial a
tion that are always hypotheti
alunless when a
tually ena
ted by them, their 
o-a
tors, and designer-
ontrolled entities (e.g., 
asetools). A 
ombination of normative and deliberative motives in agents' a
tions (the former resultingfrom previous system behavior, the latter from agents' autonomy) [7℄ makes 
ertainty about futureintera
tions impossible.Starting from these observations, this arti
le identi�es a novel level of modeling agent intera
tionsand thus of analyzing, designing and in�uen
ing agent behavior and multiagent systems: theexpe
tation level . Expe
tation-Oriented Modeling (EOM) is introdu
ed as a 
on
eptual and formalframework for the modeling and in�uen
ing so
ial intera
tions using agent expe
tations [20, 24℄ asthe primary modeling abstra
tion. The intention behind EOM is to equip pro-a
tive, autonomousentities in a MAS (ordinary agents as well as the system designer) with the means to representthe so
ial (i.e., 
ommuni
ation) level of the MAS (sin
e, in the most general sense, expe
tations
an be seen as the most fundamental representation of 
ommuni
ation stru
tures), and to takea
tion on this level towards their goals in a �minimally-invasive� but e�e
tive manner.To this end, we aim at making expe
tation-level knowledge about the anti
ipated, dynami
intera
tional behavior of agents expli
it and available to agents as well as to the system analystand designer. This o�ers the possibility for modeling and in�uen
ing intera
tion stru
tures andautonomous entities whi
h 
an not be 
ontrolled 
ompletely and whi
h show a high degree ofbehavioral dynami
s, and allows to retain a high degree of autonomy by using expe
tations asvaluable knowledge for redu
ing 
ontingen
y about ea
h other's behavior and (publi
) goals.Our approa
h 
omprises i) the introdu
tion of expe
tations for the passive and a
tive modelingof agents and so
ial intera
tion (in strong demar
ation from the usual modeling of agents usingassumed mental attitudes of the modeled agents), ii) more spe
i�
ally, the de�nition of expe
ta-tion as a dynami
 mental attitude that is both obtained empiri
ally from observation and subje
tto deliberate manipulation (in order to represent and 
ommuni
ate desirable events), and iii) thepresentation of prin
iples and te
hniques for analyzing and setting up expe
tations in an evolu-tionary pro
ess of modeling and in�uen
ing agent intera
tion.Doing so, we 
over a wide range of aims and types of expe
tation-holders: from the optimization ofthe so
ial behavior of �ordinary�, self-interested arti�
ial agents that make use of EOM internallyfor their 
ognition and planing, up to the design of a whole MAS or important 
onstituents likebehavior poli
ies and proto
ols from the standpoint of a human designer.Con
retely, we present1
• a formal framework for adaptive, empiri
al, normative and adaptive-normative expe
tationswithin dynami
 so
ial 
ontexts, and spe
i�
ally the annotation of expe
ted events with theirrespe
tive degree of expe
tedness, degree of normativeness, and devian
y (divergen
e of ex-pe
ted and a
tual events). This allows to represent both empiri
ally obtained probabilities(agent belief in terms of predi
tions) and to spe
ify desired probabilities in an integrated,adjustable manner.
• formal representation languages for 
ontext-sensitive and 
orrelated expe
tations in form ofExpe
tation Networks (ENs).ENs allow to represent intera
tion patterns (e.g., proto
ols and poli
ies) with gradual �exibil-ity and adaptivity, and to measure the a
tual adheren
e of autonomous entities to behavioralspe
i�
ations (predi
ted as well as desired) at runtime.Another parti
ular feature of ENs is that they are a

ompanied with algorithms for theirlearning and in
remental revision from ongoing experien
es the MA makes, apart from the1For la
k of spa
e, some details 
an be found in [24℄ only.2



possibility to set them up manually.ENs also represent the so-
alled empiri
al semanti
s [29, 23, 27, 28℄ of agent 
ommuni
ation,
f. Se
tion 2.4.6.
• means for the learning and revision of expe
tations from sele
tively-overheard agent 
om-muni
ations, and for the ena
tment and 
ommuni
ation of expe
tations fa
ing other agents(in form of so-
alled So
ial Mirrors [20, 30℄ and Expe
tation Engines).At this, expe
tation-oriented modeling is performed from the viewpoint of modelers, so-
alledModeling Agents (MAs). A MA observes agents and intera
tions, and maintains and revises ex-pe
tations obtained from these observations and previous beliefs, intentions and desires, in orderto e�e
tively model and in�uen
e his so
ial environment. An MA 
an be the MAS developer oran arti�
ial agent that a
ts on behalf of the designer, but also a self-interested �ordinary� agentsituated in a so
ial environment.By representing even the designer of an agent-based appli
ation as an agent 
on
eptually, we
onstitute a novel paradigm in agent-oriented software engineering in so far as this suggests thatthe designer of open MAS should not and 
an not be granted the omnis
ient, almighty position aswith ordinary software. Rather, we see her in the role of a primus inter pares among other agents,that, although equipped with more power than �real� agents, should aim for her goals so
ially (i.e.,
ommuni
atively) in intera
tion with the other agents as far as possible. In addition, the opennessof open MAS suggests that the development of su
h systems 
an only be done in an evolutionarymanner, with the need to monitor the system and to improve its model even after deploymentduring runtime. A way to put the 
on
eptualization of system designers as agents into pra
ti
e ina semi-automati
 manner is to assign the designer an intelligent, agent-like 
ase tool, as proposedin [5℄ and in se
tion 3.1.As far as we know, EOM is the �rst approa
h to the spe
i�
ation, predi
tion, analysis andin�uen
ing of so
ial intera
tion that aims at ta
kling the level of expe
tations expli
itly and sys-temati
ally. EOM adopts the 
on
ept of agent expe
tation from [20, 24℄ and is also stronglyin�uen
ed by the EXPAND methodology (Expe
tation-Oriented Analysis and Design) [5℄ andthe 
on
ept of Mirror-Holons[30℄23. EOM also possesses a strong so
iologi
al ba
kground; morespe
i�
ally, its underlying view of so
iality is quite 
lose to Luhmann's So
ial Systems Theory [22℄,as it has been adapted to arti�
ial agen
y.The remainder of this arti
le is stru
tured as follows. The next se
tion presents the generi

on
eptualization of expe
tations and so-
alled Expe
tation Networks as representation meansfor intera
tion stru
tures. Se
tion 3 des
ribes EOM, and shows how a feasible and adequatein
remental pro
ess 
an be derived that exploits the importan
e of the expe
tation level. Thisis followed by an exempli�
ation of the usefulness of our approa
h in a 
ase study based on a�
ar-trading platform� appli
ation s
enario in Se
tion 4. Finally, Se
tion 5 provides more general
onsiderations on the 
hallenge of the modeling of autonomous systems and expli
ates relationshipsto other methods and approa
hes.2 Expe
tationsAn expe
tation 
an both express how mu
h a future event will happen and/or should happen.The di�eren
e of both is represented by the degree of adaptivity (or inversely: normativity) of theexpe
tation: The expe
tation of a desired or intended repeatable event will 
hange less in 
ase of2Mirror-Holons are higher-level agents whi
h represent all their beliefs and goals in form of expe
tations, and
an ea
h exe
ute entire so
ial programs emergent from 
ommuni
ation pro
esses.3In 
ontrast, EOM is not dire
tly related to the approa
h by Tran [36℄, whi
h is based on a di�erent meaningof the term �expe
tation�, and deals primarily with the per
eption layer of agents. Both approa
hes might be
omplementary to ea
h other, but further resear
h would be ne
essary to make out the exa
t relationship.3



a disappointment of the expe
tation.Expe
tations are related to the o

urren
e of anti
ipated behavioral or other events (�event� in abroad sense, e.g., �agent x utters message m to agent y�, �agent y performs a
tion a� or �the alarmbell is ringing�). A major 
onsequen
e of the autonomous behavior of agents is that a 
ertainagent appears to agent and non-agent observers more or less as a bla
k box whi
h 
annot fully bepredi
ted and 
ontrolled. This obs
urity and un
ontrollability is parti
ularly salient in open multi-agent systems (open MASs). Be
ause only the a
tions of an autonomous agent in its environmentare known to an observer, while its mental state remains obs
ure, beliefs and demands dire
tedto the respe
tive other agent 
an basi
ally be stylized only as mutable behavioral expe
tationswhi
h are ful�lled or disappointed in future events. In the 
ase of disappointment, an expe
tation
an either be revised in order to 
onsider the new per
eption a

urately (so-
alled fully-adaptiveexpe
tations), or the expe
ter de
ides to keep this expe
tation even 
ontra-fa
tually (so-
alled nor-mative expe
tations), or to revise (resp. maintain) it only to a 
ertain degree (adaptive-normativeexpe
tations). In the two latter 
ases, the expe
tation holder likely also de
ides to take a
tionin order to make further disappointments of this expe
tation less probable (by, e.g., san
tioningunexpe
ted - so-
alled deviant - behavior). And in any 
ase, the expe
tation 
an be strength-ened/weakened if an expe
ted repeatable event turns out to be useful/useless afterwards.Thus, expe
tations 
an not only express how the respe
tive other agent will likely behave, but alsohow he should behave from the viewpoint of the expe
tation-holder. In addition, expe
tations 
anaddress the behavior of the expe
ter himself also, whi
h 
an be useful for the expe
ter in order tomodel his self-
ommitments, and to 
ommuni
ate them to other agents in form of uttered expe
-tations. As we will see in 2.4.6, expe
tation 
an also be used as an event semanti
s, expressingthe meaning of events (espe
ially of agent 
ommuni
ation messages) in terms of expe
ted events(empiri
al semanti
s [29, 23, 27, 28℄).Expe
tations are 
alled empiri
al (or emergent, when alluding to their newness from theexpe
tation-holders viewpoint) if they are formed empiri
ally from observations of events. In
ontrast, an MA 
an form expe
tations not only from her previous or empiri
al knowledge abouther so
ial environment, but also from her individual intentions and desires, resulting in so-
allednormative or adaptive-normative expe
tations4. In 
ase the MA is or represents the MAS de-signer, these kinds of expe
tations 
an represent for example so
ial norms, obligatory poli
ies,proto
ols and agent 
ommuni
ation language semanti
s, and organizational stru
tures, or fosterthe maximization of so
ial welfare and system 
oheren
e.The di
hotomy of adaptivity vs. normativity re�e
ts the ambiguous meaning of the term �ex-pe
tation� in natural language, whi
h 
omprises both the anti
ipation of probable as well as ofdesired or planned behavior, with an adjustable transition of both stylizations. This makes ex-pe
tations espe
ially appropriate to the modeling of autonomous systems, where an adjustmentof the MA's goals and 
onstraints on the one hand, and the deliberate allowan
e, unavoidabilityor unpredi
tability of autonomous behavior on the other has to be found.Sin
e empiri
al expe
tations are usually adaptive also, and adaptive expe
tation be
ome empiri
alduring the 
ourse of observation, the attributes adaptive and empiri
al are more or less ex
hange-able in pra
ti
e.For the purpose of this paper, we use the terms agent �goals� and �desires� 
olloquially, andfound the formal approa
h in the agent's �beliefs� and �intentions� only, the later thus indire
tlyalso 
omprising goals and desires in a quite broad, �exible understanding of the term intention. Atthis, �intentions� are used to model states or events an agent 
ommits himself to rea
h, in
ludingsu
h states/events he 
annot bring about himself dire
tly. Therefor, the 
ommitments of otheragents show up indire
tly as self-
ommitments of the MA, i.e., if the (possibly insin
ere) otheragent is somehow 
ommitted to perform some a
tion in favor of the MA, the MA might be self-
ommitted to a
tually bring about this a
tion indire
tly by in�uen
ing the other agent. �Agent4Sin
e an expe
tation might be hold purely subje
tively and hidden, and even normative expe
tations have nolegislative power per se, we do not identify normative expe
tations with so
ial norms [22℄, ex
ept from the 
asethe expe
ter represents the MAS or is some entity with normative power. But adaptive-normative and normativeexpe
tations are a way to represent norms, of 
ourse. 4



a1 intends that agent a2 performs a
tion x � is thus to read as �a1 intends to get agent a2 torealize a possible state in whi
h done(agent a2 performs a
tion x) is true. We feel that refrainingfrom a formal use of �desire� and �goal� is reasonable in view of this usage of �intention�, sin
e atleast persistent and 
onsistent goals are 
overed this way [8℄. Note that having an intention inthis sense does not imply knowing how to a
t 
on
retely in order to make the intended state true(but to assume that there is some way).All in all, from the viewpoint of the MA, expe
tations are formed retrospe
tively from utter-an
es of observed agents in the so
ial 
ontext of the MA, other observed events (e.g., �physi
al�agent a
tions like �Closing the window�) and previous knowledge, goals and intentions, and heldin order to anti
ipatorily
• represent her environment in terms of predi
tions (fully-adaptive and adaptive-normativeexpe
tations),
• represent intentions and goals (adaptive-normative and normative expe
tations) in terms ofdesired predi
tions,
• 
ommuni
ate desires and assertions dire
ted to other agents, in order to in�uen
e theirbehavior (
ommuni
ated expe
tations),
• �lter out undesired (untypi
al, temporary...) e�e
ts, or 
onversely emphasize desired e�e
ts(adaptive-normative and normative expe
tations) (
f. 2.4.2).A major feature of Expe
tation-oriented Modeling is thus that in form of expe
tations a rel-atively large spe
trum of attitudes (mental and 
ommuni
ative) 
an be dire
tly related to so
ialevents, using a single notion. This allows for the MA's 
ognition, belief a
quisition and revi-sion, and planing dire
tly on the level of so
ial intera
tion, in 
ontrast espe
ially to the reasoningabout the hidden mental states of the modeled agents, suggesting that it is justi�ed, and eveninevitable, to integrate expe
tations as a modeling abstra
tion into the reasoning, analysis anddesign pro
esses of agents, multiagent systems and autonomous software systems in general. Thisis not to say that EOM should repla
e 
ommon models like BDI (Belief-Desire-Intention). Rather,EOM should be seen as an additional means for the modeling and in�uen
ing of so
ial intera
tion.It is very important in this regard to see that we intend expe
tations obtained from observationto be also the primary means for modeling single agents (i.e., even aside from its embeddednessin so
ial relationships, whi
h are our main 
on
ern) from the MA's point of view. What 
an beexpe
ted from a bla
k-box agent is not just additional knowledge, but in a way, from an observersperspe
tive, the other agent is at a point of time what 
an be expe
ted from him in the respe
tiveso
ial situation, probably enri
hed with previous knowledge and presumptions, like that this agentis rational) (please refer to [24℄ for details). Therefor, we 
apture even agents in their entirety asexpe
tation stru
tures, in
luding what other agents want the MA to expe
t and the limitationsof su
h expe
ted expe
tations. Please note also that fo
ussing (but not restri
ting) ourselves ona
tion expe
tations does not mean to negle
t propositional information, sin
e on the expe
tationlevel, su
h knowledge 
an be 
aptured indire
tly via expe
ted assertive 
ommuni
ation a
ts in theform of, e.g., �agent x asserts that p holds�.2.1 So
iality, Communi
ation and Expe
tation Stru
turesBe
ause we are fo
using on systems with multiple inter-operating agents, we are primarily inter-ested in expe
tations whi
h 
onstitute so
iality: if it 
omes to an en
ounter of two or more agents,the des
ribed situation of mutual indeterminism is 
alled double 
ontingen
y [22℄. To over
ome thissituation, that is, to determine the respe
tive other agent and to a
hieve 
oordination (in
ludingthe 
apability of 
on�i
tive behavior), the agents need to 
ommuni
ate. A single 
ommuni
ationis the whole of a message a
t as a 
ertain way of telling (e.g., via spee
h or gesture), plus a 
om-muni
ated information, plus the understanding of the 
ommuni
ation attempt. Communi
ation5



is indire
tly observable as a 
ourse of interrelated symboli
 agent a
tions (i.e., messages in a agent
ommuni
ation language, or demonstrative behavior). Be
ause 
ommuni
ations are the only wayto over
ome the problem of double 
ontingen
y (i.e., the isolation of single agents), they are thebasi
 
onstituents of so
iality and they form the so
ial system in whi
h the 
ommuni
ating enti-ties are embedded [22℄. EOM adopts this view, and assigns 
ommuni
ation a key role in systems
omposed of intera
ting software agents.Inter alia, one important pra
ti
al 
onsequen
e from this viewpoint is that in 
ontrast to mostother modeling and design methods for multiagent systems and organizations, in the 
enter ofEOM are intera
tion pro
esses rather than fully-exposed agents, roles and groups. In fa
t, anagent role and even an arti�
ial agent parti
ipating in so
ial intera
tion is, from the MA's view-point, no more (and no less) than the sum of the behavioral expe
tations triggered by its observedprevious behavior. Our modeling of agent roles in 2.4.5 re�e
ts this pro
ess-oriented paradigm.Another important point is that 
ommuni
ation and thus the stru
tures of MASs as modeledusing EOM need not to be 
ollaborative. In fa
t, even from 
on�i
ts stable and useful stru
tures
an emerge.As a
tion expe
tations are related to 
ommuni
ations and thus to so
iality, so
ial stru
tures (in-
luding, e.g., organizational stru
tures) 
an be modeled as expe
tation stru
tures [20, 26, 27, 28℄.Basi
ally, expe
tation stru
tures are interrelated expe
tations regarding a spe
i�
 set of events(e.g., the behavior or a 
ertain agent). Expe
tation stru
tures 
an be tailored to lo
al agent envi-ronments and topi
al 
ommuni
ation domains.We distinguish four types of expe
tation stru
tures: (i) so
ial agents as sets of all 
urrentbehavioral expe
tations regarding single agents (i.e., a so
ial agent abstra
ts from the a
tual agentwith its opaque mental properties, and rather represent the intera
tion-related, externally-as
ribed�publi
 intentional stan
es� of a
tual agents [24℄5); (ii) roles as pla
eholders that are asso
iatedwith 
ertain kinds of expe
ted behavior and that 
an be instantiated by di�erent agents; (iii) so
ialprograms as �exible intera
tion s
hemes for multiple intera
ting so
ial agents and/or roles; and(iv) so
ial values as ratings of expe
ted generalized behavior (e.g., �Con�i
tive behavior is alwaysbad�). The fo
us of EOM is on so
ial programs [22℄ with so
ial agents and roles, sin
e these areparti
ularly suited for des
ribing pro
esses that o

ur between agents. Fo
using on so
ial values,in 
ontrast, would suggest a rule-based approa
h.By pro
essing existing expe
tations, agents determine their own a
tions, whi
h, then, in�uen
ethe existing expe
tations in turn. So 
ommuni
ation is not only stru
tured by individual agentgoals and intentions, but also by expe
tations, and the ne
essity to test, learn and adopt expe
-tations for the use with future 
ommuni
ations. The pro
ess of 
ontinuous expe
tation stru
tureadaption by means of agent intera
tion (or 
ommuni
ation, espe
ially) and in
remental, deliber-ative modi�
ations of expe
tation stru
tures by the MA is 
alled expe
tation stru
ture evolution.As des
ribed in se
tion 3, this kind of evolution plays a key role in EOM.2.2 Making Expe
tations Expe
ted�Expe
tations of expe
tations� [22℄ are ne
essary if expe
tations are formed in order to expe
t whatothers expe
t. We do not treat the MA's expe
tations of expe
tations expli
itly (only impli
it asthey show up in the expe
ted behavior of the other agents), but we have to deal with the fa
t thatsome of the expe
tations held by the MA need to be expe
ted themselves by the other agents tobe able to have any in�uen
e on the system.The establishment of su
h �expe
tations of expe
tation� 
an be a
hieved through the 
ommuni-
ation of the MA's expe
tations to the agents and/or through the publishing of the expe
tationsvia an appropriate agent-external instan
e within the multiagent system. On
e a
hieved, agents5The publi
 identity the modeled agent would like to present via 
ommuni
ation is an important 
onstituent ofthe so
ial agent, but of 
ourse usually not identi
al with it.6




an �expe
t� what �is expe
ted�. As des
ribed in se
tion 3, EOM te
hni
ally realizes this throughso-
alled �Mirrors� and �Expe
tation Engines�, whi
h are also responsible for the a
quisition ofempiri
al expe
tations from observed MAS 
ommuni
ations.Expe
tations are 
ommuni
ated to the agents by the MA mainly for the following reasons:
• To inform the agents about a
tual so
ial stru
tures and pro
esses they would otherwise notbe aware of (e.g., be
ause they evolved outside their lo
al intera
tion environment, but arenevertheless relevant). This is espe
ially important if the MA holds a higher position thanthese agents, and overhears a large part of the MAS 
ommuni
ation (e.g., being the systemdesigner, or a middle agent, or a manager agent in an organizational MAS).
• To inform the agents about the MA's goals and intentions, and possibly about the expe
table
onsequen
es in 
ase of a
ting against them or refusing 
ollaboration.
• Even to deliberatively pretend a
tually disbelieved knowledge about so
ial stru
tures inorder to in�uen
e agent behavior.2.3 The S
ope of Expe
tation-oriented ModelingIn this work, we de�ne and use expe
tations for the purpose of modeling and in�uen
ing so
ialstates of a MAS (i.e., the intera
tional behavior of other agents), from the standpoint of MAs.This leads to the following EOM tasks from the perspe
tive of an MA, whi
h will be des
ribed indetail later.a. Modeling planned or desired events/event 
ourses The MA en
odes all or some of theseas (adaptive-)normative expe
tations, denoting desired or intended event 
ourses. Typi
ally,su
h expe
tations are dire
ted to the behavior of other agents in order to in�uen
e them,but they 
an also be in regard to the own behavior of the MA, or any other events.b. Modeling empiri
al events This is done using fully-adaptive and also adaptive-normativeexpe
tations, as a part of the belief of the agent.This task and the previous task are usually tightly interwoven, sin
e the gradual blend ofempiri
al and intentional expe
tations, and the run-time determination and minimization ofthe di�eren
e of both expe
tations is a spe
ial feature of EOM.
. Overhearing and monitoring of MAS 
ommuni
ations The MA observes agent inter-a
tions and 
ategorizes them as desired, undesired and unassessed events.d. Adaption of expe
tation stru
tures, if ne
essary. Fully-adaptive expe
tation stru
turesare adapted if they have been disappointed, and (adaptive-)normative expe
tation stru
turesmight need to be modi�ed if they turned out to be not realizable, or not useful in order torea
h the MA's desires.e. Optionally, taking a
tion in order to in�uen
e the MAS, by:- Communi
ation of expe
tations to other agents At this, the MA 
ommuni
ates sele
tedexpe
tations to other agents, making them �expe
tations of expe
tations�, for the otheragents, for the reasons listed in 2.2. These information do not have to be intentionally a

u-rate or 
orre
t, nevertheless, but 
an be ostensible (
f. Figure 4). In [24℄ more information
an be found about the ena
tment of expe
tations.- Positive/negative san
tioning of deviant behavior, argumentation, negotiationAdditional tasks whi
h 
annot be separated from the 
ommuni
ation of expe
tations ingeneral.
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2.4 Key Aspe
ts of Expe
tations2.4.1 Strength, Normativity, Devian
yExpe
tations 
an be weighted in two 
omplementary ways, namely, w.r.t. their strength and w.r.t.their normativity (or inversely, their adaptability). The strength of an expe
tation indi
ates its�degree of expe
tedness� (also 
alled expe
tability): the weaker (stronger) the expe
tation is, theless likely is or should be its expe
ted ful�lment (violation). Against that, the normativity of anexpe
tation (both weak and strong expe
tations) indi
ates its intentional �degree of 
hangeability�:the more normative (adaptive) an expe
tation is, the smaller (greater) is the 
hange in its strengthwhen being 
ontradi
ted by unpredi
ted a
tual a
tions. With that, the strength of a lowly norma-tive expe
tation tends to 
hange faster, whereas the strength of a highly normative expe
tationis maintained in the longer term even if it is obviously in
onsistent with reality (i.e., with theobserved agents' a
tual a
tivities), whereat the term �adaptive-normative expe
tation� denotes anexpe
tation with normativity greater zero and lower one, and �fully-adaptive� (�(fully-)normative�)means normativity zero (one). Fully-normative expe
tations ignore the a
tual o

urren
es of theirmodeled events 
ompletely, as long as they are not adapted �manually� by the MA. The ideaof expe
tation weighting based on strengths and normativity is adopted by EOM, and it is alsoassumed that there is a 
ontinuous transition from weak to strong strength and from low to highnormativity. The di�eren
e between the probability and the expe
tability (normativity-biasedprobability) of a 
ertain event is 
alled devian
y (
f. below). So, if EOM is used to model so
ialnorms, these 
an be both gradual and, to some degree, auto-adaptive - in 
ontrast to, e.g., binarymodalities like obligation and permissibility as in deonti
 logi
.Here are some examples of quite extreme 
ombinations of expe
tation strength and normativity,mostly related to deonti
 modalities: rules that govern 
riminal law (strong/non-adaptable: evenhundreds of a
tual murders will not alter the respe
tive laws, and most people think of murderas a rather ex
eptional event); habits (strong/adaptable: before the times of fast food, peopletook full servi
e in restaurants for granted, but as fast food be
ame popular, they were willing toabandon this expe
tation); publi
 parking regulations (strong/hardly adaptable: almost everyoneviolates them even if they are, in prin
iple, rigid); and shop 
lerk friendliness (weak/adaptable:most people expe
t bad servi
e but are willing to 
hange their view on
e en
ountering friendlysta�).Thus, the term �expe
tation� is inherently ambiguous, as it deliberatively 
ombines subje
tive,demanding expe
tations (re�e
ting the goals and intentions of the expe
ting agent) and the empir-i
al likeliness of events (desired or not). In this regard it is worth to state that even the strengthsof fully-adaptive expe
tations are not ne
essarily probabilities (from a frequentist point of view),be
ause expe
tations are maintained (�expe
ted�) as a part of the belief a subje
tive observerhas, and do not ne
essarily take into a

ount enough �real world� fa
ts to determine expe
tationstrengths obje
tively when he sets up his expe
tations. So, not only (adaptive-)normative, butalso fully-adaptable expe
tations 
ould theoreti
ally be used to represent individual, 
ontra-fa
tualpreferen
es (�desired probabilities�, so to say) instead of likelihoods. But su
h 
ontra-fa
tual yetnon-normative expe
tations 
onverge immediately to probabilities, sin
e they are �willing to learn�,so to say.2.4.2 The Semanti
s of Expe
tationComputational expe
tations have two dimensions: What the MA expe
ts at a 
ertain time, andhow she will adapt this expe
tation in the 
ourse of time, in 
ase the expe
ted event is repeat-able. The latter is treated in 2.4.3. So, what does �to expe
t an event� at the 
urrent time pointmean exa
tly? So far, we've 
hara
terized the meaning of �expe
tation� intuitively as a gradedblend of a
tual event probability and �desired probability�. (Adaptive-)normative expe
tationsare maintained even 
ontra-fa
tual for some time (i.e., if they deviate from knowledge). In this
ase, the only way for a rational and �non-ignorant� agent to rea
h the intended belief is to 
hangethe reality, i.e., to a
t in order to minimize the devian
y. An other interpretation would be to8



understand a normativity as the degree of distrust in a probability, thus a kind of higher-orderprobability.Starting from these observations, we de�ne the semanti
s of an expe
tation held by the MA agentas his intention to make (or keep) his gradual belief regarding the o

urren
e of a 
ertain eventidenti
al with the expe
tability of this expe
tation. This intention is weaker than to intent a
ertain probability of the event, but as we will see later, in the most 
ommon 
ase we a
tuallyget by with de�ning normative and adaptive-normative expe
tations as the intention to make thereality (in form of a probability 
orresponding to the frequen
y of some event) 
onforming to theexpe
ted state (in form of an expe
tability).At this, �intending a probability� 
an be understood as either aiming at bringing about a 
ertainfrequen
y of a repeatable event, or as the will to provide o

urren
e 
onditions for the event thatmake it probable to a 
ertain degree.Formally, an agent's expe
tation (denoted as Expect) is a mental attitude, represented as a logi
modality, and de�ned as follows:De�nition 1.
Expect(agent, event|context, ψ) = e :⇔



















Bel(agent, event|context) = e

∨Int(agent,Bel(agent, event|context) = e))if ψ > 0

Bel(agent, event|context) = e otherwiseHereby, e is the expe
tability, ψ ∈ [0; 1] is the normativity of the expe
tation,
Bel(agent, event|context) = b denotes that agent believes that event o

urs with probability b in
context 67, and Int(agent, p) denotes that agent intends p to be
ome true (if agent is not 
apableto bring about the desired fa
t or a
tion dire
tly by herself, this shall in
lude the intention tomake other agents bring about p et
., i.e., to use them like a tool)We write Expect(agent, event|context) as an abbreviation of Expect(agent, event|context, 0), and
Expectt for Expect, when the time point t at whi
h the expe
tation is held matters and 
an notbe derived from the 
ontext (for ψ, Int and Bel analogously). Note that t is not the time pointat whi
h the event (should) o

ur(-s). If we would like to express that some event will or shouldhappen at a 
ertain time, we would have to en
ode this time within context.The exa
t normativity (ex
ept from distinguishing if it is above zero or not) is not used inthe de�nition above, be
ause the normativity pres
ribes how an expe
tability auto-evolves in the
ourse of time with new information, if the expe
tability it is not set �manually�. If the norma-tivity is zero, the expe
tation is set equal to the belief of the MA immediately. Otherwise, theexpe
tability adopts gradually to the belief when both di�er, with a �learning rate� of the expe
-tation inverse to the normativity. Cf. 2.4.3 for details.Our de�nition of expe
tation is build straightforwardly upon probabilisti
 versions of the KD45and Belief-Intention axioms usually used for multi-modal logi
s of mental attitudes (e.g. [14℄), andis related to Sadek's want attitude [35℄.Given the agent's belief (e.g., obtainable from an expe
tation via the so-
alled devian
y, 
f.below), the following proposition obviously holds, with e = Expect(agent, event|context, ψ):Proposition 1.6We 
an use this syntax also to denote expe
ted expe
tations: Expect(agent1, Expect(agent2, ...)...).7context here has, in general, to be distinguished from the empiri
al �
ontext� the MA has been used toobtain the expe
tability, although context 
ould have been a 
ourse of per
eived events leading to 
on
lude
Bel(agent, event|context) = e. It is in general also not the 
ontext in whi
h the agent holds the expe
tation.9



Int(agent,Bel(event|context) = e) if (ψ > 0 ∧Bel(agent, event|context) 6= e)

Bel(agent, event|context) = e otherwiseTo the 
ommon axioms, we add the following bridge axiom (adopted from RelIntBel2 in [14℄):Axiom 1.
Int(agent,Bel(agent, event|context) = e)
∧Bel(agent, event|context) 6= e⇒ Int(agent, occurs(event|context, e))Axiom 1 denotes that disbelief in the o

urren
e of an event with probability e while intendingto belief the event o

urs with this probability for
es the agent to intend the event to o

ur withprobability e (denoted as Int(agent, occurs(event|context, e))). This also expresses that in 
asethe agent has no parti
ular belief regarding the o

urren
e of this event, she 
an bring abouther introspe
tive intention to belief in the event even without intending the event itself (e.g., byexploring new per
eptions, or by improving her reasoning pro
ess).If we would either drop the usual Bel(p) → ¬Int(p) axiom in Belief-Intention logi
s, or intro-du
e alternatively maintenan
e intentions [4℄ (denoted as IntM ), de�nition 1 would 
hange toDe�nition 1-M.
Expect(agent, event|context, ψ) = e :⇔

{

IntM (agent,Bel(event|context) = e)) if ψ > 0

Bel(agent, event|context) = e otherwiseThe agent 
an a
hieve the intention to 
hange his belief in several ways, whi
h 
an also bepursuit 
on
urrently.i. Change the world This is 
onsidered to be the usual way to enfor
e adaptive-normative andnormative expe
tations, either by exe
ution of the expe
ted events dire
ted to the MAhimself, or by bringing about the intended events indire
tly (e.g., by asking other agents).ii. Explore The agent 
an try to obtain new per
eptions in order to 
hange his belief by explo-ration. Here, the (adaptive-)normative expe
tation serves as a kind of hypotheses, and theagents strives after new eviden
e in order to support or refute it.iii. Wait This is a
tually not 
overed by the original intention at time t, but is a way to au-tomati
ally de
rease the �strength� of the intention (i.e., the degree and duration of theself-
ommitment) in 
onse
utive time steps instead: If the normativity is below 1, in thelonger term the expe
tation learns (i.e., adapts to the 
urrent probability), provided theprobabilities of a 
ertain event remain stable enough to be learnable (
f. 2.4.3). Pra
ti
ally,this happens if the expe
tation holder failed to de
rease the devian
y a
tively (due to insuf-�
ient so
ial power, for example). The adaptation of the expe
tability to the probability inthis 
ase 
an nevertheless be desired, and it 
an even be a prerequisite for the enfor
ementof less �exible and thus likely more important expe
tations.iv. Ignore the deviation Here, the agents simply believes in the expe
tation, possibly ignoringreality thereby:
Bel(agent, event|context) = Expect(agent, event|context, ψ) holds in any 
ase then.Su
h deliberative ignoran
e appears to be irrational for intelligent agents, but is a 
ommonattitude of human agents and obviously somewhat fun
tional for them. In any 
ase, theidenti�
ation of 
ertain expe
tations with beliefs regardless of devian
e might be reasonablefor arti�
ial agents in 
ase the event belief is obtained from an unreliable sour
e.A less debatable use for su
h deliberative ignoran
e is to set the normativity greater zero10



in order to �lter out (��atten�) temporal and insigni�
ant �u
tuations of probabilities. In2.4.3, a 
on
rete way to adapt expe
tabilities is shown whi
h �attens a graph depi
ting the
hanging probabilities of some event.In all 
ases ex
ept from iv., we assume that the expe
tability is equal to the probability (in
ase the normativity is zero).Note that even for the 
ases i.-iii. so far no assumptions have been made on how e has beenobtained - the MA is basi
ally free to hold any expe
tabilities she likes / is interested in from hersubje
tive and possibly irrational viewpoint.De�nition 2.The devian
y ∆ of an event regarding a 
ertain expe
tation (or vi
e versa of an expe
tationregarding an event) is de�ned with
∆(event, context) = Expect(agent, event|context, ψ) −Bel(agent, event|context).The devian
y 
an intuitively be seen as an indi
ator of the e�ort that would be required tomake a normatively expe
ted event happen, and as a measure for the 
omplian
e of the event-generating agent with the expe
tation, whereas the normativity is intuitively a kind of �stamina�of the intention (the strength of a self-
ommitment. Please remember in this regard, that we allowintentions also to be denoted as desired behavior of other agents).There is also a 
onjun
tion with the utilities of events: If the normativity is larger zero, theutility for the MA to rea
h the spe
i�ed probability is 
ertainly larger zero also. The expe
tabilitymight 
orrespond to the utility of the event in this 
ase (but this is to state a heuristi
 only,suggesting further resear
h).Proposition 2.Ex
ept from the 
ase iv. above (belief despite ignoran
e of event o

urren
es)
Int(agent,∀ti, t ≤ ti ≤ t+ h : ∆t+i(event, context) = 0)holds at time step t. At this, h is a possibly in�nite intention horizon whi
h determines how longthe expe
tation is maintained.Finally, we want to further simply the semanti
s in 
ase the probability of an intended eventis irrelevant:Proposition 3.
(Expect(agent, event|context, ψ) = e ∧Bel(agent, event|context) < e) → Int(agent, event)To sum up, our notion of expe
tation is (to our knowledge) the �rst 
omputational means for a
overage of both agent belief and intention using a single attitude, with the possibility of a gradualadjustment of the emphasis of either aspe
t. This 
orresponds to the double-fa
ed 
ommon-sensemeaning of expe
tation in natural language, and to the meaning of this term introdu
ed in [20℄.Apart from having single �points of atta
k�, ea
h allowing to express how mu
h a believed event isintended or an intended event is believed, and how strong the 
ommitments dire
ted to intendedevents (i.e., to redu
e the devian
es of (adaptive-)normative expe
tations) should be.The des
ribed semanti
s of expe
tation of 
ourse only applies in 
ase the expe
tations are heldas mental attitudes by the MA. In 
ase the expe
tation is used to be 
ommuni
ated to other agents(to make it an �expe
tation of expe
tation�) instead, its semanti
s 
hanges, 
f. 3.2 and [24℄.11



2.4.3 Unattended Adaption of Expe
tationsFor la
k of spa
e, the empiri
al derivation of fully-adaptive expe
tation (their expe
tabilities, resp.)and the probabilisti
 part of adaptive-normative expe
tations is omitted in this paper, please referto [27, 28℄. We des
ribe the adaption of adaptive-normative expe
tations here, though.After the expe
tabilities and normativities of adaptive-normative expe
tations have been obtainedfrom goals and intentions, they are exposed to reality, so to say. The following shows how su
han expe
tation 
an be adapted automati
ally, depending from its normativity (degree of 
ommit-ment). The following de�nition 
overs expe
tations with normativity zero and one also.To this end, it is assumed that for an event event|context 
orresponding to a 
ertain ENnode an initial expe
tation strength θ(event, context) = P0(event|context) exists. Analogously to
Belt(), Pt(event|context) denotes a probability stated at time t, not the probability of an eventhappening at time t. Given a normativity ψt and a probability Pt(event|context) obtained em-piri
ally at time step t, the expe
tation strength at this time step 
an be 
al
ulated re
ursivelyas follows. This way to 
al
ulate Expectt is not to be seen as 
anoni
al, other de�nitions forthe adaption of adaptive-normative expe
tations might be reasonable too, depending from the
on
rete appli
ation also.De�nition 3.

Expectt(agent, event|context, ψt) =
{

θ(event, context) if t < 1

Expect′t+1(agent, event|context, ψt) otherwisewith Expect′t(agent, event|context, ψt) =


















Expect′t−1(agent, event|context, ψt)

−∆′
t−1(event, context)(1 − ψt)if t > 0

θ(event, context) otherwise
∆′(event, t) is 
al
ulated as
Expect′t(agent, event|context, ψt) − Pt(event|context)8.This (non-mandatory) way to 
al
ulate Expectt reminds of the e
onometri
s te
hnique ofExponential Smoothing used for the smoothing and extrapolation of non-linear time series. It
al
ulates a �attened version (with a �attening degree depending on the normativity) of the graphof Pt(event|context), and lets Expectt(agent, event|context, ψt) 
onverge to Pt(event|context) atleast if Pt(event|context) remains 
onstant with in
reasing t, and ψt remains 
onstant also. Thenormativity (i.e., the expe
tation adaption rate) itself does not 
hange.If, e.g., ψt = 1, the expe
tation strength
Expectt(agent, event|context, ψt) = θ(contex, event) will remain 
onstant, whatever the empiri
aleviden
e is. In 
ontrast, if ψt(agent, contex, event) = 0,
Expectt(agent, event|context, ψt) = Pt(event|context) applies at all time steps.Example: Figure 1 shows the time and normativity dependent expe
tabilities of an event a, with
ψ0..20 = 0.95 and θ(a, context) = 0.4. Being a �
tive event, the potential e�e
t the announ
ementof these values to the event generator (a 
ommuni
ation partner of the MA, for example) wouldhave, is not 
onsidered. The agent parameter has been omitted.8Cal
ulating Expectt(...) using Expect′t+1

(...) is done just in order to get rid of the delay of one time step inthe adaption of Expectt(...) to Pt(...) that would exist otherwise.12
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Figure 1: Unattended adaption of an expe
tability (t→)2.4.4 Computational Representation of Expe
tations and Intera
tion Pro
essesSettling on parti
ular representation formalisms naturally a�e
ts the level of abstra
tion and withit the s
ope of expe
tation stru
tures. Here, we fo
us on non-deterministi
 so
ial programmes(with regular proto
ols and poli
ies as spe
ial 
ases), for whi
h a graphi
al notation � so-
alledExpe
tation Networks (ENs) [20, 27, 26℄ � is presented 9. The main 
hara
teristi
s of ENs arethat they represent expe
tations embedded within expli
it so
ial 
ontexts, and model probabilis-ti
 event 
ourses (i.e., beliefs regarding events), a
tion intentions and normative proto
ols in aseamlessly integrated manner, and (in 
ontrast to Hidden Markov Models (HMMs)) interrelatesto
hasti
 events instead of sto
hasti
 states. At this, ENs are intuitive (as we believe), and 
anbe set into straightforward relation to several other formalisms, espe
ially HMMs and sto
hasti
automata, Dynami
 Logi
, Dooley Graphs [32℄ and Intera
tion Frames [34℄.Expe
tation Networks 
an be given a formal semanti
s as des
ribed in 2.4.2, but also a so-
alled Empiri
al Semanti
s of events and event pro
esses [29, 23, 27, 28℄, as des
ribed in 2.4.6.The "
onsequentialist" (a-posteriori) 
on
ept of meaning of 
ommuni
ation among arti�
ial agentswas, to our knowledge, �rst arti
ulated in [20℄.Informally, the empiri
al semanti
s assigns an event a meaning in terms of its likely 
onse-quen
es, as represented by EN sub-trees. E.g., the empiri
al semanti
s of some message fromsome agent 
ommuni
ation language would be the expe
ted e�e
t the utteran
e of this messagehas.In regard to EOM, the use of ENs is not mandatory, although ENs are probably the most suit-able representation formalism. In prin
iple, other formalisms 
ould be used also, as long as theyare 
apable to make expli
it the 
onse
utive states of agent intera
tion (e.g. Intera
tion Frames[34℄).Figure 2 depi
ts a very simple EN (in a notation 
alled DG-EN whi
h allows for 
y
les in thegraph). The nodes 
orrespond to 
ontextualized events (espe
ially agent message a
ts and otheragent a
tions for our purpose, but also �physi
al� events per
eived in the agents' environment)that are uttered and addressed to/by agents, probably a
ting as instan
es of roles (ri). Time9The signi�
ant di�eren
es of the EN data stru
ture presented in this work (based on [20℄) and older realizationsof ENs (e.g. [26℄) are the treatment of normativity, generalizations and variables. The notation in this work isdownwards-
ompatible with [27℄. 13
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Figure 2: A so
ial program as DG-ENstamps 
ould be part of node labels, but for our purpose, we want nodes to represent repeatableevents (i.e., we form expe
tations about events like �Agent x performs a
tion y in the future�instead of singular events like �Agent x performs a
tion y at time step 100�). Events are always
ontextualized, i.e., the same event 
an o

ur multiple times within a 
ertain EN, probably withdi�erent expe
tation strengths depending on the respe
tive 
ontext (in this regard, the relation-ship of Expe
tation Networks and HMMs and sto
hasti
 automata be
omes obvious when pathsin the network are asso
iated with states). Te
hni
ally, an (event) 
ontext is the EN path up toand in
luding the parent of the node that is annotated with the event label. The dire
ted edgesrepresent the expe
tation that a 
ertain event is followed by a 
ertain subsequent event. Ea
hedge is labeled by a triple s:n:d of real values, where s (ranging between 0 and 1) denotes itsexpe
tability (strength of the expe
tation), summing up to 1 for edges leading to sibling nodes.
n (ranging between 0 and 1 also) denotes the normativity. The devian
y is denoted as d, rangingbetween -1 and 1 (informally, the di�eren
e of s and the strength this expe
tation would have in
ase of n = 0). n and/or d 
an be omitted if they are not of interest in a spe
i�
 appli
ation
ontext. Note that outgoing edges of a node always do have the same normativity, be
ause thedegree of expe
tability-
hange represented by the normativity is the same for all sibling nodes. ⊥denotes the expe
ted end of the 
ommuni
ation pro
ess.In tree ENs, an expe
tability e at the in
oming edge of a node v within an EN ent maintainedby an MA at time step t means that at this time step, the MA expe
ts the event represented by vwith expe
tability e assuming he already has or would have observed the 
ourse of all events alongthe path leading to v. This path up to the parent of v is 
alled the 
ontext of the event. In 
asethe expe
tation holder makes new observations, he probably needs to modify this expe
tability.The 
ontext thereby allows partially to foresee the e�e
t optional observation would have: If, e.g.,you expe
t today that the sun will shine tomorrow afternoon if it is foggy tomorrow morning, theEN determines the exa
t expe
tability you'll have tomorrow morning in regard to sunny weatherin the afternoon (in 
ase you keep this EN until then). On the other hand, the expe
tabilitieswithin an EN are of 
ourse not fully determined by the EN itself: If you experien
e heavy raintoday, you might want to de
rease the EN's expe
tability for sunny weather tomorrow, even in
ase of fogginess. It this regard, it is important to see that the 
ontext might be only a part ofthe probabilisti
 
ondition for the probability P (eventv|condition) an expe
tation represents (i.e.,the expe
tability minus its devian
e, 
f. below). In fa
t, all relevant observations and in�uen
esexperien
ed/known until time t have to be in
luded additionally to form a proper probability
ondition10.10It is in prin
iple also possible to use ENs for modeling the past as a 
ourse of already observed or otherwisebelieved events, ea
h with expe
tability 1. 14



We will introdu
e the following kinds of EN representations, in order to allow the tailoring ofthe representation formalism to di�erent needs in di�erent appli
ation 
ontexts. All of them 
anbe redu
ed to so-
alled ground Tree-ENs in order to de�ne their semanti
s.Ground Tree-ENs: Graphi
al trees without variables. If we refer to an �EN� in this work, wedenote a ground Tree-EN if not stated otherwise.(full) Tree-ENs: As before, but optionally with variables for nodes, sub-trees, and node andedge labels.KB-
onditioned Tree-ENs: Tree-ENs where graph edges 
an be annotated with logi
al 
ondi-tions from a knowledge base KB. Please refer to [26℄ for these kinds of EN.DG-ENs: Dire
ted graphs, allowing for nodes with multiple in
oming edges (denoting eventswith di�erent 
ontexts but the same empiri
al semanti
s) and 
y
lesTextual ENs: Representing ENs using the formal language (ENL)Probabilisti
 ENs: ENs with normativity 0 for all edges.EN sets: A set of multiple ENs 
an be stated either extensionally (by enumeration), or inten-tionally by way of pla
ing free variables within an EN, su
h that di�erent instantiationsresult in di�erent ENs, whereat the variables 
an be existentially quanti�ed (e.g., to be usedto query other ENs), or all-quanti�ed. EN sets 
an be used to represent 
on
urrent eventsequen
es. They are not 
onsidered in this work for la
k of spa
e.For the understandability of EOM, it is su�
ient to know Tree-ENs as far as explained above.Thus, readers not interested in details about ENs and empiri
al semanti
s 
an safely jump tose
tion 3 now.Formally, a so-
alled ground Tree- Expe
tation Network is de�ned as follows:De�nition 4. An ground Tree-Expe
tation Network en ∈ EN (E) over a 
ertain event termlanguage E is a (possibly in�nitely deep or broad) tree
(V,C, E ,Expectability ,Normativity ,Deviancy ,nodelabel , edgelabel)where

• V , |V | > 1 is the set of nodes,
• C ⊆ V × V are the edges of EN .
• E is the event term language (a spee
h-a
t-oriented agent 
ommuni
ation language, for ex-ample, to denote agent messages. But terms denoting non-symboli
 events are allowed also,e.g. �physi
al� agent a
tions, or events like �the sun is shining�).
• Expectability : C → [0; 1] returns the expe
tation strength (expe
tability) for the followingevent, with ∑

Expectability((vparent, vi)) = 1 for ea
h set of sibling nodes vi,
• Normativity : C → [0; 1] returns the normativity of the 
orresponding expe
tability,
• Deviancy : C → [−1; 1] yields the 
orresponding devian
y,
• nodelabel : V → E ∪ {⊥,⊲} is the label fun
tion for nodes. The labels of sibling nodes mustbe mutually di�erent (i.e., denoting di�erent events).Optionally, ⊥ denotes the expe
ted end of a 
onversation, and ⊲ denotes �no a
tion� (nothinghappens). As we will see later, the latter is useful as a dummy root node representing thestart of a 
onversation. 15



• edgelabel : C → {”s : n : d” : s ∈ [0; 1], n ∈ [0; 1], d ∈ [−1; 1]} is the label fun
tion foredges, with edgelabel(c) = Expectability(c) : Normativity(c) : Deviancy(c). Edge labelsare usually omitted if the edges' expe
tability and normativity are both 1. Normativity anddevian
y 
an also be omitted if these are not of interest.
EN (L) shall denote the set of all ENs over an event term languages L.If the normativity for every edge within an EN is 0, we speak of a probabilisti
 EN, useful fordenoting adaptive sto
hasti
 proto
ols.Given an Expe
tation Network ent maintained at time t, with
ent = (V,C, T ,Expectability ,Normativity ,Deviancy ,nodelabel , edgelabel),we set Expectability(c) = Expectt(agent, event|path,Normativity(c)), and

Deviancy(c) = ∆t(path, action) for ea
h edge c ∈ C leading to the node 
orresponding to theevent event rea
hed from the EN's root node following path. agent is the MA who holds theexpe
tations/the EN. The set of 
ontexts Context is provided as the set of paths within the EN,denoted unambiguously (sin
e the labels of the 
hildren of ea
h EN node have to be mutuallydi�erent) as linear lists of 
onse
utive event labels (event1 ⊔ ... ⊔ eventn).Ground Tree-ENs 
an be extended to (full) Tree-ENs with variables by allowing pla
eholdersfor agents (in order to allow for agent roles), and for other message term 
onstituents and evensub-trees. Su
h variables 
an be used with all other kinds of ENs also, by allowing them in pla
eof nodes, edge labels and within node labels. This extension is shown only for textual ENs below,sin
e it is 
ompletely straightforward for other EN types.Obviously, an EN 
an be represented in a 
ompressed way without loss of expressibility as adire
ted graph by a merging of identi
al sub-trees. This also re�e
ts that the empiri
al semanti
sof EN paths lays in their 
ontinuations expressed by subsequent sub-trees, and be
ause of this,two paths with the same 
ontinuation have the same meaning (
f. 2.4.6). These so-
alled DG-EN salso allow graph 
y
les, as an abbreviation for in�nitely deep sub-trees. Sin
e the enhan
ementof ground Tree-ENs to DG-ENs is trivial, and DG-ENs 
an be mapped to ground Tree-ENs fullypreserving their semanti
s (by manifolding sub-trees with more than one parent node), we omit aformal de�nition of DG-ENs here.Sin
e an EN might be quite 
umbersome to draw betimes, we now introdu
e the following ENrepresentation language ENL.ENL → Bran
hBran
h → Event| [ Event Children ℄Event → 'Epattern' | Variable | ?Variable | ?Children → [ Weight Bran
h ℄ Children | ǫWeight → Expe
tability| ( Expe
tability, Normativity )| ( Expe
tability, Normativity, Devian
y )Expe
tability → {e : e ∈ R, 0 ≤ e ≤ 1} | Variable | ?Variable | ?Normativity → {n : n ∈ R, 0 ≤ n ≤ 1} | VariableDevian
y → {d : d ∈ R,−1 ≤ d ≤ 1} | Variable
Epattern → Performative(Agent, Content)| Physi
alA
tion(Agent, A
tionDes
ription)16



| UnintendedEvent(...)Agent → agent1 | agent2 | ... | Variable | ?VariablePerformative → request | deny | accept | assert | ... | Variable | ?VariableA
tionDes
ription→ turnLeft | closeDoor | leaveRoom | ... | Variable | ?VariableContent → Logi
alStatement | Variable | ?Variable...This deliberatively in
omplete syntax of Epattern (
orresponding to node labels) is just for exam-ple - basi
ally, any message or a
tion language 
an be used.For simpli
ity, we will use 
ertain non-terminals of the grammar in pla
e of the sets of the re-spe
tive produ
ed words. Sin
e every event (term) and every sub-tree ("Bran
h" in the grammarabove) in a textual EN 
orresponds to a node (bran
h) in the equivalent ground Tree-EN, we referto event (terms) within a textual EN sometimes as �nodes�.To demar
ate variables (alphanumeri
al terminals starting with big letters or "?"), we usuallyuse small letters for non-variable parts of Epattern. Variables starting with "?" are 
alled igno-ran
e variables.Words in ENL and words in Epattern are 
alled ground i� they do not 
ontain variables. Othervariables are either bounded using a substitution list (with ea
h variable possibly having morethan one instan
e simultaneously), or free in order to retrieve sets of ENs (as existentially quanti-�ed query variables, or as universally quanti�ed variables). Free (non-ignoran
e) variables are not
onsidered in this work for la
k of spa
e.To redu
e ENs with variables to a known type of EN we provide a mapping o ground Tree-ENs.Mapping a textual EN ten ∈ ENL does not yield, as one might expe
t, a set of ENs in 
ase ten
ontains variables. Rather, the 
apability of ENs to represent non-deterministi
 alternative a
-tions is used to �in�ate� ten to a single, possibly in�nite ground EN (2.4.5 des
ribes the oppositetask of �de�ation� by introdu
ing new variables). This pro
eeding has the advantage that thesemanti
s and handling of ENs 
an be de�ned in a 
lear 
ut way without the ne
essity to a

ountfor variables later (and thus to deal with instantiations, uni�
ation et
.). In addition, fo
usingon single ENs avoids handling multiple ENs possibly denoting mutually in
onsistent probabilitydistributions and 
on�i
ting normativities (every single EN is inherently 
onsistent as it 
an, byde�nition, not represent mutually in
onsistent beliefs or �norms�). Of 
ourse, a 
omplete in�ationis in general not meant to be performed a
tually, if only for the reason that the resulting groundEN might be in�nitely large.De�nition 5. A textual EN ten ∈ TEN(E) over the event term language E is de�ned as astru
ture (enl, ϑ, Inflate) where
• enl ∈ ENL is a word from the language de�ned using the grammar above, with E being thesubset of all ground terms in Epattern.For sibling sub-trees 
onstraints analogous to those de�ned for graphi
al ENs apply (i.e.,their expe
tabilities have to sum up to 1, and two or more siblings with the same groundevent term are forbidden (but not those with same event terms as long as these transformto di�erent ground terms by means of substituting the same variable with di�erent values,whi
h is allowed)). But for 
onvenien
e, in 
ase the sum of sibling expe
tabilities is below 1,we assume an impli
itly given additional sibling "?" (denoting "unknown additional eventsexpe
ted here"), 
ompleting the expe
tability gap.
• ϑ : ENL → θ resulting in the environment of a sub-tree,with θ being the set of all lists of the form
〈〈Variable/inst,Variable/inst, ...〉, 〈Variable/inst,Variable/inst, ...〉...〉. The environment of17



a sub-tree is thus a list of variable substitution lists, to be applied from the position in enlon determined by a path ∈ ENL, path being a pre�x in enl, until the next 
losing ℄-bra
ketthat has no a

ompanying opening bra
ket 
ounted from path on (i.e., substitutions extendover sub-trees).A 
ertain variable, if not a variable for edge weights, 
an o

ur in multiple sublists within
ϑ(path) at the same time for the same path (denoting non-deterministi
 instantiation), butnot within the same sublist. E.g., in
〈〈Variable1/inst11

,Variable2/inst21
, ...〉, 〈Variable3/inst31

,Variable2/inst22
, ...〉〉, V ariable2is bounded to inst21

and to inst22
simultaneously.For 
onvenien
e, we insert the ϑ dire
tly at their proper positions, e.g.,[〈〈Role1/agent1,Role2/agent8〉〈Role1/agent2〉〉 'request(Role1, servi
e)'[0.3 'deny(agent3, servi
e)'℄[0.7 ['a

ept(agent2, servi
e)'[〈〈Role1/agent3,ProbabilityPay/0.8〉〉(ProbabilityPay, 0, 0) 'pay(Role1, servi
e)'℄℄℄℄.The extent of the respe
tive substitutions is hinted by under-/overlines. Note that in thisexample, the last role substitution (Role1/agent3) is never applied, be
ause at this position,

Role1 is already bound by either agent1 or agent2.The pre
ise semanti
s of ϑ is de�ned via Inflate (
f. below). Please observe that both thissemanti
 and the syntax is di�erent to those proposed earlier for similar looking variablesubstitutions in [26℄.
• Inflate : TEN(E) yields a semanti
ally equivalent textual EN. The required de�nition of

Inflate is given below.If the result of Inflate is ground (i.e., all variables ex
ept from ignoran
e variables are boundby ϑ, and a repeated appli
ation of these substitutions results in ground values eventually),then resulting EN is equivalent to a ground Tree-EN.Term variablesInformally, an 'event term pattern' 
ontaining a variable in pla
e of Agent / Performative /Content... is eventually in�ated to a set of sibling nodes, ea
h for one of all possible instantiationsof this variable. To this end an environment ϑ 
an provide more than one instan
e value of ea
hvariable, whereat the instan
es 
an be any (not ne
essarily ground) terms synta
ti
ally allowed inpla
e of the variable. The 
hildren of ea
h generated sibling are those of the un-in�ated event termpattern, whereat the variable is bounded ex
lusively to the respe
tive 
hosen instan
e within thewhole sub-tree rooting in this sibling. In 
ase the variable is an ignoran
e variable, their impli
itset of instan
es is the set of all synta
ti
ally appropriate substrings within the ground subset of
Epattern.E.g., in a MAS with three agents, ['Ask(agent1, a)' [ 1 'Reply(?Agentx, b)'℄ ℄ is in�atedto ['Ask(agent1, a)' [ 0.33 'Reply(agent1, b)'℄ [ 0.33 'Reply(agent2, b)'℄[ 0.33 'Reply(agent3, b)'℄℄, the agenti (the addresses of the spee
h a
ts are omitted for sim-pli
ity).In 
ase of a �nite set of resulting sibling nodes (e.g., using a propositional event term lan-guage), the expe
tability of ea
h sibling resulting from su
h an in�ation is the expe
tability forthe un-in�ated sub-tree, divided by the number of generated siblings (i.e., denoting uniform dis-tribution of the siblings). For in�nite sets, expli
it numeri
al expe
tabilities 
annot be stated forthis uniform distribution.Expe
tability and normativity variablesUsing "?"s in pla
e of expe
tabilities denotes uniform distribution of the respe
tive 
hildren(i.e., all siblings have the same expe
tability). Following a Bayesian viewpoint, uniform distribu-tion stands for �Don't know�, whereby possibly the respe
tive parts of the EN be
ome less entropi
18



in the 
ourse of the revision of the EN by learning. Named variables 
an also be used in pla
eof expe
tabilities, normativities and devian
ies, but multiple values for the same variable are notallowed in this spe
ial 
ase, be
ause otherwise, the in�ation would result in identi
al events withdi�erent expe
tabilities, violating the semanti
s of ground Tree-ENs. Ignoran
e variables for ex-pe
tabilities are treated like "?", but will be bound to the resulting numeri
al value in the wholesubsequent sub-tree.Sub-EN variablesIn order to support modularization, variables 
an also o

ur in pla
e of a whole node (respe
-tively �Event� for textual ENs). They are be repla
ed with �sub-ENs� (not just single nodes),more spe
i�
ally, they are in�ated to a set of sibling sub-trees ea
h, analogous to the in�ationof variables in event term patterns (but note that the result is in general not the same as of thein�ation of a variable in pla
e of an event term, as des
ribed before). Su
h a variable 
an bebounded by ϑ, whereby the instan
es are ENs to be in
luded in pla
e of the variable (denotedin ϑ as words from ENL, not ne
essarily ground), or be an ignoran
e variable, standing for the(possibly in�nite) set of all ENs over E (TEN(E)). So, "?" in pla
e of a node 
an be interpretedas an �unknown 
ourse of events�. An 
omplete graphi
al or textual representation of the resultingEN is of 
ourse not feasible in the general 
ase.A "?" in pla
e of a node / event stands for an unnamed ignoran
e variable.DG-ENs are espe
ially suitable for the �folded� graphi
al representation of ENs 
ontaining vari-ables. If, e.g., the same (non-ignoran
e) sub-EN variable appears as a leaf node multiple times,the in�ated leafs 
an be merged graphi
ally, using multiple edges leading to the same node thatresulted from the former leafs.Pre
isely, variables are in�ated as follows:De�nition 6. Inflate : TEN(E)

Inflate = inflatek([ ⊲ [1 enl℄℄, ϑ, 〈〉)11At this, we 
hoose k :⇔ inflatek(enl, ϑ, 〈〉) = inflatek+1(enl, ϑ, 〈〉) (i.e. su
h that
inflatek(enl, ϑ, 〈〉) is a �xpoint of inflate), and de�ne
inflate : ENL × θ∗ × θ → ENL

inflate(event, ϑ, ϑ′) = event,
inflate([father child1 ... childn℄, ϑ, ϑ′) =[father merge(child1 ... childn−1 child

′
n1

... child′nm
)℄at whi
h childn = [(expectn, ...) [deflatedEventn grandchildn1

...grandchildng
℄℄, and the child′nibeing de�ned with11For 
onvenien
e, we denote the resulting graphi
al EN as a ground textual EN.Prepending the empty a
tion ⊲ to enl here is required be
ause otherwise it would not be possible to in�ate theroot node of enl.
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[(expectni
, ...) inflate(instanciated ′

ni
, ϑ, ϑ′′ni

⊔ ϑ′)℄with instanciated ′
ni

= instanciatedni
+ (grandchildn1

... grandchildng
)if instanciatedni

∈ ENL[(expectni
, ...) inflate([instanciatedni

grandchildn1
... grandchildng

℄, ϑ,
ϑ′′ni

⊔ ϑ′)℄, expectni
= expectn

|{rootEvent(instanciated′

ni
):1≤i≤m}|otherwiseusing 12

instanciatedni
= (ϑ′ ⊔ ϑ′′ni

)(deflatedEventn), ϑ′′ni
:⇔ {ϑ′′ni

: 1 ≤ i ≤ m} = ϑ′′

ϑ′′ = ϑ(pathchildn
) ⊔



















〈〈?vr/e〉 : e ∈ E , ?vr ⋐ deflatedEventn〉if deflatedEventn ∈ Epattern

〈〈?vr/e〉 : e ∈ TEN(E}), ?vr ⋐ deflatedEventn〉otherwiseAt this, the fun
tional appli
ation of a lo
al environment ϑ′ is de�ned as the appli
ation of thesubstitution lists within ϑ′ in turn. E.g.,
〈〈Rolex/agent3, Obligationy/task7〉, 〈Rolex/agent9, Obligationy/task7〉〉('request
(Rolex, Obligationy)') results in the two siblings'request(agent3, task7)', 'request(agent9, task7)'.Sin
e substitution lists range to the end of the whole sub-tree from their position, and add toprevious substitution lists, we 
ould have abbreviated these substitutions as
〈〈Obligationy/task7〉〉〈〈Rolex/agent3〉, 〈Rolex/agent9〉〉.
⊔ denotes list (string) 
on
atenation, sx ⋐ sy yields true i� sx is a sub-list (a substring) of sy.
ϑ1 ⊔ ϑ2 
on
atenates two substitution lists. If a substitution list resulting from su
h an operationis applied, and it 
ontains two substitutions for the same variable, only the �rst substitution isused. Applying (ϑ′ ⊔ ϑ′′ni

)(deflatedEventn) thus ensures that variables bound by previous 
alls of
inflate ranging over the 
urrent sub-tree 
annot be rebounded by ϑ′′ni

.
ϑ(pathchildn

) yields the list of substitution lists next to the position of childn within enl.
merge(child1 ... childn) obtains the argument, but with only one among those 
hildren sub-treesthat start with the same event, thereby keeping only the largest (in terms of string length) of thesedoublet 
hildren. In 
ase the argument results from substituting a bounded variable in ϑ, su
hdoublets 
ould have been avoided manually. Against that, if a ignoran
e variable is EOMed, itin�ates to all possible instan
es synta
ti
ally allowed, in
luding those that are already present assiblings, making a merging ne
essary. If the instan
e variable in�ates to the elements of TEN(E),
merge keeps for ea
h subset of TEN(E) with elements having the same root node only the largestone.In addition, merge([(expect1...) child1℄ ... [(expectn...) childn℄) also repla
es "?"s at the posi-tions of expe
tabilities (denoting �expe
tability unknown�), obtaining expect′i for ea
h "?":

expect′i =
1−
P

{expectj :expectj 6=”?”}

|{expectj :expectj=”?”}|The operator+ in instanciatedni
+(grandchildn1

...grandchildnm
) �adds� the sub-trees grandchildj1to the textual EN instanciatedni

multiple times by adhering to every leaf of instanciatedni
the set12We show the in�ation of variables for whole event terms, whole events, and of "?" for expe
tabilities. Variablesfor parts of event term patterns, like for agent identi�ers, for normativities and devian
ies, and ignoran
e variablesfor expe
tabilities in�ate analogously in a straightforward manner.20



of all grand
hildren as 
hildren (avoiding doublet siblings using merge() as des
ribed above).Again, it is important to see that the synta
ti
al transformations done in Inflate are notgenerally intended or possible to be a
tually performed globally for a whole EN.2.4.5 Generalization and Role Emergen
e by EN De�ationLikewise Expe
tation Networks 
an be in�ated by variable instantiation, they 
an be de�ated alsoby the merging of multiple sub-trees resulting in a single sub-tree. De�ating an EN 
an be usefulin order to 
ompress ENs for better manageability, to 
al
ulate the entropy of an EN (whi
h 
anbe informally 
hara
terized as the re
ipro
al of the size of the smallest semanti
ally equivalenttextual EN), and - most important - to derive intera
tion patterns and agent roles from a set of
on
rete 
ommuni
ation pro
esses. If a set of multiple intera
tion pro
esses is des
ribed using asingle intera
tion pattern (represented as a textual EN with variables), this pattern is 
alled a gen-eralization of the pro
esses. Analogously, agent roles (represented by agent variables) des
ribingthe temporary behavior of multiple, not ne
essarily spe
i�ed, agents are generalizations of singleagents.For these purposes, we de�ne a re
ursive fun
tion generalize based on a method of agent roleformation in ENs introdu
ed in [20℄. It is a spe
ial 
ase of �nding the Least General Generalization[33℄. generalize operates on a list of ground textual EN sub-trees.De�nition 7. generalize : ENL+ × θ → ENL

generalize((branchi : 1 ≤ i ≤ m), ϑ′) =
[headGeneralization ϑ′′13

[
P

expects(part1)Pq

p=1

P
expects(partp)

generalize(part1, ϑ
′′)]

... [
P

expects(partq)Pq

p=1

P
expects(partp)

generalize(partq, ϑ
′′)]], with

(headGeneralization, ϑ′′) = generalize′((headi : 1 ≤ i ≤ m), ϑ′), with
branchi = [headi[weighti1 ci1 ] ... [weightini

cini
]],

headi =′ performativei(agent i, content i)
′,

(part1, ..., partq) = subPartition(cs), su
h that cs ⊇ ⊎q
i=1 parti, with

cs = {ckj
: 1 ≤ j ≤ nk, 1 ≤ k ≤ m}(
f. below for an exemplarily subPartition fun
tion.) expects(partk) yieldsthe set of expe
tabilities of all nodes within partk.

generalize′((′performativei(agent i, content i)
′ : 1 ≤ i ≤ n), ϑ′) =

(′PerformativeGeneralization(
AgentGeneralization,ContentGeneralization), ϑ′ ⊔ ϑp ⊔ ϑa ⊔ ϑc), with14

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
















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

AgentGeneralization = agent1, ϑa = 〈〉if ∀i, 1 ≤ i ≤ n− 1 : agent i = agent i+1


















AgentGeneralization = var, ϑa = 〈〉if ∃var, 〈〈var/agent i〉 : 1 ≤ i ≤ n〉 ⊆ ϑ′

AgentGeneralization = V arnew,

ϑa = 〈〈V arnew/agent i〉 : 1 ≤ i ≤ n〉 otherwise otherwise(PerformativeGeneralization and ContentGeneralization de�ned analogous.)At this, V arnew denotes a new variable.13We in
lude ϑ′′ here to denote that from here on the environment ϑ′′ applies.14Of 
ourse, event terms other than spee
h a
t-like message terms 
ould be generalized analogously.21



In 
ase the set of sub-trees branchi 
orresponds to a full set of sibling sub-tree-roots, a repla
e-ment by their resulting generalization would yield a semanti
ally equivalent result (just add upthe expe
tabilities of the original sub-trees). Otherwise, we have to manifold the resulting sub-treeand link it at di�erent lo
ations with di�erent expe
tabilities to di�erent parent nodes. The latterdoes yield a transformation of the original EN whi
h is in general not semanti
ally equivalent tothe original EN.Note that repeated appli
ation of generalize on a single sub-tree 
an ��atten� this sub-tree untileventually the sub-tree be
omes a linear list.The list of substitutions that 
ould be applied in order to retrieve a sub-tree branchj ba
kfrom the generalization 
an be 
al
ulated as
mgu(branchj , generalize((branchi : 1 ≤ i ≤ m))), with mgu yielding a most general uni�er of thesub-tree and its generalization. But note that this re-transformation 
an be lossy, i.e., does notne
essarily retrieve the original sub-tree.If we would repla
e the variables yielded by a generalization by ignoran
e variables (i.e., ?V arinstead of V ar), the generalization would apply to all possible instantiations (e.g., all synta
-ti
ally possible agent identi�ers), whi
h is useful in order to derive sto
hasti
 proto
ols for opensystems (i.e., with a �u
tuating set of parti
ipants) from a set of example intera
tion 
ourses.Reasoning on su
h a generalized EN allows for 
on
lusions by analogy, whi
h is also the basis of,e.g., 
ase based reasoning, with the argument sub-trees of generalize 
orresponding to the 
aseshere (loosely speaking). A that way resulting generalized EN would of 
ourse not be semanti
allyequivalent to its non-generalized prede
essor.As a rule of thumb, sub-trees 
ould be good 
andidates for being merged via generalization,if the resulting generalization i) does not 
ontain variables for performatives, ii) relatively manyagents are repla
ed by new role variables during generalization, iii) but relatively few new variablesare introdu
ed over all, and iv) the expe
tabilities of merged 
hildren do not di�er too mu
h.The following exemplarily partition fun
tion realizes i) and iv): subPartition(s) = p1 ⊎ ...⊎ pqsu
h that

∀k, 1 ≤ k ≤ q : ∀ci, cj ∈ pk : Performative(ci) = Performative(cj) ∧ σ(pk) < ε.(σ(pk) denoting the standard deviation of the elements in pk. ε is some toleran
e 
onstant.)Variables in a generalization generated this way with agents as instan
es re�e
t 
hara
teristi

ourses of behavior that 
an be used to 
onstitute agent roles, 
orresponding to these variables.An example using this partition fun
tion is shown as Figure 3 (with variables given des
riptivenames). The generalization step yields from the three argument sequen
es (�Enter shop...�) interalia that �frequent buyers� (as a role) also normally pay for their goods, whi
h is not the 
ase for�infrequent buyers� here. Note that the underlined expe
tabilities 0.2 and 1 on the left side havenot the same meaning as the 
orresponding expe
tabilities above, sin
e the generalized 
hild ofnode x (y, respe
tively) is de�ned for other agents than the original 
hild, even if we would applyrestri
ting environments for the generalized 
hild (e.g.,
〈〈Prospects/a1, Sellers/a4, F requentBuyers/a1〉〉 between �x� and �Prospe
ts : Enter shop�).Information loss is thus a possible side e�e
t of this kind of generalization. The �gure depi
ts aDG-EN. Textually, the generalizing sub-tree 
ould be represented as an sub-EN variable appearingat di�erent positions.
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Figure 3: A generalization step transforming a probabilisti
 Tree-EN into an DG-EN, 
reating rolevariables, The step into the opposite dire
tion would be the in�ation of the DG-EN.
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2.4.6 Event and Communi
ation Pro
ess Semanti
s (Empiri
al Semanti
s)So far, we have provided a semanti
 for single expe
tations. Starting from there, we 
an ask forthe semanti
 of the expe
ted events (e.g., agent utteran
es) in terms of expe
tations. Informally,the semanti
s of the event 
ourse (an event in its 
ontext of pre
eding events) represented by anEN path is given as its expe
ted 
ontinuation (thus we 
ommit ourself to a dedi
ated pragmati
alviewpoint, in linguisti
s terms) [20, 26℄. Formally:De�nition 8. The EN-related Empiri
al Semanti
s of an event et in a 
ontext e0 ⊔ ... ⊔ et−1(a sequen
e of previous events, with ⊔ denoting timely su

ession as represented by EN paths) isde�ned as the probability distribution Υen,e0⊔...⊔et
. The distribution is de�ned using

Υen,e0⊔...⊔et
(w′) =

∏

i,1≤i≤|w′|

P(w′
i|e0 ⊔ ... ⊔ et ⊔ w

′
1 ⊔ ... ⊔ w

′
i−1)

∑

e′∈E+

∏

i,1≤i≤|e′|

P(e′i|e0 ⊔ ... ⊔ et ⊔ e
′
1 ⊔ ... ⊔ e

′
i−1)

,for any �nite w′ ∈ E+, w′ = w′
1 ⊔w

′
2 ⊔ ..., and e′ = e′1 ⊔ e

′
2 ⊔ .... The numerator thus represents theprobability that the sequen
e e0 ⊔ ... ⊔ et for whi
h we 
al
ulate the semanti
s is 
on
luded by asequen
e w′, and the denominator is used to normalize this value.Intuitively the semanti
s of an event sequen
e is thus depi
ted by the sub-tree starting with thenode 
orresponding to that event. Please refer to [29, 23, 27, 26, 28℄ for details on empiri
alsemanti
s of agent 
ommuni
ation.A pra
ti
al approa
h to empiri
al semanti
s using ENs in form of a 
on
rete way to learnadaptive expe
tations and thus Υ from observed agent intera
tions is des
ribed in detail in [27℄.By repla
ing in this de�nition the P with the expe
tability, we gain an �expe
ted Semanti
s�
onsequently. In 
ase the normativity of at least one edge is greater than zero, the �expe
ted se-manti
s� might deviate from the empiri
al semanti
s, being a desired empiri
al semanti
s instead:

ΥExpect
en,e0⊔...⊔et

(w′) =

∏

i,1≤i≤|w′|

Expectability(e0 ⊔ ... ⊔ et ⊔ w
′
1 ⊔ ... ⊔ w

′
i−1 ⊔ w

′
i)

∑

e′∈E+

∏

i,1≤i≤|e′|

Expectability(e0 ⊔ ... ⊔ et ⊔ e
′
1 ⊔ ... ⊔ e

′
i−1 ⊔ e

′
i)The arguments of Expectability denote edges represented as event sequen
es (e0 
orresponding tothe EN's root node).3 The EOM pro
essBased on the given des
ription of 
omputational expe
tations, this se
tion presents the tasks ofEOM to be performed by the MA in detail. EOM is tailored to general a
tive and passive modelingtasks, from the viewpoint of both software agents and human designers.The a
tivities of identifying, evaluating, adapting and propagating so
ial-level expe
tations in anevolutionary, 
y
li
 pro
ess are 
ru
ial to EOM. EOM supports these a
tivities by two means:so-
alled i) So
ial Mirrors, hen
eforth brie�y 
alled Mirrors, and ii) agent-internal Expe
tationEngines.3.1 The Mirror 
on
eptMirrors are software 
omponents within the MAS, with the tasks to observe 
ommuni
ations, de-rive expe
tations stru
tures, and �re�e
t� modi�ed/enri
hed versions of them ba
k to the observedagents in form of new 
ommuni
ations, all on behalf of MAs. Thus a Mirror fun
tions a bit like a24



(possibly distorting) real mirror, with 
ommuni
ations instead of light beams. Mirrors are ratherpassive 
oordination media, and do not take a
tion pro-a
tively. They are thus meant to supportthe a
quisition and ena
tment of expe
tations on behalf of MAs, and being rather un-intelligentthemselves, they are espe
ially suited as tools for human MAs (a MAS designer, for example). Inthis 
ase, a Mirror is 
orresponding to an EOM-spe
i�
 CASE tool.Te
hni
ally, a Mirror is to its main part a �so
ial knowledge� base with observation 
apabilitywhi
h empiri
ally derives so
ial-level expe
tation stru
tures from 
ommuni
ations and makes thempro-a
tively available to both the parti
ipating agents and the MA. A Mirror has three majorpurposes:1. monitoring agent 
ommuni
ation pro
esses,2. deriving emergent so
ial-level expe
tation stru
tures from these observations, and3. making expe
tation stru
tures visible for the agents and the MA (the former is the so-
alledre�e
tion e�e
t of the Mirror, enabling the self-observation of the system).It is important to see that not all stru
tures that are made visible to the agents need to be emergentand derived through empiri
al system observation. Rather, the Mirror 
an also be stru
tured bythe MA to �re�e
t� deliberatively designed, non-empiri
al expe
tation stru
tures as well. In both
ases, the agents 
an a

ess the Mirror very mu
h like a database and a
tively use the expe
tationstru
tures provided by it as �guidelines� in�uen
ing their reasoning and intera
tivity. Without thehelp from a Mirror, even empiri
ally derived expe
tation stru
tures are 
onsidered to be likely oftenhidden to single agents due to the agent's engagement in lo
ally bounded intera
tion 
ontexts,their observability restri
tions and their limited so
ial reasoning 
apabilities.For example, agents 
an parti
ipate in so
ial programs whi
h seem to be useful to them, orrefrain from a 
ertain behavior if the Mirror tells them that parti
ipation would violate some(adaptive-)normative expe
tation. So
ial programs (or stru
tures in general) in whi
h agents
ontinue to parti
ipate be
ome stronger, otherwise weaker. (The degree of 
hange in strengthdepends on the respe
tive normativity.) Thus, the Mirror re�e
ts a model of a so
ial system andpropagates it to the agents. As a 
onsequen
e, the Mirror in�uen
es the agents � very mu
hlike mass media do in human so
iety. Conversely, the Mirror 
ontinually observes the a
tualintera
tions among the agents and adopts the announ
ed expe
tation stru
tures in its databasea

ordingly. In doing so, the Mirror never restri
ts the autonomy of the agents. Its in�uen
e issolely by means of providing information (possibly about expe
table san
tions and norms, though),and not through the exertion of 
ontrol15.The Mirror, and thus EOM, realizes the prin
iple of evolutionary software engineering [1℄.More pre
isely, within the overall EOM pro
ess (i.e., within the EOM phases des
ribed below)two Mirror-spe
i�
 operations are 
ontinuously applied in a 
y
li
 way:1. it makes the so
ial-level expe
tations derived by the MA from his goals expli
it and knownto the agents; and2. it monitors the so
ial-level expe
tation stru
tures whi
h emerge from the 
ommuni
ationsamong the software agents, and makes them expli
it and known to both the MA and theother agents.These two operations 
onstitute the 
ore of the overall EOM pro
ess, and together they allowan MA to 
ontrol and to in�uen
e the agents' realization and adoption of her spe
i�
ations. ForEOM, the term �evolution� thus applies to expe
tation stru
ture 
hanges 
aused both �top-down�by the MA's interventions and �bottom-up� by autonomous variations in the observed agents'behavior.Further details on Mirrors are provided in [20, 30℄.15An expli
it notion of san
tions in terms of expe
tations is omitted here (
f., e.g., [38, 10℄ for approa
hes to thedeonti
 or 
ontra
t-based regulation and san
tioning of autonomous agents): In general, Expe
tation Networks 
anin
orporate information about every kind of treatment of agents as long as it 
an be represented as a (sequen
e of)events, i.e. nodes of the expe
tation network. 25



Figure 4: Data�ow in a MA with Expe
tation Engine3.2 Expe
tation EnginesExpe
tation Engines are MA-internal modules with a fun
tionality similar to that of Mirrors. Theyserve as a 
omplement of 
ommon agent fa
ilities for belief a
quisition, planing, and a
ting. Theirtasks are the re
ording, revision and ena
tment of expe
tations, 
ontributing a distin
t level for themodeling and in�uen
ing of the so
ial behavior and the so
ial environment of the agent modeledas expe
tations. An Expe
tation Engine maintains three ENs (or alternative data stru
tures forthe representation of expe
tations):1. As a part of the MA's belief, an EN for empiri
al expe
tations learned from overhearingagent 
ommuni
ation and previous knowledge.2. As a part of the MA's belief and intentions an intentionality-biased EN. It is generated fromthe empiri
al EN, plus intentions in form of normativities. It represents those beliefs andintentions of the MA whi
h relate to so
ial a
tivities, and usually 
ontains thus not onlyfully-adaptive expe
tations, but adaptive-normative and fully-normative expe
tations also.3. An EN whi
h represents the ostensible beliefs and intentions [25℄ of the MA in form ofexpe
tations. This EN is 
ommuni
ated to the other agents. It represents what the MAwants other agents to belief about his beliefs and intentions (his 
ommuni
ation attitudes,so to say). It is important to see that realizing this EN (a
tively aiming at making the
ommuni
ation attitudes 
redible, and pursuing the ostensible intentions) might be only26



Figure 5: The EOM phasespretended, and might be of 
ourse only one means among others aiming at the real goals ofthe MA. For the spe
ial 
ase the MA is sin
ere, this third EN 
ould of 
ourse be identi
alwith the se
ond EN.Please �nd details about ostensible mental attitudes in [24℄.The ar
hite
ture of an MA with an Expe
tation Engine is depi
ted in Figure 4.3.3 The EOM Phases3.3.1 Phase I: Spe
ifying so
ial-level goalsIn the �rst phase, the MA models the so
ial level of a part of or the whole multiagent systema

ording to her goals in the form of spe
i�
ations whi
h fo
us on �so
ial behavior� (i.e., desired
ourses of agent intera
tion) and �so
ial fun
tionality� (i.e., fun
tionality whi
h is a
hieved as a�produ
t� of agent intera
tion, su
h as intera
tive problem solving) in the widest sense. For thistask, the usual spe
i�
ation methods and formalisms might be used, for instan
e, the spe
i�
ationof desired environment states, poli
ies, 
onstraints, so
ial plans, proto
ols et
. Of 
ourse, thisspe
i�
ation 
ould be done dire
tly in terms of so
ial-level expe
tation stru
tures, like so
ialprograms.3.3.2 Phase II: Setting up and ena
ting appropriate expe
tation stru
turesIn the se
ond phase, the MA models and derives so
ial-level expe
tation stru
tures from thespe
i�
ations and stores them in the Mirror/Expe
tation Engine. If the spe
i�
ations from phaseI are not already expe
tation stru
tures (e.g., they might be given as rules of the form �Agent Xmust never do Y�), they have to be transformed appropriately. While so
ial behavior spe
i�
ationsare expe
tation stru
tures per se, so
ial fun
tionalities (for instan
e: �Agents in the system mustwork out a solution for problem X together�) possibly need to be transformed, most likely into27



so
ial programs. Sometimes a full equivalent transformation will not be feasible. In this 
ase, theMA models expe
tation stru
tures whi
h 
over as mu
h requirements as possible.So
ial-level spe
i�
ations 
an be modeled as fully-adaptable or adaptive-normative expe
ta-tions. The former 
an be used for the establishing of hints for the other agents whi
h are able toadapt during the stru
ture evolution, the latter for the transformation of 
onstraints and othermore or less �hard� requirements into expe
tations. It should be kept in mind that even a fully-normative expe
tation derived from a 
onstraint does by itself not for
e the agents to behave
onforming to the rule, sin
e it is �only� an expe
tation. If a (adaptive-)normative expe
tationis 
onstantly violated by the agents (i.e., the devian
y of the expe
tation rises), the MA 
aneither de
ide to try to argue in favor of the (adaptive-)normative expe
tation, or to enfor
e it(introdu
ing san
tions and propagate them with asso
iated additional san
tion expe
tations), orto drop it (
hange the normativity). If the normativity is lower 1, the Mirror/Expe
tation En-gine also 
hanges the expe
tability of the adaptive-normative expe
tation at least in the long term.After the MA has �nished the expe
tation modeling, she 
ommuni
ates them (either sin
erely,or in form of ostensible expe
tations) to the other agents via the Mirror/Expe
tation Engine.Whereby EOM does not pres
ribe or provide an expli
it notion of san
tions or argumentation, we
an use the fa
t that (adaptive-)normative expe
tations need to be 
ommuni
ated to the agents toa
hieve a semi-automati
 enfor
ement of (adaptive-)normative expe
tations using the EMPRATalgorithm. This way, we make (adaptive-)normative expe
tations pro-a
tive, so to say. For la
kof spa
e details had to be omitted here, please refer to [24℄.3.3.3 Phase III: Monitoring stru
ture evolutionIn the third phase of the EOM pro
ess, it is up to the MA to observe and evaluate the evolutionof expe
tation stru
tures whi
h be
omes visible to her through the Mirror/Expe
tation Engine.In parti
ular, she has to pay attention to the relationship of the 
ontinuously adapted so
ial-levelexpe
tation stru
tures and her obje
tives from phase I, whi
h means that she analyzes the expe
-tation stru
tures with regard to the ful�lment of (adaptive-)normative expe
tations establishedby the MA and the a
hievement of her goals. Be
ause the Mirror/Expe
tation Engine is onlyintended to obtain and deploy expe
tation stru
tures, it 
ould be ne
essary to support it with asoftware for the (semi-)automati
al �re-translation� of expe
tation stru
tures into other forms ofspe
i�
ation like rules, and vi
e versa.As long as the expe
tations stru
tures develop in a positive way (i.e., they mat
h the MA's goals,devian
ies are su�
iently low) or no emergent stru
tures 
an be identi�ed that deserve being madeexpli
it to improve system performan
e, the MA does not intervene. Otherwise she pro
eeds withphase IV.3.3.4 Phase IV: Re�nement of expe
tationsIn the last phase, the MA uses her knowledge about the positive or negative emergent properties ofthe intera
tion system to improve the so
ial-level expe
tation stru
tures. Usually, this is a
hievedby setting up expe
tation whi
h dis
ourage �bad� events, and, if ne
essary, the introdu
tion of newexpe
tation stru
tures as des
ribed at phases I and II. In addition, expe
tation stru
tures whi
hhave proved to be useful 
an be a
tively supported by e.g. in
reasing their expe
tation strengthand/or their normativity. The pro
ess pro
eeds with phase III until all relevant MA goals area
hieved or no further improvement seems probable at least for the moment (per de�nition, opensystems never settle on a �nal equilibrium while a
tive).
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4 Case Study: The Internet Car Trading Platform4.1 S
enario OverviewIn the following we present an example for EOM, with the MA being the MAS designer. Imaginea web site that brings together 
ar dealers, private pre-owned 
ar sellers and potential buyers whotrade 
ars online (
f. www.imotors.
om , www.autoweb.
om, www.autointernet.
om, www.auto-trade
enter.
om). There is an "o�ers" se
tion in whi
h sellers 
an display images, te
hni
aldetails and pri
es of 
ars for sale. In the "requests" area, buyers 
an post requests for 
ars thatthey would be interested in. A forum is available, in whi
h inquiries 
an be pla
ed, dis
ussions,bargaining and negotiations may take pla
e publi
ly or privately (as forum users wish), et
.4.2 Making Top-Level Design De
isionsHaving made a de
ision on taking an agent-based approa
h, the MA (the website designer in this
ase) must develop a top-level des
ription of the system whi
h will, to the least, in
lude de
isionsregarding infrastru
ture, intera
tion environment and, above all, parti
ipating agents (or agenttypes).Here, we will assume that the designer of the platform is designing a semi-open system: on theone hand, the system o�ers user interfa
e agents that monitor the platform on behalf of users,pro�le users to derive interests/needs and draw their attention to interesting information on theplatform. A se
ond, pre-built type of agents are sear
h agents that 
onstantly re-organize theplatform's database and 
an sear
h it e�
iently. These 
an be 
onta
ted by user interfa
e agentsas well as by humans for sear
h purposes. We assume that all intera
tions with these sear
h agentsare benevolent, sin
e they are not truly autonomous (they simply exe
ute others' requests). Onthe other hand, there is a number of agent types that have not been designed by the designer ofthe platform. There 
an (and should) exist human and non-human agents representing individualsor organizations that intera
t with the platform in a "so
ially" unpres
ribed way (only restri
tedby implementation-level proto
ols and standards, e.g. FIPA 
omplian
e). Generally, these agentsare bla
k-boxes for the system designer.Further re�nement of these initial design de
isions will require looking at a multitude of issues,ranging from 
ommuni
ation fa
ilities and standards and 
apabilities of in-built pro�ling andsear
h agents to database models et
. For our purposes, we 
an restri
t this identi�
ation ofrequirements to so
ial level 
hara
teristi
s of the platform sin
e these are the subje
t of the EOMpro
ess.4.3 Identifying So
ial Level RequirementsAs so
ial-level goals, we 
onsider the following motives of a 
ar trading platform (CTP) provider:1. Maximum quality of servi
e should be provided: the range of o�ered and requested 
ars hasto be broad and their spe
i�
ations must relate to their pri
es; the reliability of transa
tionsmust be high; trust between buyers and sellers and between all users and the platform mustbe at a reasonable level.2. Transa
tion turnover should be maximized, be
ause it indi
ates (in our example) high returnon investment for the CTP provider stakeholders.3. Tra�
 on the platform must be maximized, to ensure high advertisement returns.In the following, we sket
h how the EOM pro
ess model 
an be applied in the analysis and designof su
h a system.The dilemma in designing the so
ial level of su
h a platform is obvious: system behavior shouldmeet the design goals and at the same time it shouldn't 
ompromise parti
ipating external agents'private goals by being overtly restri
tive. An expe
tation-level model of so
ial stru
tures is neededto 
ope with this situation. We next sket
h the appli
ation of the suggested analysis and designpro
ess to the CTP. 29



4.4 Implementing the EOM Pro
ess4.4.1 Phase I: Spe
ifying the so
ial levelIn the �rst step the so
ial stru
tures are modeled in the form of (formal or informal) designspe
i�
ations. They might in
lude the following (we use natural language for 
onvenien
e and
on
entrate only on a few design issues for la
k of spa
e):1. Agents 
ommitting themselves to pur
hase/sell a
tions towards other must ful�l all resultingobligations (deliver, pay, invoi
e et
.)2. Unreliable behavior indu
es relu
tan
e to enter business relationships on the side of others.Fraudulen
e leads to ex
lusion from the platform.3. Interest in o�ers and requests must be shown by others in order to provide motivations tokeep up the use of the platform.The �rst spe
i�
ation is very important in order to foster trust among agents in su
h a platform.If 
ommuni
ation were only indu
ing a bun
h of loose pseudo-
ommitments that are never kept,the CTP risks be
oming a playground instead of a serious, e�
ient marketpla
e. This prin
ipleis re�ned by item 2: the "must" in the �rst rule 
an obviously not be deonti
ally enfor
ed on au-tonomous agents, so it has to be repla
ed by a "softer" expression of obligation: by spe
ifying thatunreliable behavior de
reases the probability of others intera
ting with the unreliable individualin the future, we provide an interpretation of the former rule in terms of "
onsequen
es". Also, wedistinguish "sloppy" from "illegal" behavior and punish the latter with ex
lusion from the plat-form, a 
entralized san
tion that the platform may impose. The third spe
i�
ation is somewhatmore subtle: it is based on the assumption that agents will stop posting o�ers and requests, ifthey don't re
eive enough feedba
k. Sin
e we have to ensure both a broad range of o�ers as well asreasonable tra�
 on the site, we want to make agents believe that their parti
ipation is honoredby others so that they keep on parti
ipating (for private buyers this might be irrelevant, sin
ethey buy a 
ar on
e every 5 years, but it is surely important to have plenty of professional dealersfrequent the site).The pro
ess of spe
ifying su
h possible so
ietal behaviors should be iterated on the basis of�s
enarios� for all 
ourses of 
ommuni
ation that are of interest and seem possible, so as to yieldrequirements for the so
ial system that is to be implemented.4.4.2 Phase II: Deriving and ena
ting appropriate expe
tation stru
turesClearly, the three requirements above 
an be analyzed in terms of expe
tations, that is, as var-iedly normative, possibly volatile rules that are made known to agents and evolve with observedintera
tion. The se
ond phase of the EOM pro
ess 
onsists of making these abstra
t requirements
on
rete as expe
ted 
ommuni
ation stru
tures. Two su
h expe
tation stru
tures derived fromthe above requirements 1. and 3. are shown in Figures 6 and 7.The �rst example depi
ts an expe
tation stru
ture of an order-deliver-pay-pro
edure in theCTP. It en
apsulates high delivery and payment expe
tations (i.e., high transa
tion reliability),but also a more spe
i�
 expe
tation as 
on
erns availability statements that are made by dealers:although it is equally probable that the requested 
ar will be available upon a �rst order, it ishighly unexpe
ted that a 
ar that had not been available is suddenly available upon a se
ond,identi
al order (in our model, responses to 
ommuni
ation are supposed to o

ur in time-spansthat are mu
h shorter than those needed to 
hange sto
k). Thus, the �rst response is given mu
hmore weight, and a notion of �honesty� in responding to orders is assumed.The se
ond example is 
losely related to design goal 3 introdu
ed above. Here, the expe
tationstru
ture is used to express that few posted o�ers go unanswered by interested 
ustomers, and thatthe enquiries of su
h 
ustomers are responded to with high probability. By using su
h a stru
ture,the designer 
an reassure both dealers and 
ustomers that it is worthwhile posting orders and30
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Figure 6: So
ial program �order-deliver-pay� (buyer a
tions are shown in itali
 font, seller a
tionsin plain fa
e, as in all following �gures, spee
h a
t arguments are omitted for la
k of spa
e):expe
tations about availability are balan
ed; in the �available� 
ase, dealers are expe
ted to deliverand 
ustomers are expe
ted to pay. In the �not available� 
ase, dealers are expe
ted to 
on�rmtheir prior statement if asked a se
ond time (even though the probability of su
h a se
ond requestis low).enquiries to orders. If followed by the users of the CTP, su
h a stru
ture would imply thatpostings will be answered even if the other party is not a
tually interested in the o�er/question,and is just replying out of a sense of �politeness�, to the end of making everyone feel that their
ontributions are honored. Asso
iated with su
h 
onventions would be the designer's goal to keepthe CTP frequented, by presenting the so
ial stru
tures as open and ri
h.These simple examples given, we 
an return to our EOM design pro
ess model. We have shownhow two so
ial stru
ture spe
i�
ations were turned into 
on
rete expe
tation stru
tures (phases Iand II). For la
k of spa
e, we have 
on
entrated on so
ial programmes and negle
ted roles, so
ialagents and values. Preassuming that the CTP is implemented and observed during operation, we
an now pro
eed to phase III.
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Figure 7: �Initiatives are honored� program: it is expe
ted that dealers re
eive some response totheir o�ers by potential 
ustomers, and that they rea
t to enquiries themselves.
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4.4.3 Phase III: Monitoring stru
ture evolutionUnlike phases I and II, this phase fo
uses on observation of the system in operation in order tofurther re�ne expe
tation stru
tures and their pro
essing. It is essential to keep in mind thatthe systemi
 expe
tation �Mirror� (as a software 
omponent) leaves plenty of 
hoi
es not onlyas 
on
erns the 
hoi
e of employed expe
tation stru
tures, but also with respe
t to how thesestru
tures are pro
essed , that is, how they evolve through monitored agent behavior in systemoperation. To stress this se
ond aspe
t, we 
on
entrate on this pro
essing of expe
tations in thefollowing examples.Suppose, �rst, that we observe that a
tual behavior largely deviates from that assumed inFigure 6 in that there are many fraudulent 
ustomers who do not 
omply with their obligationto pay on
e the 
ar has been delivered unless the dealer threatens with legal 
onsequen
es severaltimes. Obviously, identifying su
h a problem preassumes that intera
tion is tra
ked and thatintera
tion patterns are statisti
ally analyzed and evaluated with respe
t to existing system goals.Therefore, the software engineer's primary duty is, at this stage, to spot interesting behaviors(both desirable and undesirable ones). On
e realized, we are fa
ed with a problem. By default,even though payment was designed as a norm, the �expe
tation Mirror� would in show a highdevian
y (and sin
e the normativity of �pay� is lower 1, it would in the long term even �truthfully�adapt the expe
tation strengths of this expe
tation so that the strength of �fail to pay� in
reases).This would mean that an emergent, hidden stru
ture would be made expli
it in the system, but,unfortunately, this would be a stru
ture that embodies a fun
tionality whi
h does not serve thesystem goals (even though it has been �sele
ted� through a
tual intera
tion) be
ause it wouldmake future dealers doubt the reliability of the system.As a se
ond example, suppose that the expe
tation stru
ture in Figure 7 
orresponds to thea
tual system behavior, but not be
ause of some �polite� poli
y of 
ustomers to show interest inany dealer posting � instead, demand in 
ars is simply (temporarily) so high (and maybe theCTP is for some other reasons very attra
tive for 
ustomers) that almost no o�er posting goesunanswered. Assume further, that our initial design was to enfor
e �politeness� by insinuating thatit was a 
onvention of the platform, even if 
ustomers would not have been polite at all, that is, wehad implemented this expe
tation stru
ture as rather immutable (normativity of 0.5/1) regardlessof the agents' behavior.In both 
ases, we have identi�ed emergent (positive and negative) properties of the systemthat must be dealt with in phase IV.4.4.4 Phase IV: Re�nement of expe
tation stru
turesAs designers of the platform, we 
an rea
t to su
h emergent properties in di�erent ways. To givea �avor for the kind of de
isions designers have to make when re�ning expe
tation models, wedis
uss the two examples mentioned above.In the 
ase of the �spreading fraudulent 
ustomers�, the most straightforward solution would beto impose san
tions on the fraudulent behavior observed (i.e., to add new expe
tation stru
tures).Let us assume, however, that an analysis has shown that it is too 
ostly to verify 
ustomers'solven
y and payment reserves (e.g., by inquiring other E-
ommer
e platforms about them). Onthe other hand, ignoring the 
hanges by keeping the old expe
tation stru
ture (and asserting ahigh payment reliability in a �propaganda� way) might result in future in
onsisten
ies: if too manyindividuals realize that it does not 
orrespond to the a
tual so
ial stru
ture, they will use it less,and the �so
ial design� level will provide lesser possibilities to in�uen
e system behavior for thedesigner.Obviously, a trade-o� has to be found. One possible solution would be to extend the stru
turein the way suggested by Figure 8, su
h that failure to pay results in relu
tan
e of dealers to a

eptfuture orders from the unreliable 
ustomer. So, in phase IV we 
an spe
ify a new fun
tionality thatfeeds into the system in the next 
y
le. As 
on
erns the se
ond, �positive� emergent property, wemight 
onsider lifting the 
onstraint of presenting an �immutable� politeness 
onvention, in orderto allow for optimization on the agents' side: making the rule normative implies that it wouldn't32
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Figure 8: Spe
ifying a new fun
tionality.
hange, even if, for example, dealers' o�ers 
hanged over time � hen
e, there is little pressure fordealers to a
tively try to meet 
ustomer demand. Thus, if we allowed this expe
tation to adapt tothe a
tual interest shown in o�ers (e.g., by updating expe
tation strengths as real probabilities,whi
h 
an be a
hieved by de
reasing the normativity value shown in Figure 7), dealer agents wouldstart noti
ing whi
h of their postings are good (ones whi
h in
rease the rate of 
ustomer inquiry)and whi
h aren't. (After all, maximizing market e�
ien
y in this way might help maximizingCTP pro�ts, whi
h also depend on gross trade turnover.) We therefore de
ide to in
rease theadaptivity of this expe
tation stru
ture.Performing su
h modi�
ations to the expe
tation level design of a system ni
ely illustrates howrather restri
tive so
ial stru
tures 
an give way to more emergent phenomena in �safe� non-riskysituations as the one depi
ted here when optimization is the prominent issue, and not the redu
tionof 
haos.These simple examples underpin the usefulness of expli
it modeling of so
ial stru
tures in theproposed EOM pro
ess model. In parti
ular, they show how both designing so
ial stru
turesand designing the pro
essing of su
h stru
tures plays an important role in the open systems weenvisage. Also, they illustrate the evolutionary intuition behind our design pro
ess: agents sele
tso
ial stru
tures through their intera
tion, and designers sele
t them through design.5 Con
lusionEOM is thought to be appli
able in all �elds of agent-oriented resear
h and engineering, where anentity (a MA in our 
ase) needs to model and maybe in�uen
e the behavior of autonomous bla
k-or gray-box agents. Besides the possibility to implement EOM 
on
epts within �ordinary� agentsin order to improve their so
ial 
ognition and intera
tion abilities, as for the future spe
i�
ationand extension of EOM, we aim espe
ially for the area of agent-orient software engineering andprogramming. Engineering agent-oriented software while at the same time taking autonomy as akey feature of agen
y seriously is a great 
hallenge. On the one hand, it is (among other things)autonomy that makes the 
on
ept of an agent powerful and parti
ularly useful, and that makesagent orientation signi�
antly distin
t from standard obje
t orientation. There is an obvious andrapidly growing need for autonomous software systems 
apable of running in open appli
ation en-vironments, given the in
reasing inter-operability and inter-
onne
tedness among 
omputers and
omputing platforms. On the other hand, autonomy in behavior may result in �
haoti
� overallsystem properties su
h as un
ontrollability that are most undesirable from the point of view ofsoftware engineering and industrial appli
ation. In fa
t, it is one of the major driving for
es ofstandard software engineering to avoid exa
tly su
h properties. To 
ome up to ea
h of these two33




ontradi
tory aspe
ts � the urgent need for autonomous software systems on the one hand andthe problem of undesirable system properties indu
ed by autonomous behavior on the other �must be a 
ore 
on
ern of agent-oriented software engineering, and is the basi
 motivation un-derlying the work des
ribed here. A number of agent-oriented software engineering methods (see[13, 16℄ for surveys) as well as agent-oriented autonomy and organizational stru
ture spe
i�
ationformalisms (e.g., [2, 9, 11, 39, 31, 19, 12, 38℄) are now available. Like EOM, all these methods andformalisms aim at supporting a stru
tured development of �non-
haoti
� autonomous software.However, they do so in a fundamentally di�erent way, even 
ompared to the most elaborated ofthese frameworks whi
h grant the a
tors a high degree of autonomy (e.g. OperA [10℄): Besides thepossibility to spe
ify so
ial stru
tures deliberatively, EOM also learns and revises so
ial stru
turesempiri
ally from observed agent intera
tions at run-time, resulting in a stru
ture-level model ofthe multiagent system, and restri
ts autonomous behavior only if this turns out to be ne
essaryretrospe
tively during the evolutionary development pro
ess, with as few as possible pre
ognitionand pre-stru
turing required. Against that, most of the other methods and formalisms show a
lear tenden
y toward (seriously) restri
ting or even ex
luding the agents' autonomy a priori.Di�erent me
hanisms for a
hieving autonomy restri
tions have been proposed, in
luding e.g. thehardwiring of organizational stru
tures, the rigid prede�nition of when and how an agent has tointera
t with whom, and the minimization of the individual agents' range of alternative a
tions.As a 
onsequen
e, methods based on su
h me
hanisms run the risk to 
reate software agents thateventually are not very distin
t from ordinary obje
ts as 
onsidered in standard obje
t orientedsoftware engineering sin
e many years. EOM aims at avoiding this risk by a

epting autonomyas a ne
essary 
hara
teristi
 of agen
y that must not be ruled out headily (and sometimes even
an not be ruled out at all, as it is typi
al for truly open multiagent systems). With that, EOMis in full a

ordan
e with Jennings' 
laim to sear
h for other solutions than the above mentionedrestri
tive me
hanisms [17, p. 290℄. Moreover, EOM with its grounding on Luhmann's theory ofso
ial systems pre
isely is in the line of Castelfran
hi's view a

ording to whi
h a so
ially orientedperspe
tive of engineering so
ial order in agent systems is needed and most e�e
tive [6℄. In additionto that, and more generally, this thorough so
iologi
al grounding also makes EOM di�erent fromother approa
hes that apply so
iologi
al 
on
epts and terminology in a 
omparatively super�
ialand ad ho
 manner. On these grounds, we hope that taking 
omputational expe
tations as a levelof so
ial reasoning, analysis and design opens a qualitatively new perspe
tive of agent-orientedsoftware.A
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