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Abstract

This work introduces Ezpectation-oriented Modeling (EOM) as a conceptual and formal
framework for the modeling and influencing of black- or gray-box agents and agent interaction
from the viewpoint of modelers like artificial agents and application designers. EOM is unique
in that autonomous agent behavior is not restricted in advance, but only if it turns out to be
necessary at runtime, and does so exploiting a seamless combination of evolving probabilistic
and normative behavioral erpectations as the key modeling abstraction and as the primary
level of analysis and influence. Expectations are attitudes which allow for the relation of
observed and predicted actions and other events to the modeler’s intentions and desires on the
one hand and her beliefs on the other in an integrated, adaptive manner. In this regard, this
work introduces a formal framework for the representation and the semantics of expectations
embedded in social contexts. We see the applicability of EOM especially in open domains
with a priori unknown and possibly unreliable and insincere actors, where the modeler can
not rely on cooperation or pursue her goals through the exertion of strictly normative power,
e.g. the development and assertion of flexible interaction policies for trading platforms in the
Internet, as illustrated in a case study.

To our knowledge, EOM is the first approach to the specification, prediction, analysis and
influencing of social interaction that aims at tackling the level of expectations explicitly and
systematically, and allow for representing the beliefs and the intentions of agents in terms of
empirical and desired predictions.

Keywords: Open Environments, Computational Autonomy and Trust, Agent Communication,
Policy and Protocol Specification, Agent-oriented Software Engineering, Social Al

1 Introduction

A key focus of contemporary agent-oriented research and engineering is on open multiagent systems
[15] composed of interacting truly autonomous agents [17, 3, 18, 21, 37]. This poses new challenges,
as entities in open systems are usually more or less mentally opaque (e.g., possibly insincere), and
can come and go at their will. Thus, interactions among such black- or gray-box entities usually
imply heavy contingencies in behavior - in the most general case, neither a peer agent nor the
system designer can be guaranteed to know what goes on inside a truly autonomous agent, with
what observable result. These contingencies can cause improved performance at run-time (e.g., by
increased system adaptivity and flexibility, and the emergence of unforeseen problem solutions),
but can also be a source of potential unpredictability and undesirable behavior at the social level.
Practically, this means that even for the most powerful participants and controlling instances
in open systems, it is neither realistic to assume that full control over autonomous entities being
parts of the system (temporarily or permanently) can be guaranteed under all circumstances, nor
that the other agents can ever be fully predicted. Even if it would be possible to control a MAS
fully, this would obviously mean loosing desirable system abilities which are based on autonomous
decentralized control, such as the abilities to self-organize, to self-manage and to self-structure.



Taking autonomy seriously means to accept that any “strictly normative’ (in the sense of
inflexible action-prescribing) social-level exertion of control must be abandoned — instead, desired
or persistent interaction patterns can only be modeled as revisable, basically uncertain descriptions
of possible or desired behavior which might or might not occur in actual operation. Agents can
thus only use models of interaction as ezpected courses of social action that are always hypothetical
unless when actually enacted by them, their co-actors, and designer-controlled entities (e.g., case
tools). A combination of normative and deliberative motives in agents’ actions (the former resulting
from previous system behavior, the latter from agents’ autonomy) [7] makes certainty about future
interactions impossible.

Starting from these observations, this article identifies a novel level of modeling agent interactions
and thus of analyzing, designing and influencing agent behavior and multiagent systems: the
expectation level. Ezpectation-Oriented Modeling (EOM) is introduced as a conceptual and formal
framework for the modeling and influencing social interactions using agent expectations [20, 24] as
the primary modeling abstraction. The intention behind EOM is to equip pro-active, autonomous
entities in a MAS (ordinary agents as well as the system designer) with the means to represent
the social (i.e., communication) level of the MAS (since, in the most general sense, expectations
can be seen as the most fundamental representation of communication structures), and to take
action on this level towards their goals in a “minimally-invasive” but effective manner.

To this end, we aim at making expectation-level knowledge about the anticipated, dynamic

interactional behavior of agents explicit and available to agents as well as to the system analyst
and designer. This offers the possibility for modeling and influencing interaction structures and
autonomous entities which can not be controlled completely and which show a high degree of
behavioral dynamics, and allows to retain a high degree of autonomy by using expectations as
valuable knowledge for reducing contingency about each other’s behavior and (public) goals.
Our approach comprises i) the introduction of expectations for the passive and active modeling
of agents and social interaction (in strong demarcation from the usual modeling of agents using
assumed mental attitudes of the modeled agents), ii) more specifically, the definition of expecta-
tion as a dynamic mental attitude that is both obtained empirically from observation and subject
to deliberate manipulation (in order to represent and communicate desirable events), and iii) the
presentation of principles and techniques for analyzing and setting up expectations in an evolu-
tionary process of modeling and influencing agent interaction.
Doing so, we cover a wide range of aims and types of expectation-holders: from the optimization of
the social behavior of “ordinary”, self-interested artificial agents that make use of EOM internally
for their cognition and planing, up to the design of a whole MAS or important constituents like
behavior policies and protocols from the standpoint of a human designer.

Concretely, we present!

e a formal framework for adaptive, empirical, normative and adaptive-normative expectations
within dynamic social contexts, and specifically the annotation of expected events with their
respective degree of expectedness, degree of normativeness, and deviancy (divergence of ex-
pected and actual events). This allows to represent both empirically obtained probabilities
(agent belief in terms of predictions) and to specify desired probabilities in an integrated,
adjustable manner.

e formal representation languages for context-sensitive and correlated expectations in form of
Ezpectation Networks (ENs).

ENs allow to represent interaction patterns (e.g., protocols and policies) with gradual flezibil-
ity and adaptivity, and to measure the actual adherence of autonomous entities to behavioral
specifications (predicted as well as desired) at runtime.

Another particular feature of ENs is that they are accompanied with algorithms for their
learning and incremental revision from ongoing experiences the MA makes, apart from the

IFor lack of space, some details can be found in [24] only.



possibility to set them up manually.
ENs also represent the so-called empirical semantics [29, 23, 27, 28] of agent communication,
cf. Section 2.4.6.

e means for the learning and revision of expectations from selectively-overheard agent com-
munications, and for the enactment and communication of expectations facing other agents
(in form of so-called Social Mirrors [20, 30] and Ezpectation Engines).

At this, expectation-oriented modeling is performed from the viewpoint of modelers, so-called
Modeling Agents (MAs). A MA observes agents and interactions, and maintains and revises ex-
pectations obtained from these observations and previous beliefs, intentions and desires, in order
to effectively model and influence his social environment. An MA can be the MAS developer or
an artificial agent that acts on behalf of the designer, but also a self-interested “ordinary” agent
situated in a social environment.

By representing even the designer of an agent-based application as an agent conceptually, we
constitute a novel paradigm in agent-oriented software engineering in so far as this suggests that
the designer of open MAS should not and can not be granted the omniscient, almighty position as
with ordinary software. Rather, we see her in the role of a primus inter pares among other agents,
that, although equipped with more power than “real” agents, should aim for her goals socially (i.e.,
communicatively) in interaction with the other agents as far as possible. In addition, the openness
of open MAS suggests that the development of such systems can only be done in an evolutionary
manner, with the need to monitor the system and to improve its model even after deployment
during runtime. A way to put the conceptualization of system designers as agents into practice in
a semi-automatic manner is to assign the designer an intelligent, agent-like case tool, as proposed
in [5] and in section 3.1.

As far as we know, EOM is the first approach to the specification, prediction, analysis and
influencing of social interaction that aims at tackling the level of expectations explicitly and sys-
tematically. EOM adopts the concept of agent expectation from [20, 24| and is also strongly
influenced by the EXPAND methodology (Ezpectation-Oriented Analysis and Design) [5] and
the concept of Mirror-Holons[30]*>3. EOM also possesses a strong sociological background; more
specifically, its underlying view of sociality is quite close to Luhmann’s Social Systems Theory [22],
as it has been adapted to artificial agency.

The remainder of this article is structured as follows. The next section presents the generic
conceptualization of expectations and so-called Ezpectation Networks as representation means
for interaction structures. Section 3 describes EOM, and shows how a feasible and adequate
incremental process can be derived that exploits the importance of the expectation level. This
is followed by an exemplification of the usefulness of our approach in a case study based on a
“car-trading platform” application scenario in Section 4. Finally, Section 5 provides more general
considerations on the challenge of the modeling of autonomous systems and explicates relationships
to other methods and approaches.

2 Expectations

An expectation can both express how much a future event will happen and/or should happen.
The difference of both is represented by the degree of adaptivity (or inversely: normativity) of the
expectation: The expectation of a desired or intended repeatable event will change less in case of

2Mirror-Holons are higher-level agents which represent all their beliefs and goals in form of expectations, and
can each execute entire social programs emergent from communication processes.

3Tn contrast, EOM is not directly related to the approach by Tran [36], which is based on a different meaning
of the term “expectation”, and deals primarily with the perception layer of agents. Both approaches might be
complementary to each other, but further research would be necessary to make out the exact relationship.



a disappointment of the expectation.

Expectations are related to the occurrence of anticipated behavioral or other events (“event” in a
broad sense, e.g., “agent  utters message m to agent y”, “agent y performs action a” or “the alarm
bell is ringing”). A major consequence of the autonomous behavior of agents is that a certain
agent appears to agent and non-agent observers more or less as a black box which cannot fully be
predicted and controlled. This obscurity and uncontrollability is particularly salient in open multi-
agent systems (open MASs). Because only the actions of an autonomous agent in its environment
are known to an observer, while its mental state remains obscure, beliefs and demands directed
to the respective other agent can basically be stylized only as mutable behavioral ezpectations
which are fulfilled or disappointed in future events. In the case of disappointment, an expectation
can either be revised in order to consider the new perception accurately (so-called fully-adaptive
expectations), or the expecter decides to keep this expectation even contra-factually (so-called nor-
mative expectations), or to revise (resp. maintain) it only to a certain degree (adaptive-normative
expectations). In the two latter cases, the expectation holder likely also decides to take action
in order to make further disappointments of this expectation less probable (by, e.g., sanctioning
unexpected - so-called deviant - behavior). And in any case, the expectation can be strength-
ened/weakened if an expected repeatable event turns out to be useful /useless afterwards.

Thus, expectations can not only express how the respective other agent will likely behave, but also
how he should behave from the viewpoint of the expectation-holder. In addition, expectations can
address the behavior of the expecter himself also, which can be useful for the expecter in order to
model his self-commitments, and to communicate them to other agents in form of uttered expec-
tations. As we will see in 2.4.6, expectation can also be used as an event semantics, expressing
the meaning of events (especially of agent communication messages) in terms of expected events
(empirical semantics [29, 23, 27, 28]).

Expectations are called empirical (or emergent, when alluding to their newness from the
expectation-holders viewpoint) if they are formed empirically from observations of events. In
contrast, an MA can form expectations not only from her previous or empirical knowledge about
her social environment, but also from her individual intentions and desires, resulting in so-called
normative or adaptive-normative expectations®. In case the MA is or represents the MAS de-
signer, these kinds of expectations can represent for example social norms, obligatory policies,
protocols and agent communication language semantics, and organizational structures, or foster
the maximization of social welfare and system coherence.

The dichotomy of adaptivity vs. normativity reflects the ambiguous meaning of the term “ex-
pectation” in natural language, which comprises both the anticipation of probable as well as of
desired or planned behavior, with an adjustable transition of both stylizations. This makes ex-
pectations especially appropriate to the modeling of autonomous systems, where an adjustment
of the MA’s goals and constraints on the one hand, and the deliberate allowance, unavoidability
or unpredictability of autonomous behavior on the other has to be found.

Since empirical expectations are usually adaptive also, and adaptive expectation become empirical
during the course of observation, the attributes adaptive and empirical are more or less exchange-
able in practice.

For the purpose of this paper, we use the terms agent “goals” and “desires” colloquially, and
found the formal approach in the agent’s “beliefs” and “intentions” only, the later thus indirectly
also comprising goals and desires in a quite broad, flexible understanding of the term intention. At
this, “intentions” are used to model states or events an agent commits himself to reach, including
such states/events he cannot bring about himself directly. Therefor, the commitments of other
agents show up indirectly as self-commitments of the MA, i.e., if the (possibly insincere) other
agent is somehow committed to perform some action in favor of the MA, the MA might be self-
committed to actually bring about this action indirectly by influencing the other agent. “Agent

4Since an expectation might be hold purely subjectively and hidden, and even normative expectations have no
legislative power per se, we do not identify normative expectations with social norms |22|, except from the case
the expecter represents the MAS or is some entity with normative power. But adaptive-normative and normative
expectations are a way to represent norms, of course.



a1 intends that agent ao performs action = “ is thus to read as “a; intends to get agent as to

realize a possible state in which done(agent as performs action x) is true. We feel that refraining
from a formal use of “desire” and “goal” is reasonable in view of this usage of “intention”, since at
least persistent and consistent goals are covered this way [8]. Note that having an intention in
this sense does not imply knowing how to act concretely in order to make the intended state true
(but to assume that there is some way).

All in all, from the viewpoint of the MA, expectations are formed retrospectively from utter-
ances of observed agents in the social context of the MA, other observed events (e.g., “physical”
agent actions like “Closing the window”) and previous knowledge, goals and intentions, and held
in order to anticipatorily

e represent her environment in terms of predictions (fully-adaptive and adaptive-normative
expectations),

e represent intentions and goals (adaptive-normative and normative expectations) in terms of
desired predictions,

e communicate desires and assertions directed to other agents, in order to influence their
behavior (communicated expectations),

e filter out undesired (untypical, temporary...) effects, or conversely emphasize desired effects
(adaptive-normative and normative expectations) (cf. 2.4.2).

A major feature of Expectation-oriented Modeling is thus that in form of expectations a rel-
atively large spectrum of attitudes (mental and communicative) can be directly related to social
events, using a single notion. This allows for the MA’s cognition, belief acquisition and revi-
sion, and planing directly on the level of social interaction, in contrast especially to the reasoning
about the hidden mental states of the modeled agents, suggesting that it is justified, and even
inevitable, to integrate expectations as a modeling abstraction into the reasoning, analysis and
design processes of agents, multiagent systems and autonomous software systems in general. This
is not to say that EOM should replace common models like BDI (Belief-Desire-Intention). Rather,
EOM should be seen as an additional means for the modeling and influencing of social interaction.

It is very important in this regard to see that we intend expectations obtained from observation
to be also the primary means for modeling single agents (i.e., even aside from its embeddedness
in social relationships, which are our main concern) from the MA’s point of view. What can be
expected from a black-box agent is not just additional knowledge, but in a way, from an observers
perspective, the other agent is at a point of time what can be expected from him in the respective
social situation, probably enriched with previous knowledge and presumptions, like that this agent
is rational) (please refer to [24] for details). Therefor, we capture even agents in their entirety as
expectation structures, including what other agents want the MA to expect and the limitations
of such expected expectations. Please note also that focussing (but not restricting) ourselves on
action expectations does not mean to neglect propositional information, since on the expectation
level, such knowledge can be captured indirectly via expected assertive communication acts in the
form of, e.g., “agent x asserts that p holds”.

2.1 Sociality, Communication and Expectation Structures

Because we are focusing on systems with multiple inter-operating agents, we are primarily inter-
ested in expectations which constitute sociality: if it comes to an encounter of two or more agents,
the described situation of mutual indeterminism is called double contingency [22]. To overcome this
situation, that is, to determine the respective other agent and to achieve coordination (including
the capability of conflictive behavior), the agents need to communicate. A single communication
is the whole of a message act as a certain way of telling (e.g., via speech or gesture), plus a com-
municated information, plus the understanding of the communication attempt. Communication



is indirectly observable as a course of interrelated symbolic agent actions (i.e., messages in a agent
communication language, or demonstrative behavior). Because communications are the only way
to overcome the problem of double contingency (i.e., the isolation of single agents), they are the
basic constituents of sociality and they form the social system in which the communicating enti-
ties are embedded [22]. EOM adopts this view, and assigns communication a key role in systems
composed of interacting software agents.

Inter alia, one important practical consequence from this viewpoint is that in contrast to most
other modeling and design methods for multiagent systems and organizations, in the center of
EOM are interaction processes rather than fully-exposed agents, roles and groups. In fact, an
agent role and even an artificial agent participating in social interaction is, from the MA’s view-
point, no more (and no less) than the sum of the behavioral expectations triggered by its observed
previous behavior. Our modeling of agent roles in 2.4.5 reflects this process-oriented paradigm.

Another important point is that communication and thus the structures of MASs as modeled
using EOM need not to be collaborative. In fact, even from conflicts stable and useful structures
can emerge.

As action expectations are related to communications and thus to sociality, social structures (in-
cluding, e.g., organizational structures) can be modeled as expectation structures [20, 26, 27, 28].
Basically, expectation structures are interrelated expectations regarding a specific set of events
(e.g., the behavior or a certain agent). Expectation structures can be tailored to local agent envi-
ronments and topical communication domains.

We distinguish four types of expectation structures: (i) social agents as sets of all current
behavioral expectations regarding single agents (i.e., a social agent abstracts from the actual agent
with its opaque mental properties, and rather represent the interaction-related, externally-ascribed
“public intentional stances” of actual agents [24]°); (ii) roles as placeholders that are associated
with certain kinds of expected behavior and that can be instantiated by different agents; (iii) social
programs as flexible interaction schemes for multiple interacting social agents and/or roles; and
(iv) social values as ratings of expected generalized behavior (e.g., “Conflictive behavior is always
bad”). The focus of EOM is on social programs [22] with social agents and roles, since these are
particularly suited for describing processes that occur between agents. Focusing on social values,
in contrast, would suggest a rule-based approach.

By processing existing expectations, agents determine their own actions, which, then, influence
the existing expectations in turn. So communication is not only structured by individual agent
goals and intentions, but also by expectations, and the necessity to test, learn and adopt expec-
tations for the use with future communications. The process of continuous expectation structure
adaption by means of agent interaction (or communication, especially) and incremental, deliber-
ative modifications of expectation structures by the MA is called expectation structure evolution.
As described in section 3, this kind of evolution plays a key role in EOM.

2.2 Making Expectations Expected

“Expectations of expectations” [22] are necessary if expectations are formed in order to expect what
others expect. We do not treat the MA’s expectations of expectations explicitly (only implicit as
they show up in the expected behavior of the other agents), but we have to deal with the fact that
some of the expectations held by the MA need to be ezpected themselves by the other agents to
be able to have any influence on the system.

The establishment of such “expectations of expectation” can be achieved through the communi-
cation of the MA’s expectations to the agents and/or through the publishing of the expectations
via an appropriate agent-external instance within the multiagent system. Once achieved, agents

5The public identity the modeled agent would like to present via communication is an important constituent of
the social agent, but of course usually not identical with it.



can “expect” what “is expected”. As described in section 3, EOM technically realizes this through
so-called “Mirrors” and “Expectation Engines”, which are also responsible for the acquisition of
empirical expectations from observed MAS communications.

Expectations are communicated to the agents by the MA mainly for the following reasons:

e To inform the agents about actual social structures and processes they would otherwise not
be aware of (e.g., because they evolved outside their local interaction environment, but are
nevertheless relevant). This is especially important if the MA holds a higher position than
these agents, and overhears a large part of the MAS communication (e.g., being the system
designer, or a middle agent, or a manager agent in an organizational MAS).

e To inform the agents about the MA’s goals and intentions, and possibly about the expectable
consequences in case of acting against them or refusing collaboration.

e Even to deliberatively pretend actually disbelieved knowledge about social structures in
order to influence agent behavior.

2.3 The Scope of Expectation-oriented Modeling

In this work, we define and use expectations for the purpose of modeling and influencing social
states of a MAS (i.e., the interactional behavior of other agents), from the standpoint of MAs.
This leads to the following EOM tasks from the perspective of an MA, which will be described in
detail later.

a. Modeling planned or desired events/event courses The MA encodes all or some of these
as (adaptive-)normative expectations, denoting desired or intended event courses. Typically,
such expectations are directed to the behavior of other agents in order to influence them,
but they can also be in regard to the own behavior of the MA, or any other events.

b. Modeling empirical events This is done using fully-adaptive and also adaptive-normative
expectations, as a part of the belief of the agent.
This task and the previous task are usually tightly interwoven, since the gradual blend of
empirical and intentional expectations, and the run-time determination and minimization of
the difference of both expectations is a special feature of EOM.

c. Overhearing and monitoring of MAS communications The MA observes agent inter-
actions and categorizes them as desired, undesired and unassessed events.

d. Adaption of expectation structures, if necessary. Fully-adaptive expectation structures
are adapted if they have been disappointed, and (adaptive-)normative expectation structures
might need to be modified if they turned out to be not realizable, or not useful in order to
reach the MA’s desires.

e. Optionally, taking action in order to influence the MAS, by:

- Communication of expectations to other agents At this, the MA communicates selected
expectations to other agents, making them “expectations of expectations”, for the other
agents, for the reasons listed in 2.2. These information do not have to be intentionally accu-
rate or correct, nevertheless, but can be ostensible (cf. Figure 4). In [24] more information
can be found about the enactment of expectations.

- Positive/negative sanctioning of deviant behavior, argumentation, negotiation
Additional tasks which cannot be separated from the communication of expectations in
general.



2.4 Key Aspects of Expectations
2.4.1 Strength, Normativity, Deviancy

Expectations can be weighted in two complementary ways, namely, w.r.t. their strength and w.r.t.
their normativity (or inversely, their adaptability). The strength of an expectation indicates its
“degree of expectedness” (also called expectability): the weaker (stronger) the expectation is, the
less likely is or should be its expected fulfilment (violation). Against that, the normativity of an
expectation (both weak and strong expectations) indicates its intentional “degree of changeability”:
the more normative (adaptive) an expectation is, the smaller (greater) is the change in its strength
when being contradicted by unpredicted actual actions. With that, the strength of a lowly norma-
tive expectation tends to change faster, whereas the strength of a highly normative expectation
is maintained in the longer term even if it is obviously inconsistent with reality (i.e., with the
observed agents’ actual activities), whereat the term “adaptive-normative expectation” denotes an
expectation with normativity greater zero and lower one, and “fully-adaptive” (“(fully-)normative”)
means normativity zero (one). Fully-normative expectations ignore the actual occurrences of their
modeled events completely, as long as they are not adapted “manually” by the MA. The idea
of expectation weighting based on strengths and normativity is adopted by EOM, and it is also
assumed that there is a continuous transition from weak to strong strength and from low to high
normativity. The difference between the probability and the expectability (normativity-biased
probability) of a certain event is called deviancy (cf. below). So, if EOM is used to model social
norms, these can be both gradual and, to some degree, auto-adaptive - in contrast to, e.g., binary
modalities like obligation and permissibility as in deontic logic.

Here are some examples of quite extreme combinations of expectation strength and normativity,
mostly related to deontic modalities: rules that govern criminal law (strong/non-adaptable: even
hundreds of actual murders will not alter the respective laws, and most people think of murder
as a rather exceptional event); habits (strong/adaptable: before the times of fast food, people
took full service in restaurants for granted, but as fast food became popular, they were willing to
abandon this expectation); public parking regulations (strong/hardly adaptable: almost everyone
violates them even if they are, in principle, rigid); and shop clerk friendliness (weak/adaptable:
most people expect bad service but are willing to change their view once encountering friendly
staff).

Thus, the term “expectation” is inherently ambiguous, as it deliberatively combines subjective,
demanding expectations (reflecting the goals and intentions of the expecting agent) and the empir-
ical likeliness of events (desired or not). In this regard it is worth to state that even the strengths
of fully-adaptive expectations are not necessarily probabilities (from a frequentist point of view),
because expectations are maintained (“expected”) as a part of the belief a subjective observer
has, and do not necessarily take into account enough “real world” facts to determine expectation
strengths objectively when he sets up his expectations. So, not only (adaptive-)normative, but
also fully-adaptable expectations could theoretically be used to represent individual, contra-factual
preferences (“desired probabilities”, so to say) instead of likelihoods. But such contra-factual yet
non-normative expectations converge immediately to probabilities, since they are “willing to learn”,
so to say.

2.4.2 The Semantics of Expectation

Computational expectations have two dimensions: What the MA expects at a certain time, and
how she will adapt this expectation in the course of time, in case the expected event is repeat-
able. The latter is treated in 2.4.3. So, what does “to expect an event” at the current time point
mean exactly? So far, we’ve characterized the meaning of “expectation” intuitively as a graded
blend of actual event probability and “desired probability”. (Adaptive-)normative expectations
are maintained even contra-factual for some time (i.e., if they deviate from knowledge). In this
case, the only way for a rational and “non-ignorant” agent to reach the intended belief is to change
the reality, i.e., to act in order to minimize the deviancy. An other interpretation would be to



understand a normativity as the degree of distrust in a probability, thus a kind of higher-order
probability.

Starting from these observations, we define the semantics of an expectation held by the MA agent
as his intention to make (or keep) his gradual belief regarding the occurrence of a certain event
identical with the expectability of this expectation. This intention is weaker than to intent a
certain probability of the event, but as we will see later, in the most common case we actually
get by with defining normative and adaptive-normative expectations as the intention to make the
reality (in form of a probability corresponding to the frequency of some event) conforming to the
expected state (in form of an expectability).

At this, “intending a probability” can be understood as either aiming at bringing about a certain
frequency of a repeatable event, or as the will to provide occurrence conditions for the event that
make it probable to a certain degree.

Formally, an agent’s expectation (denoted as Expect) is a mental attitude, represented as a logic
modality, and defined as follows:

Definition 1.

Bel(agent, event|context) = e

VInt(agent, Bel(agent, event|context) = e))
if > 0
Bel(agent, event|context) = e otherwise

Expect(agent, event|context, ) = e :&

Hereby, e is the expectability, ¢ € [0;1] is the normativity of the expectation,

Bel(agent, event|context) = b denotes that agent believes that event occurs with probability b in
context 87, and Int(agent, p) denotes that agent intends p to become true (if agent is not capable
to bring about the desired fact or action directly by herself, this shall include the intention to
make other agents bring about p etc., i.e., to use them like a tool)

We write Expect(agent, event|context) as an abbreviation of Expect(agent, event|context,0), and
Expect, for Expect, when the time point ¢ at which the expectation is held matters and can not
be derived from the context (for ¢, Int and Bel analogously). Note that ¢ is not the time point
at which the event (should) occur(-s). If we would like to express that some event will or should
happen at a certain time, we would have to encode this time within context.

The exact normativity (except from distinguishing if it is above zero or not) is not used in
the definition above, because the normativity prescribes how an expectability auto-evolves in the
course of time with new information, if the expectability it is not set “manually”. If the norma-
tivity is zero, the expectation is set equal to the belief of the MA immediately. Otherwise, the
expectability adopts gradually to the belief when both differ, with a “learning rate” of the expec-
tation inverse to the normativity. Cf. 2.4.3 for details.

Our definition of expectation is build straightforwardly upon probabilistic versions of the KD45
and Belief-Intention axioms usually used for multi-modal logics of mental attitudes (e.g. [14]), and

is related to Sadek’s want attitude [35].

Given the agent’s belief (e.g., obtainable from an expectation via the so-called deviancy, cf.
below), the following proposition obviously holds, with e = Expect(agent, event|context, ):

Proposition 1.

6We can use this syntax also to denote expected expectations: Expect(agent, Expect(agents,...)...).

"context here has, in general, to be distinguished from the empirical “context” the MA has been used to
obtain the expectability, although context could have been a course of perceived events leading to conclude
Bel(agent, event|context) = e. It is in general also not the context in which the agent holds the expectation.



Int(agent, Bel(event|context) = e) if (¢» > 0 A Bel(agent, event|context) # e)

Bel(agent, event|context) = e otherwise
To the common axioms, we add the following bridge axiom (adopted from Rel,:per2 in [14]):
Axiom 1.

Int(agent, Bel(agent, event|context) = e)
ABel(agent, event|context) # e = Int(agent, occurs(event|context, e))

Axiom 1 denotes that disbelief in the occurrence of an event with probability e while intending
to belief the event occurs with this probability forces the agent to intend the event to occur with
probability e (denoted as Int(agent, occurs(event|context,e))). This also expresses that in case
the agent has no particular belief regarding the occurrence of this event, she can bring about
her introspective intention to belief in the event even without intending the event itself (e.g., by
exploring new perceptions, or by improving her reasoning process).

If we would either drop the usual Bel(p) — —Int(p) axiom in Belief-Intention logics, or intro-
duce alternatively maintenance intentions [4] (denoted as Int™), definition 1 would change to

Definition 1-M.

IntM (agent, Bel(event|context) = e)) if 1 > 0
Ezxpect(agent, event|context, ) = e :< (ag ( | ) )) v
Bel(agent, event|context) = e otherwise
The agent can achieve the intention to change his belief in several ways, which can also be
pursuit concurrently.

i. Change the world This is considered to be the usual way to enforce adaptive-normative and
normative expectations, either by execution of the expected events directed to the MA
himself, or by bringing about the intended events indirectly (e.g., by asking other agents).

ii. Explore The agent can try to obtain new perceptions in order to change his belief by explo-
ration. Here, the (adaptive-)normative expectation serves as a kind of hypotheses, and the
agents strives after new evidence in order to support or refute it.

iii. Wait This is actually not covered by the original intention at time ¢, but is a way to au-
tomatically decrease the “strength” of the intention (i.e., the degree and duration of the
self-commitment) in consecutive time steps instead: If the normativity is below 1, in the
longer term the expectation learns (i.e., adapts to the current probability), provided the
probabilities of a certain event remain stable enough to be learnable (cf. 2.4.3). Practically,
this happens if the expectation holder failed to decrease the deviancy actively (due to insuf-
ficient social power, for example). The adaptation of the expectability to the probability in
this case can nevertheless be desired, and it can even be a prerequisite for the enforcement
of less flexible and thus likely more important expectations.

iv. Ignore the deviation Here, the agents simply believes in the expectation, possibly ignoring
reality thereby:
Bel(agent, event|context) = Expect(agent, event|context,p) holds in any case then.
Such deliberative ignorance appears to be irrational for intelligent agents, but is a common
attitude of human agents and obviously somewhat functional for them. In any case, the
identification of certain expectations with beliefs regardless of deviance might be reasonable
for artificial agents in case the event belief is obtained from an unreliable source.
A less debatable use for such deliberative ignorance is to set the normativity greater zero
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in order to filter out (“flatten”) temporal and insignificant fluctuations of probabilities. In
2.4.3, a concrete way to adapt expectabilities is shown which flattens a graph depicting the
changing probabilities of some event.

In all cases except from iv., we assume that the expectability is equal to the probability (in
case the normativity is zero).

Note that even for the cases i.-iii. so far no assumptions have been made on how e has been
obtained - the MA is basically free to hold any expectabilities she likes / is interested in from her
subjective and possibly irrational viewpoint.

Definition 2.

The deviancy A of an event regarding a certain expectation (or vice versa of an expectation
regarding an event) is defined with

A(event, context) = Expect(agent, event|context, ) — Bel(agent, event|context).

The deviancy can intuitively be seen as an indicator of the effort that would be required to
make a normatively expected event happen, and as a measure for the compliance of the event-
generating agent with the expectation, whereas the normativity is intuitively a kind of “stamina”
of the intention (the strength of a self-commitment. Please remember in this regard, that we allow
intentions also to be denoted as desired behavior of other agents).

There is also a conjunction with the wtilities of events: If the normativity is larger zero, the
utility for the MA to reach the specified probability is certainly larger zero also. The expectability
might correspond to the utility of the event in this case (but this is to state a heuristic only,
suggesting further research).

Proposition 2.
Except from the case iv. above (belief despite ignorance of event occurrences)
Int(agent,Vt;,t <t; <t—+ h:Ay;(event, context) = 0)

holds at time step ¢. At this, h is a possibly infinite intention horizon which determines how long
the expectation is maintained.

Finally, we want to further simply the semantics in case the probability of an intended event
is irrelevant:

Proposition 3.
(Expect(agent, event|context, ) = e A Bel(agent, event|context) < e) — Int(agent, event)

To sum up, our notion of expectation is (to our knowledge) the first computational means for a
coverage of both agent belief and intention using a single attitude, with the possibility of a gradual
adjustment of the emphasis of either aspect. This corresponds to the double-faced common-sense
meaning of expectation in natural language, and to the meaning of this term introduced in [20].
Apart from having single “points of attack”, each allowing to express how much a believed event is
intended or an intended event is believed, and how strong the commitments directed to intended
events (i.e., to reduce the deviances of (adaptive-)normative expectations) should be.

The described semantics of expectation of course only applies in case the expectations are held
as mental attitudes by the MA. In case the expectation is used to be communicated to other agents
(to make it an “expectation of expectation”) instead, its semantics changes, cf. 3.2 and [24].
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2.4.3 TUnattended Adaption of Expectations

For lack of space, the empirical derivation of fully-adaptive expectation (their expectabilities, resp.)
and the probabilistic part of adaptive-normative expectations is omitted in this paper, please refer
to [27, 28]. We describe the adaption of adaptive-normative expectations here, though.

After the expectabilities and normativities of adaptive-normative expectations have been obtained
from goals and intentions, they are exposed to reality, so to say. The following shows how such
an expectation can be adapted automatically, depending from its normativity (degree of commit-
ment). The following definition covers expectations with normativity zero and one also.

To this end, it is assumed that for an event event|context corresponding to a certain EN
node an initial expectation strength 0(event, context) = Py(event|context) exists. Analogously to
Bely(), Pi(event|context) denotes a probability stated at time ¢, not the probability of an event
happening at time ¢. Given a normativity v, and a probability P,(event|context) obtained em-
pirically at time step ¢, the expectation strength at this time step can be calculated recursively
as follows. This way to calculate Expect; is not to be seen as canonical, other definitions for
the adaption of adaptive-normative expectations might be reasonable too, depending from the
concrete application also.

Definition 3.

Expecti(agent, event|context, ) =

{Q(event, context) if t <1

Expect;, | (agent, event|context, ;) otherwise

with Fxpect)(agent, event|context, ;) =

Ezxpect;_,(agent, event|context, 1))
—A}_, (event, context)(1 — ;)
ift>0

O(event, context) otherwise

A’(event, t) is calculated as
Ezpect}(agent, event|context, ;) — Pi(event|context)d.

This (non-mandatory) way to calculate Expect; reminds of the econometrics technique of
Ezxponential Smoothing used for the smoothing and extrapolation of non-linear time series. It
calculates a flattened version (with a flattening degree depending on the normativity) of the graph
of P;(event|context), and lets Expecti(agent, event|context, ;) converge to P;(event|context) at
least if P;(event|context) remains constant with increasing ¢, and 1); remains constant also. The
normativity (i.e., the expectation adaption rate) itself does not change.

If, e.g., ¥y = 1, the expectation strength

Expecti(agent, event|context, ;) = 0(contex, event) will remain constant, whatever the empirical
evidence is. In contrast, if i, (agent, contex, event) = 0,

Expect:(agent, event|context, ;) = P;(event|context) applies at all time steps.

Example: Figure 1 shows the time and normativity dependent expectabilities of an event a, with
Yo..20 = 0.95 and 6(a, context) = 0.4. Being a fictive event, the potential effect the announcement
of these values to the event generator (a communication partner of the MA, for example) would
have, is not considered. The agent parameter has been omitted.

8Calculating Expect,(...) using Expect;, (...) is done just in order to get rid of the delay of one time step in
the adaption of Expect(...) to Pi(...) that would exist otherwise.

12



P, (a|context)

0.8 r

Et(a|context)

A (a,context)| /
0.4 b—0 — — - — _ _ _ _ _ / __________

0.2

0.6

5 10 15 20

Figure 1: Unattended adaption of an expectability (¢t —)

2.4.4 Computational Representation of Expectations and Interaction Processes

Settling on particular representation formalisms naturally affects the level of abstraction and with
it the scope of expectation structures. Here, we focus on non-deterministic social programmes
(with regular protocols and policies as special cases), for which a graphical notation — so-called
Expectation Networks (ENs) [20, 27, 26] — is presented °. The main characteristics of ENs are
that they represent expectations embedded within explicit social contexts, and model probabilis-
tic event courses (i.e., beliefs regarding events), action intentions and normative protocols in a
seamlessly integrated manner, and (in contrast to Hidden Markov Models (HMMs)) interrelate
stochastic events instead of stochastic states. At this, ENs are intuitive (as we believe), and can
be set into straightforward relation to several other formalisms, especially HMMs and stochastic
automata, Dynamic Logic, Dooley Graphs [32] and Interaction Frames [34].

Expectation Networks can be given a formal semantics as described in 2.4.2; but also a so-
called Empirical Semantics of events and event processes [29, 23, 27, 28|, as described in 2.4.6.
The "consequentialist" (a-posteriori) concept of meaning of communication among artificial agents
was, to our knowledge, first articulated in [20].

Informally, the empirical semantics assigns an event a meaning in terms of its likely conse-
quences, as represented by EN sub-trees. E.g., the empirical semantics of some message from
some agent communication language would be the expected effect the utterance of this message
has.

In regard to EOM, the use of ENs is not mandatory, although ENs are probably the most suit-
able representation formalism. In principle, other formalisms could be used also, as long as they
are capable to make explicit the consecutive states of agent interaction (e.g. Interaction Frames
[34]).

Figure 2 depicts a very simple EN (in a notation called DG-EN which allows for cycles in the
graph). The nodes correspond to contextualized events (especially agent message acts and other
agent actions for our purpose, but also “physical” events perceived in the agents’ environment)
that are uttered and addressed to/by agents, probably acting as instances of roles (r;). Time

9The significant differences of the EN data structure presented in this work (based on [20]) and older realizations
of ENs (e.g. [26]) are the treatment of normativity, generalizations and variables. The notation in this work is
downwards-compatible with [27].
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Ask(n, 1y, service;)

Refuse(r, service;)

1

Figure 2: A social program as DG-EN

stamps could be part of node labels, but for our purpose, we want nodes to represent repeatable
events (i.e., we form expectations about events like “Agent x performs action y in the future”
instead of singular events like “Agent x performs action y at time step 100”). Events are always
contextualized, i.e., the same event can occur multiple times within a certain EN, probably with
different expectation strengths depending on the respective context (in this regard, the relation-
ship of Expectation Networks and HMMs and stochastic automata becomes obvious when paths
in the network are associated with states). Technically, an (event) context is the EN path up to
and including the parent of the node that is annotated with the event label. The directed edges
represent the expectation that a certain event is followed by a certain subsequent event. Each
edge is labeled by a triple s:n:d of real values, where s (ranging between 0 and 1) denotes its
expectability (strength of the expectation), summing up to 1 for edges leading to sibling nodes.
n (ranging between 0 and 1 also) denotes the normativity. The deviancy is denoted as d, ranging
between -1 and 1 (informally, the difference of s and the strength this expectation would have in
case of n = 0). n and/or d can be omitted if they are not of interest in a specific application
context. Note that outgoing edges of a node always do have the same normativity, because the
degree of expectability-change represented by the normativity is the same for all sibling nodes. L
denotes the expected end of the communication process.

In tree ENs, an expectability e at the incoming edge of a node v within an EN en; maintained
by an MA at time step ¢t means that at this time step, the MA expects the event represented by v
with expectability e assuming he already has or would have observed the course of all events along
the path leading to v. This path up to the parent of v is called the context of the event. In case
the expectation holder makes new observations, he probably needs to modify this expectability.
The context thereby allows partially to foresee the effect optional observation would have: If, e.g.,
you expect today that the sun will shine tomorrow afternoon if it is foggy tomorrow morning, the
EN determines the exact expectability you’ll have tomorrow morning in regard to sunny weather
in the afternoon (in case you keep this EN until then). On the other hand, the expectabilities
within an EN are of course not fully determined by the EN itself: If you experience heavy rain
today, you might want to decrease the EN’s expectability for sunny weather tomorrow, even in
case of fogginess. It this regard, it is important to see that the context might be only a part of
the probabilistic condition for the probability P(event,|condition) an expectation represents (i.e.,
the expectability minus its deviance, cf. below). In fact, all relevant observations and influences
experienced /known until time ¢ have to be included additionally to form a proper probability
condition!®,

101t is in principle also possible to use ENs for modeling the past as a course of already observed or otherwise
believed events, each with expectability 1.
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We will introduce the following kinds of EN representations, in order to allow the tailoring of
the representation formalism to different needs in different application contexts. All of them can
be reduced to so-called ground Tree-ENs in order to define their semantics.

Ground Tree-ENs: Graphical trees without variables. If we refer to an “EN” in this work, we
denote a ground Tree-EN if not stated otherwise.

(full) Tree-ENs: As before, but optionally with variables for nodes, sub-trees, and node and
edge labels.

KB-conditioned Tree-ENs: Tree-ENs where graph edges can be annotated with logical condi-
tions from a knowledge base KB. Please refer to [26] for these kinds of EN.

DG-ENs: Directed graphs, allowing for nodes with multiple incoming edges (denoting events
with different contexts but the same empirical semantics) and cycles

Textual ENs: Representing ENs using the formal language (ENL)
Probabilistic ENs: ENs with normativity 0 for all edges.

EN sets: A set of multiple ENs can be stated either extensionally (by enumeration), or inten-
tionally by way of placing free variables within an EN, such that different instantiations
result in different ENs, whereat the variables can be existentially quantified (e.g., to be used
to query other ENs), or all-quantified. EN sets can be used to represent concurrent event
sequences. They are not considered in this work for lack of space.

For the understandability of EOM, it is sufficient to know Tree-ENs as far as explained above.
Thus, readers not interested in details about ENs and empirical semantics can safely jump to
section 3 now.

Formally, a so-called ground Tree- Expectation Network is defined as follows:

Definition 4. An ground Tree-Ezpectation Network en € EN(E) over a certain event term
language £ is a (possibly infinitely deep or broad) tree

(V,C, &, Expectability, Normativity, Deviancy, nodelabel, edgelabel)
where
e V,|V| > 1is the set of nodes,
e C CV xV are the edges of EN.

e & is the event term language (a speech-act-oriented agent communication language, for ex-
ample, to denote agent messages. But terms denoting non-symbolic events are allowed also,
e.g. “physical” agent actions, or events like “the sun is shining”).

e FEzpectability : C — [0;1] returns the expectation strength (exzpectability) for the following
event, with > Expectability((vparent, vi)) = 1 for each set of sibling nodes v;,

e Normativity : C'— [0; 1] returns the normativity of the corresponding expectability,
e Deviancy : C — [—1;1] yields the corresponding deviancy,
e nodelabel : V. — EU{L, >} is the label function for nodes. The labels of sibling nodes must

be mutually different (i.e., denoting different events).

Optionally, L denotes the expected end of a conversation, and &> denotes “no action” (nothing
happens). As we will see later, the latter is useful as a dummy root node representing the
start of a conversation.
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e cdgelabel : C — {"s :n:d : s € [0;1],n € [0;1],d € [—1;1]} is the label function for
edges, with edgelabel(c) = Expectability(c) : Normativity(c) : Deviancy(c). Edge labels
are usually omitted if the edges’ expectability and normativity are both 1. Normativity and
deviancy can also be omitted if these are not of interest.

EN (L) shall denote the set of all ENs over an event term languages L.

If the normativity for every edge within an EN is 0, we speak of a probabilistic EN, useful for
denoting adaptive stochastic protocols.

Given an Expectation Network en; maintained at time ¢, with
ent = (V,C, T, Expectability, Normativity, Deviancy, nodelabel, edgelabel),

we set Expectability(c) = Expect,(agent, event|path, Normativity(c)), and

Deviancy(c) = Ay(path, action) for each edge ¢ € C leading to the node corresponding to the
event event reached from the EN’s root node following path. agent is the MA who holds the
expectations/the EN. The set of contexts Context is provided as the set of paths within the EN,
denoted unambiguously (since the labels of the children of each EN node have to be mutually
different) as linear lists of consecutive event labels (event; U ... U event,,).

Ground Tree-ENs can be extended to (full) Tree-ENs with variables by allowing placeholders
for agents (in order to allow for agent roles), and for other message term constituents and even
sub-trees. Such variables can be used with all other kinds of ENs also, by allowing them in place
of nodes, edge labels and within node labels. This extension is shown only for textual ENs below,
since it is completely straightforward for other EN types.

Obviously, an EN can be represented in a compressed way without loss of expressibility as a
directed graph by a merging of identical sub-trees. This also reflects that the empirical semantics
of EN paths lays in their continuations expressed by subsequent sub-trees, and because of this,
two paths with the same continuation have the same meaning (cf. 2.4.6). These so-called DG-EN's
also allow graph cycles, as an abbreviation for infinitely deep sub-trees. Since the enhancement
of ground Tree-ENs to DG-ENs is trivial, and DG-ENs can be mapped to ground Tree-ENs fully
preserving their semantics (by manifolding sub-trees with more than one parent node), we omit a
formal definition of DG-ENs here.

Since an EN might be quite cumbersome to draw betimes, we now introduce the following EN
representation language FN L.

ENL — Branch
Branch — Event

| [ Event Children ]
Event — ?&pattern’ | Variable | ?Variable | ?
Children — [ Weight Branch ] Children | e
Weight — Expectability

| ( Expectability, Normativity )

| ( Expectability, Normativity, Deviancy )
Expectability — {e:e€R,0<e<1} | Variable | ?Variable | ?
Normativity — {n:neR,0<n <1} | Variable
Deviancy — {d:deR,—1<d <1} | Variable
Epattern Performative(Agent, Content)

—

PhysicalAction(Agent, ActionDescription)
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| UnintendedEvent(...)

Agent — agent; | agenty | ... | Variable | ?Variable

Performative — request | deny | accept | assert | ... | Variable | ?Variable
ActionDescription— turnLeft | closeDoor | leaveRoom | ... | Variable | ?Variable
Content — LogicalStatement | Variable | ?Variable

This deliberatively incomplete syntax of Epattern (corresponding to node labels) is just for exam-
ple - basically, any message or action language can be used.

For simplicity, we will use certain non-terminals of the grammar in place of the sets of the re-
spective produced words. Since every event (term) and every sub-tree ("Branch" in the grammar
above) in a textual EN corresponds to a node (branch) in the equivalent ground Tree-EN, we refer
to event (terms) within a textual EN sometimes as “nodes”.

To demarcate variables (alphanumerical terminals starting with big letters or "?"), we usually

use small letters for non-variable parts of Epattern. Variables starting with "?" are called igno-
rance variables.
Words in ENL and words in Epattern are called ground iff they do not contain variables. Other
variables are either bounded using a substitution list (with each variable possibly having more
than one instance simultaneously), or free in order to retrieve sets of ENs (as existentially quanti-
fied query variables, or as universally quantified variables). Free (non-ignorance) variables are not
considered in this work for lack of space.

To reduce ENs with variables to a known type of EN we provide a mapping o ground Tree-ENs.
Mapping a textual EN ten € ENL does not yield, as one might expect, a set of ENs in case ten
contains variables. Rather, the capability of ENs to represent non-deterministic alternative ac-
tions is used to “inflate” ten to a single, possibly infinite ground EN (2.4.5 describes the opposite
task of “deflation” by introducing new variables). This proceeding has the advantage that the
semantics and handling of ENs can be defined in a clear cut way without the necessity to account
for variables later (and thus to deal with instantiations, unification etc.). In addition, focusing
on single ENs avoids handling multiple ENs possibly denoting mutually inconsistent probability
distributions and conflicting normativities (every single EN is inherently consistent as it can, by
definition, not represent mutually inconsistent beliefs or “norms”). Of course, a complete inflation
is in general not meant to be performed actually, if only for the reason that the resulting ground
EN might be infinitely large.

Definition 5. A textual EN ten € TEN(E) over the event term language £ is defined as a
structure (enl, v, Inflate) where

e enl € ENL is a word from the language defined using the grammar above, with £ being the
subset of all ground terms in Epattern.

For sibling sub-trees constraints analogous to those defined for graphical ENs apply (i.e.,
their expectabilities have to sum up to 1, and two or more siblings with the same ground
event term are forbidden (but not those with same event terms as long as these transform
to different ground terms by means of substituting the same variable with different values,
which is allowed)). But for convenience, in case the sum of sibling expectabilities is below 1,
we assume an implicitly given additional sibling "?" (denoting "unknown additional events
expected here"), completing the expectability gap.

e ¥ : ENL — 0 resulting in the environment of a sub-tree,
with 6 being the set of all lists of the form
((Variable /inst, Variable /inst, ...), ( Variable /inst, Variable /inst, ...)...). The environment of
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a sub-tree is thus a list of variable substitution lists, to be applied from the position in enl
on determined by a path € ENL, path being a prefix in enl, until the next closing ]-bracket
that has no accompanying opening bracket counted from path on (i.e., substitutions extend
over sub-trees).

A certain variable, if not a variable for edge weights, can occur in multiple sublists within
J(path) at the same time for the same path (denoting non-deterministic instantiation), but
not within the same sublist. E.g., in

((Variabley /inst1,, Variableg [insts, , ...), ( Variables /insts, , Variableg /insta,, ...)), Variables
is bounded to insts, and to insts, simultaneously.

For convenience, we insert the ¢ directly at their proper positions, e.g.,
[((Rolel/agentl,Roleg/agentgﬂRolel /agent,)) ’request(Rolel, service) }

[0.3 ’deny(agent,,service)’]1[0.7 [’accept(agent,,service)’
[((Rolel/agent3,ProbabilityPay/O.EE}) (PTObabilityPayv 0, O) ’pay(Rolel, SeI‘ViCG) ’1111.

The extent of the respective substitutions is hinted by under-/overlines. Note that in this
example, the last role substitution (Role; /agent,) is never applied, because at this position,
Role; is already bound by either agent, or agents.

The precise semantics of ¥ is defined via Inflate (cf. below). Please observe that both this
semantic and the syntax is different to those proposed earlier for similar looking variable
substitutions in [26].

e Inflate : TEN(E) yields a semantically equivalent textual EN. The required definition of
Inflate is given below.
If the result of Inflate is ground (i.e., all variables except from ignorance variables are bound
by 9, and a repeated application of these substitutions results in ground values eventually),
then resulting EN is equivalent to a ground Tree-EN.

Term variables

Informally, an ’event term pattern’ containing a variable in place of Agent / Performative /
Content... is eventually inflated to a set of sibling nodes, each for one of all possible instantiations
of this variable. To this end an environment ¥} can provide more than one instance value of each
variable, whereat the instances can be any (not necessarily ground) terms syntactically allowed in
place of the variable. The children of each generated sibling are those of the un-inflated event term
pattern, whereat the variable is bounded exclusively to the respective chosen instance within the
whole sub-tree rooting in this sibling. In case the variable is an ignorance variable, their implicit
set of instances is the set of all syntactically appropriate substrings within the ground subset of
Epattern.

E.g., in a MAS with three agents, [?Ask(agent;, a)’ [ 1 ’Reply(?Agent,, b)’1 1 is inflated
to [?Ask(agent;, a)’ [ 0.33 ’Reply(agent;, b)’] [ 0.33 ’Reply(agents, b)’]

[ 0.33 ’Reply(agents, b)?]1], the agent; (the addresses of the speech acts are omitted for sim-
plicity).

In case of a finite set of resulting sibling nodes (e.g., using a propositional event term lan-
guage), the expectability of each sibling resulting from such an inflation is the expectability for
the un-inflated sub-tree, divided by the number of generated siblings (i.e., denoting uniform dis-
tribution of the siblings). For infinite sets, explicit numerical expectabilities cannot be stated for
this uniform distribution.

Expectability and normativity variables
Using "?"s in place of expectabilities denotes uniform distribution of the respective children

(i.e., all siblings have the same expectability). Following a Bayesian viewpoint, uniform distribu-
tion stands for “Don’t know”, whereby possibly the respective parts of the EN become less entropic
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in the course of the revision of the EN by learning. Named variables can also be used in place
of expectabilities, normativities and deviancies, but multiple values for the same variable are not
allowed in this special case, because otherwise, the inflation would result in identical events with
different expectabilities, violating the semantics of ground Tree-ENs. Ignorance variables for ex-
pectabilities are treated like "?". but will be bound to the resulting numerical value in the whole
subsequent sub-tree.

Sub-EN variables

In order to support modularization, variables can also occur in place of a whole node (respec-
tively “Event” for textual ENs). They are be replaced with “sub-ENs” (not just single nodes),
more specifically, they are inflated to a set of sibling sub-trees each, analogous to the inflation
of variables in event term patterns (but note that the result is in general not the same as of the
inflation of a variable in place of an event term, as described before). Such a variable can be
bounded by ¢, whereby the instances are ENs to be included in place of the variable (denoted
in ¥ as words from ENL, not necessarily ground), or be an ignorance variable, standing for the
(possibly infinite) set of all ENs over & (TEN(E)). So, "?" in place of a node can be interpreted
as an “unknown course of events”. An complete graphical or textual representation of the resulting
EN is of course not feasible in the general case.

A "?" in place of a node / event stands for an unnamed ignorance variable.

DG-ENs are especially suitable for the “folded” graphical representation of ENs containing vari-
ables. If; e.g., the same (non-ignorance) sub-EN variable appears as a leaf node multiple times,
the inflated leafs can be merged graphically, using multiple edges leading to the same node that
resulted from the former leafs.

Precisely, variables are inflated as follows:
Definition 6. Inflate : TEN(E)
Inflate = inflate” ([ > [1 enl]], 9, ()"

At this, we choose k & inflate® (enl, 9, ()) = inflate® 1 (enl, 9, () (i.e. such that
inﬂatek(enl,ﬁ, ()) is a fixpoint of inflate), and define

inflate : ENL x 0* x 6 — ENL
inflate(event, ¥, ¥') = event,

inflate( Lfather childy ... child,], ¥, 9") =
[father merge(childy ... child, 1 child,, ... child), )]

at which child,, = [(expect,,...) LdeflatedEvent,, grandchild,, ...grandchild, 11, and the child;,
being defined with

1 For convenience, we denote the resulting graphical EN as a ground textual EN.
Prepending the empty action > to enl here is required because otherwise it would not be possible to inflate the
root node of enl.
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[(expecty,, ...) inflate(instanciated,, , 9,9, 119")]
with instanciated,;, = instanciated,, + (grandchild,, ... grandchild,,,)
if instanciated,, € ENL

child,, =
[(expecty,,...) inflate(Linstanciated,, grandchild,, ... grandchild, 1,7,
1 / _ expecty,
197” ud )] ’ expectni - |{rootEvent(instanciated,’ll):lgigm}\
otherwise
using '?

instanciated,, = (V' UV, )(deflatedBvent, ), 9, = {0 :1<i<m}=1"

((Tvr/e) e € &, v, € deflatedEvent,,)
if deflatedEvent,, € Epattern

((?v,/€e) :e € TEN(EY}), Tv, € deflatedEvent,,)
otherwise

9 = ﬁ(pathchild"> L

At this, the functional application of a local environment ¥’ is defined as the application of the
substitution lists within 9" in turn. E.g.,

((Role, /agents, Obligation, /taskzs), (Role,/agenty, Obligation, /tasks))(’request

(Role,, Obligation,)’) results in the two siblings

‘request(agent,, tasky)’, request(agent,, tasky)’.

Since substitution lists range to the end of the whole sub-tree from their position, and add to
previous substitution lists, we could have abbreviated these substitutions as

((Obligation, /taskzs))((Role, /agent,), (Role, /agent,)).

Ul denotes list (string) concatenation, s, € s, yields true iff s, is a sub-list (a substring) of s,,.
¥1 LY concatenates two substitution lists. If a substitution list resulting from such an operation
is applied, and it contains two substitutions for the same variable, only the first substitution is
used. Applying (9" U, )(deflatedEvent,,) thus ensures that variables bound by previous calls of
inflate ranging over the current sub-tree cannot be rebounded by ¥, .

J(pathenia, ) yields the list of substitution lists next to the position of child,, within enl.

merge(child; ... child,) obtains the argument, but with only one among those children sub-trees
that start with the same event, thereby keeping only the largest (in terms of string length) of these
doublet children. In case the argument results from substituting a bounded variable in 1, such
doublets could have been avoided manually. Against that, if a ignorance variable is EOMed, it
inflates to all possible instances syntactically allowed, including those that are already present as
siblings, making a merging necessary. If the instance variable inflates to the elements of TEN (&),
merge keeps for each subset of TEN (E) with elements having the same root node only the largest
one.

In addition, merge([(expect;...) childy] ... [(expecty...) child,]) also replaces "?"s at the posi-
tions of expectabilities (denoting “expectability unknown”), obtaining expect; for each "?":

1->" {expectj:expect; 77"}
[{expectj:expect;="7"}|

expect;, =

The operator + in instanciated,, +(grandchild,, ...grandchild,,,, ) “adds” the sub-trees grandchild;,
to the textual EN instanciated,, multiple times by adhering to every leaf of instanciated,, the set

12\We show the inflation of variables for whole event terms, whole events, and of "?" for expectabilities. Variables
for parts of event term patterns, like for agent identifiers, for normativities and deviancies, and ignorance variables
for expectabilities inflate analogously in a straightforward manner.
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of all grandchildren as children (avoiding doublet siblings using merge() as described above).

Again, it is important to see that the syntactical transformations done in Inflate are not
generally intended or possible to be actually performed globally for a whole EN.

2.4.5 Generalization and Role Emergence by EN Deflation

Likewise Expectation Networks can be inflated by variable instantiation, they can be deflated also
by the merging of multiple sub-trees resulting in a single sub-tree. Deflating an EN can be useful
in order to compress ENs for better manageability, to calculate the entropy of an EN (which can
be informally characterized as the reciprocal of the size of the smallest semantically equivalent
textual EN), and - most important - to derive interaction patterns and agent roles from a set of
concrete communication processes. If a set of multiple interaction processes is described using a
single interaction pattern (represented as a textual EN with variables), this pattern is called a gen-
eralization of the processes. Analogously, agent roles (represented by agent variables) describing
the temporary behavior of multiple, not necessarily specified, agents are generalizations of single
agents.

For these purposes, we define a recursive function generalize based on a method of agent role
formation in ENs introduced in [20]. It is a special case of finding the Least General Generalization
[33]. generalize operates on a list of ground textual EN sub-trees.

Definition 7. generalize : ENL' x § — ENL

generalize((branch; : 1 <i<m),¥) =
[headGeneralization 913
[ > expects(party)
> p—1 2 expects(party
> expects(party)
. [Egzl > expects(party)

3 generalize(party,9")]

generalize(part,,v")]], with

(headGeneralization,9") = generalize’ ((head; : 1 <i < m),d"), with

branch; = [head;[weight;, ;] ... lweight;, ¢, ],

head; =" performative;(agent,, content;)’,

(party, ..., party) = subPartition(cs), such that cs O ¥i_, part;, with
cs={cp; 11 <j<mg, 1 <k <m}

(cf. below for an exemplarily subPartition function.) expects(party) yields
the set of expectabilities of all nodes within part.

generalize' ((' performative;(agent;, content;) : 1 <i <n), ) =
(' Performative Generalization(
AgentGeneralization, ContentGeneralization), ¥’ LI 9p LU da U dc), with'4

AgentGeneralization = agent,,da = ()
if Vi, 1 <i¢<n—1:agent; = agent,
AgentGeneralization = var,9a = ()
if Jvar, ({var/agent,;) : 1 <i <n) C
AgentGeneralization = Varye,
Ya = ((Varpew/agent;) : 1 < i < n) otherwise

otherwise

(Performative Generalization and ContentGeneralization defined analogous.)
At this, Var,e, denotes a new variable.

13We include 9 here to denote that from here on the environment ¥/ applies.
14 0Of course, event terms other than speech act-like message terms could be generalized analogously.
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In case the set of sub-trees branch; corresponds to a full set of sibling sub-tree-roots, a replace-
ment by their resulting generalization would yield a semantically equivalent result (just add up
the expectabilities of the original sub-trees). Otherwise, we have to manifold the resulting sub-tree
and link it at different locations with different expectabilities to different parent nodes. The latter
does yield a transformation of the original EN which is in general not semantically equivalent to
the original EN.

Note that repeated application of generalize on a single sub-tree can “flatten” this sub-tree until
eventually the sub-tree becomes a linear list.

The list of substitutions that could be applied in order to retrieve a sub-tree branch; back
from the generalization can be calculated as
mgu(branch;, generalize((branch; : 1 <1i < m))), with mgu yielding a most general unifier of the
sub-tree and its generalization. But note that this re-transformation can be lossy, i.e., does not
necessarily retrieve the original sub-tree.

If we would replace the variables yielded by a generalization by ignorance variables (i.e., 7Var
instead of Var), the generalization would apply to all possible instantiations (e.g., all syntac-
tically possible agent identifiers), which is useful in order to derive stochastic protocols for open
systems (i.e., with a fluctuating set of participants) from a set of example interaction courses.
Reasoning on such a generalized EN allows for conclusions by analogy, which is also the basis of,
e.g., case based reasoning, with the argument sub-trees of generalize corresponding to the cases
here (loosely speaking). A that way resulting generalized EN would of course not be semantically
equivalent to its non-generalized predecessor.

As a rule of thumb, sub-trees could be good candidates for being merged via generalization,
if the resulting generalization i) does not contain variables for performatives, ii) relatively many
agents are replaced by new role variables during generalization, iii) but relatively few new variables
are introduced over all, and iv) the expectabilities of merged children do not differ too much.

The following exemplarily partition function realizes i) and iv): subPartition(s) = p1&... Wp,
such that

Vk,1 <k <gq:¥e;,c; € py : Performative(c;) = Performative(c;) A o(py) < €.
(o(pr) denoting the standard deviation of the elements in py. € is some tolerance constant.)

Variables in a generalization generated this way with agents as instances reflect characteristic
courses of behavior that can be used to constitute agent roles, corresponding to these variables.
An example using this partition function is shown as Figure 3 (with variables given descriptive
names). The generalization step yields from the three argument sequences (“Enter shop...”) inter
alia that “frequent buyers” (as a role) also normally pay for their goods, which is not the case for
“infrequent buyers” here. Note that the underlined expectabilities 0.2 and 1 on the left side have
not the same meaning as the corresponding expectabilities above, since the generalized child of
node x (y, respectively) is defined for other agents than the original child, even if we would apply
restricting environments for the generalized child (e.g.,
({(Prospects/ay, Sellers/ay, FrequentBuyers/ay)) between “x” and “Prospects : Enter shop”).
Information loss is thus a possible side effect of this kind of generalization. The figure depicts a
DG-EN. Textually, the generalizing sub-tree could be represented as an sub-EN variable appearing
at different positions.
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a, : Enter shop ]—>[a4 : Show goods

0.13

[a3 : Enter shop J—»[asz Show goods

b I
. . single generalization step (deflation)

Prospecis/a, mﬂatwnT l

Prospects/a,

Prospects/ay FrequentBuyers/a,

FrequentBuyers/a;

[FrequentBuyers : Leave ]

0.0X/
.

[Sellers : Show goods

FrequentBuyers : Pay ]

. 5 -
Sellersfa FrequentBuyers : Don't pay ]

Sellers/as

007 [InfrequentBuyers: Leave ]

06 InfrequentBuyers : Pay J
.0

[InfrequentBuyers: Buy

- InfrequentBuyers : Don't pay ]-*
InfrequentBuyers/a,

Figure 3: A generalization step transforming a probabilistic Tree-EN into an DG-EN, creating role
variables, The step into the opposite direction would be the inflation of the DG-EN.
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2.4.6 Event and Communication Process Semantics (Empirical Semantics)

So far, we have provided a semantic for single expectations. Starting from there, we can ask for
the semantic of the expected events (e.g., agent utterances) in terms of expectations. Informally,
the semantics of the event course (an event in its context of preceding events) represented by an
EN path is given as its expected continuation (thus we commit ourself to a dedicated pragmatical
viewpoint, in linguistics terms) [20, 26]. Formally:

Definition 8. The EN-related Empirical Semantics of an event e; in a context ey LI ... L e; 1
(a sequence of previous events, with LI denoting timely succession as represented by EN paths) is
defined as the probability distribution Yy, ¢ou...ue,- The distribution is defined using

H P(wllegU ... Ue, Uw) U ... Uw)_4)
i1<i<|w|

B Z H P(elleoU...UeUejU...Ue;_4)

e’eEt i,1<i<|e/|

Ten,eol_l...l_let (wl) )

for any finite w’ € T, w’ = wj UwhU..., and € = €} Ue,U.... The numerator thus represents the
probability that the sequence ey U ... L e; for which we calculate the semantics is concluded by a
sequence w’, and the denominator is used to normalize this value.

Intuitively the semantics of an event sequence is thus depicted by the sub-tree starting with the
node corresponding to that event. Please refer to [29, 23, 27, 26, 28| for details on empirical
semantics of agent communication.

A practical approach to empirical semantics using ENs in form of a concrete way to learn
adaptive expectations and thus Y from observed agent interactions is described in detail in [27].

By replacing in this definition the P with the expectability, we gain an “ezpected Semantics”
consequently. In case the normativity of at least one edge is greater than zero, the “expected se-
mantics” might deviate from the empirical semantics, being a desired empirical semantics instead:

H Expectability(eo U ... Ue; Uw] U ... Uw)_; Uw])
i, 1<i<|w|
Y ) = 2
e Z H FEzxpectability(eg U ... Ue, Uej U...Ue_, Uel)
et i,1<i<|e|

The arguments of Ezpectability denote edges represented as event sequences (ep corresponding to
the EN’s root node).

3 The EOM process

Based on the given description of computational expectations, this section presents the tasks of
EOM to be performed by the MA in detail. EOM is tailored to general active and passive modeling
tasks, from the viewpoint of both software agents and human designers.

The activities of identifying, evaluating, adapting and propagating social-level expectations in an
evolutionary, cyclic process are crucial to EOM. EOM supports these activities by two means:
so-called 1) Social Mirrors, henceforth briefly called Mirrors, and ii) agent-internal Ezpectation
Engines.

3.1 The Mzirror concept

Mirrors are software components within the MAS, with the tasks to observe communications, de-
rive expectations structures, and “reflect” modified /enriched versions of them back to the observed
agents in form of new communications, all on behalf of MAs. Thus a Mirror functions a bit like a
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(possibly distorting) real mirror, with communications instead of light beams. Mirrors are rather
passive coordination media, and do not take action pro-actively. They are thus meant to support
the acquisition and enactment of expectations on behalf of MAs, and being rather un-intelligent
themselves, they are especially suited as tools for human MAs (a MAS designer, for example). In
this case, a Mirror is corresponding to an EOM-specific CASE tool.

Technically, a Mirror is to its main part a “social knowledge” base with observation capability
which empirically derives social-level expectation structures from communications and makes them
pro-actively available to both the participating agents and the MA. A Mirror has three major
purposes:

1. monitoring agent communication processes,
2. deriving emergent social-level expectation structures from these observations, and

3. making expectation structures visible for the agents and the MA (the former is the so-called
reflection effect of the Mirror, enabling the self-observation of the system).

It is important to see that not all structures that are made visible to the agents need to be emergent
and derived through empirical system observation. Rather, the Mirror can also be structured by
the MA to “reflect” deliberatively designed, non-empirical expectation structures as well. In both
cases, the agents can access the Mirror very much like a database and actively use the expectation
structures provided by it as “guidelines” influencing their reasoning and interactivity. Without the
help from a Mirror, even empirically derived expectation structures are considered to be likely often
hidden to single agents due to the agent’s engagement in locally bounded interaction contexts,
their observability restrictions and their limited social reasoning capabilities.

For example, agents can participate in social programs which seem to be useful to them, or
refrain from a certain behavior if the Mirror tells them that participation would violate some
(adaptive-)normative expectation. Social programs (or structures in general) in which agents
continue to participate become stronger, otherwise weaker. (The degree of change in strength
depends on the respective normativity.) Thus, the Mirror reflects a model of a social system and
propagates it to the agents. As a consequence, the Mirror influences the agents — very much
like mass media do in human society. Conversely, the Mirror continually observes the actual
interactions among the agents and adopts the announced expectation structures in its database
accordingly. In doing so, the Mirror never restricts the autonomy of the agents. Its influence is
solely by means of providing information (possibly about expectable sanctions and norms, though),
and not through the exertion of control'®.

The Mirror, and thus EOM, realizes the principle of evolutionary software engineering [1].
More precisely, within the overall EOM process (i.e., within the EOM phases described below)
two Mirror-specific operations are continuously applied in a cyclic way:

1. it makes the social-level expectations derived by the MA from his goals explicit and known
to the agents; and

2. it monitors the social-level expectation structures which emerge from the communications
among the software agents, and makes them explicit and known to both the MA and the
other agents.

These two operations constitute the core of the overall EOM process, and together they allow
an MA to control and to influence the agents’ realization and adoption of her specifications. For
EOM, the term “evolution” thus applies to expectation structure changes caused both “top-down”
by the MA’s interventions and “bottom-up” by autonomous variations in the observed agents’
behavior.

Further details on Mirrors are provided in [20, 30].

15 An explicit notion of sanctions in terms of expectations is omitted here (cf., e.g., [38, 10] for approaches to the
deontic or contract-based regulation and sanctioning of autonomous agents): In general, Expectation Networks can
incorporate information about every kind of treatment of agents as long as it can be represented as a (sequence of)
events, i.e. nodes of the expectation network.
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Figure 4: Dataflow in a MA with Expectation Engine

3.2 Expectation Engines

Ezxpectation Engines are MA-internal modules with a functionality similar to that of Mirrors. They
serve as a complement of common agent facilities for belief acquisition, planing, and acting. Their
tasks are the recording, revision and enactment of expectations, contributing a distinct level for the
modeling and influencing of the social behavior and the social environment of the agent modeled
as expectations. An Expectation Engine maintains three ENs (or alternative data structures for
the representation of expectations):

1. As a part of the MA’s belief, an EN for empirical expectations learned from overhearing
agent communication and previous knowledge.

2. As a part of the MA’s belief and intentions an intentionality-biased EN. It is generated from
the empirical EN, plus intentions in form of normativities. It represents those beliefs and
intentions of the MA which relate to social activities, and usually contains thus not only
fully-adaptive expectations, but adaptive-normative and fully-normative expectations also.

3. An EN which represents the ostensible beliefs and intentions [25] of the MA in form of
expectations. This EN is communicated to the other agents. It represents what the MA
wants other agents to belief about his beliefs and intentions (his communication attitudes,
so to say). It is important to see that realizing this EN (actively aiming at making the
communication attitudes credible, and pursuing the ostensible intentions) might be only
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pretended, and might be of course only one means among others aiming at the real goals of
the MA. For the special case the MA is sincere, this third EN could of course be identical
with the second EN.

Please find details about ostensible mental attitudes in [24].

The architecture of an MA with an Expectation Engine is depicted in Figure 4.
3.3 The EOM Phases

3.3.1 Phase I: Specifying social-level goals

In the first phase, the MA models the social level of a part of or the whole multiagent system
according to her goals in the form of specifications which focus on “social behavior” (i.e., desired
courses of agent interaction) and “social functionality” (i.e., functionality which is achieved as a
“product” of agent interaction, such as interactive problem solving) in the widest sense. For this
task, the usual specification methods and formalisms might be used, for instance, the specification
of desired environment states, policies, constraints, social plans, protocols etc. Of course, this
specification could be done directly in terms of social-level expectation structures, like social
programs.

3.3.2 Phase II: Setting up and enacting appropriate expectation structures

In the second phase, the MA models and derives social-level expectation structures from the
specifications and stores them in the Mirror/Expectation Engine. If the specifications from phase
I are not already expectation structures (e.g., they might be given as rules of the form “Agent X
must never do Y”), they have to be transformed appropriately. While social behavior specifications
are expectation structures per se, social functionalities (for instance: “Agents in the system must
work out a solution for problem X together”) possibly need to be transformed, most likely into
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social programs. Sometimes a full equivalent transformation will not be feasible. In this case, the
MA models expectation structures which cover as much requirements as possible.

Social-level specifications can be modeled as fully-adaptable or adaptive-normative expecta-
tions. The former can be used for the establishing of hints for the other agents which are able to
adapt during the structure evolution, the latter for the transformation of constraints and other
more or less “hard” requirements into expectations. It should be kept in mind that even a fully-
normative expectation derived from a constraint does by itself not force the agents to behave
conforming to the rule, since it is “only” an expectation. If a (adaptive-)normative expectation
is constantly violated by the agents (i.e., the deviancy of the expectation rises), the MA can
either decide to try to argue in favor of the (adaptive-)normative expectation, or to enforce it
(introducing sanctions and propagate them with associated additional sanction expectations), or
to drop it (change the normativity). If the normativity is lower 1, the Mirror/Expectation En-
gine also changes the expectability of the adaptive-normative expectation at least in the long term.

After the MA has finished the expectation modeling, she communicates them (either sincerely,
or in form of ostensible expectations) to the other agents via the Mirror/Expectation Engine.
Whereby EOM does not prescribe or provide an explicit notion of sanctions or argumentation, we
can use the fact that (adaptive-)normative expectations need to be communicated to the agents to
achieve a semi-automatic enforcement of (adaptive-)normative expectations using the EMPRAT
algorithm. This way, we make (adaptive-)normative expectations pro-active, so to say. For lack
of space details had to be omitted here, please refer to [24].

3.3.3 Phase III: Monitoring structure evolution

In the third phase of the EOM process, it is up to the MA to observe and evaluate the evolution
of expectation structures which becomes visible to her through the Mirror/Expectation Engine.
In particular, she has to pay attention to the relationship of the continuously adapted social-level
expectation structures and her objectives from phase I, which means that she analyzes the expec-
tation structures with regard to the fulfilment of (adaptive-)normative expectations established
by the MA and the achievement of her goals. Because the Mirror/Expectation Engine is only
intended to obtain and deploy expectation structures, it could be necessary to support it with a
software for the (semi-)automatical “re-translation” of expectation structures into other forms of
specification like rules, and vice versa.

As long as the expectations structures develop in a positive way (i.e., they match the MA’s goals,
deviancies are sufficiently low) or no emergent structures can be identified that deserve being made
explicit to improve system performance, the MA does not intervene. Otherwise she proceeds with
phase IV.

3.3.4 Phase IV: Refinement of expectations

In the last phase, the MA uses her knowledge about the positive or negative emergent properties of
the interaction system to improve the social-level expectation structures. Usually, this is achieved
by setting up expectation which discourage “bad” events, and, if necessary, the introduction of new
expectation structures as described at phases I and II. In addition, expectation structures which
have proved to be useful can be actively supported by e.g. increasing their expectation strength
and/or their normativity. The process proceeds with phase IIT until all relevant MA goals are
achieved or no further improvement seems probable at least for the moment (per definition, open
systems never settle on a final equilibrium while active).
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4 Case Study: The Internet Car Trading Platform

4.1 Scenario Overview

In the following we present an example for EOM, with the MA being the MAS designer. Imagine
a web site that brings together car dealers, private pre-owned car sellers and potential buyers who
trade cars online (cf. www.imotors.com , www.autoweb.com, www.autointernet.com, www.auto-
tradecenter.com). There is an "offers" section in which sellers can display images, technical
details and prices of cars for sale. In the "requests" area, buyers can post requests for cars that
they would be interested in. A forum is available, in which inquiries can be placed, discussions,
bargaining and negotiations may take place publicly or privately (as forum users wish), etc.

4.2 Making Top-Level Design Decisions

Having made a decision on taking an agent-based approach, the MA (the website designer in this
case) must develop a top-level description of the system which will, to the least, include decisions
regarding infrastructure, interaction environment and, above all, participating agents (or agent
types).

Here, we will assume that the designer of the platform is designing a semi-open system: on the
one hand, the system offers user interface agents that monitor the platform on behalf of users,
profile users to derive interests/needs and draw their attention to interesting information on the
platform. A second, pre-built type of agents are search agents that constantly re-organize the
platform’s database and can search it efficiently. These can be contacted by user interface agents
as well as by humans for search purposes. We assume that all interactions with these search agents
are benevolent, since they are not truly autonomous (they simply execute others’ requests). On
the other hand, there is a number of agent types that have not been designed by the designer of
the platform. There can (and should) exist human and non-human agents representing individuals
or organizations that interact with the platform in a "socially" unprescribed way (only restricted
by implementation-level protocols and standards, e.g. FIPA compliance). Generally, these agents
are black-boxes for the system designer.

Further refinement of these initial design decisions will require looking at a multitude of issues,
ranging from communication facilities and standards and capabilities of in-built profiling and
search agents to database models etc. For our purposes, we can restrict this identification of
requirements to social level characteristics of the platform since these are the subject of the EOM
process.

4.3 Identifying Social Level Requirements

As social-level goals, we consider the following motives of a car trading platform (CTP) provider:

1. Maximum quality of service should be provided: the range of offered and requested cars has
to be broad and their specifications must relate to their prices; the reliability of transactions
must be high; trust between buyers and sellers and between all users and the platform must
be at a reasonable level.

2. Transaction turnover should be maximized, because it indicates (in our example) high return
on investment for the CTP provider stakeholders.

3. Traffic on the platform must be maximized, to ensure high advertisement returns.

In the following, we sketch how the EOM process model can be applied in the analysis and design
of such a system.

The dilemma in designing the social level of such a platform is obvious: system behavior should
meet the design goals and at the same time it shouldn’t compromise participating external agents’
private goals by being overtly restrictive. An expectation-level model of social structures is needed
to cope with this situation. We next sketch the application of the suggested analysis and design
process to the CTP.
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4.4 TImplementing the EOM Process
4.4.1 Phase I: Specifying the social level

In the first step the social structures are modeled in the form of (formal or informal) design
specifications. They might include the following (we use natural language for convenience and
concentrate only on a few design issues for lack of space):

1. Agents committing themselves to purchase/sell actions towards other must fulfil all resulting
obligations (deliver, pay, invoice etc.)

2. Unreliable behavior induces reluctance to enter business relationships on the side of others.
Fraudulence leads to exclusion from the platform.

3. Interest in offers and requests must be shown by others in order to provide motivations to
keep up the use of the platform.

The first specification is very important in order to foster trust among agents in such a platform.
If communication were only inducing a bunch of loose pseudo-commitments that are never kept,
the CTP risks becoming a playground instead of a serious, efficient marketplace. This principle
is refined by item 2: the "must" in the first rule can obviously not be deontically enforced on au-
tonomous agents, so it has to be replaced by a "softer" expression of obligation: by specifying that
unreliable behavior decreases the probability of others interacting with the unreliable individual
in the future, we provide an interpretation of the former rule in terms of "consequences". Also, we
distinguish "sloppy" from "illegal" behavior and punish the latter with exclusion from the plat-
form, a centralized sanction that the platform may impose. The third specification is somewhat
more subtle: it is based on the assumption that agents will stop posting offers and requests, if
they don’t receive enough feedback. Since we have to ensure both a broad range of offers as well as
reasonable traffic on the site, we want to make agents believe that their participation is honored
by others so that they keep on participating (for private buyers this might be irrelevant, since
they buy a car once every 5 years, but it is surely important to have plenty of professional dealers
frequent the site).

The process of specifying such possible societal behaviors should be iterated on the basis of
“scenarios” for all courses of communication that are of interest and seem possible, so as to yield
requirements for the social system that is to be implemented.

4.4.2 Phase II: Deriving and enacting appropriate expectation structures

Clearly, the three requirements above can be analyzed in terms of expectations, that is, as var-
iedly normative, possibly volatile rules that are made known to agents and evolve with observed
interaction. The second phase of the EOM process consists of making these abstract requirements
concrete as expected communication structures. Two such expectation structures derived from
the above requirements 1. and 3. are shown in Figures 6 and 7.

The first example depicts an expectation structure of an order-deliver-pay-procedure in the
CTP. It encapsulates high delivery and payment expectations (i.e., high transaction reliability),
but also a more specific expectation as concerns availability statements that are made by dealers:
although it is equally probable that the requested car will be available upon a first order, it is
highly unexpected that a car that had not been available is suddenly available upon a second,
identical order (in our model, responses to communication are supposed to occur in time-spans
that are much shorter than those needed to change stock). Thus, the first response is given much
more weight, and a notion of “honesty” in responding to orders is assumed.

The second example is closely related to design goal 3 introduced above. Here, the expectation
structure is used to express that few posted offers go unanswered by interested customers, and that
the enquiries of such customers are responded to with high probability. By using such a structure,
the designer can reassure both dealers and customers that it is worthwhile posting orders and
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Confirm availability

Fail to deliver

Place order

Deny availability

Place same order

Deny availability

Figure 6: Social program “order-deliver-pay” (buyer actions are shown in italic font, seller actions
in plain face, as in all following figures, speech act arguments are omitted for lack of space):
expectations about availability are balanced; in the “available” case, dealers are expected to deliver
and customers are expected to pay. In the “not available” case, dealers are expected to confirm
their prior statement if asked a second time (even though the probability of such a second request
is low).

enquiries to orders. If followed by the users of the CTP, such a structure would imply that
postings will be answered even if the other party is not actually interested in the offer/question,
and is just replying out of a sense of “politeness”, to the end of making everyone feel that their
contributions are honored. Associated with such conventions would be the designer’s goal to keep
the CTP frequented, by presenting the social structures as open and rich.

These simple examples given, we can return to our EOM design process model. We have shown
how two social structure specifications were turned into concrete expectation structures (phases I
and IT). For lack of space, we have concentrated on social programmes and neglected roles, social
agents and values. Preassuming that the CTP is implemented and observed during operation, we

can now proceed to phase III.
0.9:1

Show buyer interest
0.1:1 .
Fail to respond

Post offer

Figure 7: “Initiatives are honored” program: it is expected that dealers receive some response to
their offers by potential customers, and that they react to enquiries themselves.
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4.4.3 Phase III: Monitoring structure evolution

Unlike phases I and II, this phase focuses on observation of the system in operation in order to
further refine expectation structures and their processing. It is essential to keep in mind that
the systemic expectation “Mirror” (as a software component) leaves plenty of choices not only
as concerns the choice of employed expectation structures, but also with respect to how these
structures are processed, that is, how they evolve through monitored agent behavior in system
operation. To stress this second aspect, we concentrate on this processing of expectations in the
following examples.

Suppose, first, that we observe that actual behavior largely deviates from that assumed in
Figure 6 in that there are many fraudulent customers who do not comply with their obligation
to pay once the car has been delivered unless the dealer threatens with legal consequences several
times. Obviously, identifying such a problem preassumes that interaction is tracked and that
interaction patterns are statistically analyzed and evaluated with respect to existing system goals.
Therefore, the software engineer’s primary duty is, at this stage, to spot interesting behaviors
(both desirable and undesirable ones). Once realized, we are faced with a problem. By default,
even though payment was designed as a norm, the “expectation Mirror” would in show a high
deviancy (and since the normativity of “pay” is lower 1, it would in the long term even “truthfully”
adapt the expectation strengths of this expectation so that the strength of “fail to pay” increases).
This would mean that an emergent, hidden structure would be made explicit in the system, but,
unfortunately, this would be a structure that embodies a functionality which does not serve the
system goals (even though it has been “selected” through actual interaction) because it would
make future dealers doubt the reliability of the system.

As a second example, suppose that the expectation structure in Figure 7 corresponds to the
actual system behavior, but not because of some “polite” policy of customers to show interest in
any dealer posting — instead, demand in cars is simply (temporarily) so high (and maybe the
CTP is for some other reasons very attractive for customers) that almost no offer posting goes
unanswered. Assume further, that our initial design was to enforce “politeness” by insinuating that
it was a convention of the platform, even if customers would not have been polite at all, that is, we
had implemented this expectation structure as rather immutable (normativity of 0.5/1) regardless
of the agents’ behavior.

In both cases, we have identified emergent (positive and negative) properties of the system
that must be dealt with in phase IV.

4.4.4 Phase IV: Refinement of expectation structures

As designers of the platform, we can react to such emergent properties in different ways. To give
a flavor for the kind of decisions designers have to make when refining expectation models, we
discuss the two examples mentioned above.

In the case of the “spreading fraudulent customers”, the most straightforward solution would be
to impose sanctions on the fraudulent behavior observed (i.e., to add new expectation structures).
Let us assume, however, that an analysis has shown that it is too costly to verify customers’
solvency and payment reserves (e.g., by inquiring other E-commerce platforms about them). On
the other hand, ignoring the changes by keeping the old expectation structure (and asserting a
high payment reliability in a “propaganda” way) might result in future inconsistencies: if too many
individuals realize that it does not correspond to the actual social structure, they will use it less,
and the “social design” level will provide lesser possibilities to influence system behavior for the
designer.

Obviously, a trade-off has to be found. One possible solution would be to extend the structure
in the way suggested by Figure 8, such that failure to pay results in reluctance of dealers to accept
future orders from the unreliable customer. So, in phase IV we can specify a new functionality that
feeds into the system in the next cycle. As concerns the second, “positive” emergent, property, we
might consider lifting the constraint of presenting an “immutable” politeness convention, in order
to allow for optimization on the agents’ side: making the rule normative implies that it wouldn’t

32



Failto pay
B

: Fail to pay
0.2:1
0,

1l
Place order —’
0.:0 :

Urging letter

.81

Figure 8: Specifying a new functionality.

change, even if, for example, dealers’ offers changed over time — hence, there is little pressure for
dealers to actively try to meet customer demand. Thus, if we allowed this expectation to adapt to
the actual interest shown in offers (e.g., by updating expectation strengths as real probabilities,
which can be achieved by decreasing the normativity value shown in Figure 7), dealer agents would
start noticing which of their postings are good (ones which increase the rate of customer inquiry)
and which aren’t. (After all, maximizing market efficiency in this way might help maximizing
CTP profits, which also depend on gross trade turnover.) We therefore decide to increase the
adaptivity of this expectation structure.

Performing such modifications to the expectation level design of a system nicely illustrates how
rather restrictive social structures can give way to more emergent phenomena in “safe” non-risky
situations as the one depicted here when optimization is the prominent issue, and not the reduction
of chaos.

These simple examples underpin the usefulness of explicit modeling of social structures in the
proposed EOM process model. In particular, they show how both designing social structures
and designing the processing of such structures plays an important role in the open systems we
envisage. Also, they illustrate the evolutionary intuition behind our design process: agents select
social structures through their interaction, and designers select them through design.

5 Conclusion

EOM is thought to be applicable in all fields of agent-oriented research and engineering, where an
entity (a MA in our case) needs to model and maybe influence the behavior of autonomous black-
or gray-box agents. Besides the possibility to implement EOM concepts within “ordinary” agents
in order to improve their social cognition and interaction abilities, as for the future specification
and extension of EOM, we aim especially for the area of agent-orient software engineering and
programming. Engineering agent-oriented software while at the same time taking autonomy as a
key feature of agency seriously is a great challenge. On the one hand, it is (among other things)
autonomy that makes the concept of an agent powerful and particularly useful, and that makes
agent orientation significantly distinct from standard object orientation. There is an obvious and
rapidly growing need for autonomous software systems capable of running in open application en-
vironments, given the increasing inter-operability and inter-connectedness among computers and
computing platforms. On the other hand, autonomy in behavior may result in “chaotic” overall
system properties such as uncontrollability that are most undesirable from the point of view of
software engineering and industrial application. In fact, it is one of the major driving forces of
standard software engineering to avoid exactly such properties. To come up to each of these two
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contradictory aspects — the urgent need for autonomous software systems on the one hand and
the problem of undesirable system properties induced by autonomous behavior on the other —
must be a core concern of agent-oriented software engineering, and is the basic motivation un-
derlying the work described here. A number of agent-oriented software engineering methods (see
[13, 16] for surveys) as well as agent-oriented autonomy and organizational structure specification
formalisms (e.g., [2, 9, 11, 39, 31, 19, 12, 38]) are now available. Like EOM, all these methods and
formalisms aim at supporting a structured development of “non-chaotic” autonomous software.
However, they do so in a fundamentally different way, even compared to the most elaborated of
these frameworks which grant the actors a high degree of autonomy (e.g. OperA [10]): Besides the
possibility to specify social structures deliberatively, EOM also learns and revises social structures
empirically from observed agent interactions at run-time, resulting in a structure-level model of
the multiagent system, and restricts autonomous behavior only if this turns out to be necessary
retrospectively during the evolutionary development process, with as few as possible precognition
and pre-structuring required. Against that, most of the other methods and formalisms show a
clear tendency toward (seriously) restricting or even excluding the agents’ autonomy a priori.
Different mechanisms for achieving autonomy restrictions have been proposed, including e.g. the
hardwiring of organizational structures, the rigid predefinition of when and how an agent has to
interact with whom, and the minimization of the individual agents’ range of alternative actions.
As a consequence, methods based on such mechanisms run the risk to create software agents that
eventually are not very distinct from ordinary objects as considered in standard object oriented
software engineering since many years. EOM aims at avoiding this risk by accepting autonomy
as a necessary characteristic of agency that must not be ruled out headily (and sometimes even
can not be ruled out at all, as it is typical for truly open multiagent systems). With that, EOM
is in full accordance with Jennings’ claim to search for other solutions than the above mentioned
restrictive mechanisms [17, p. 290]. Moreover, EOM with its grounding on Luhmann’s theory of
social systems precisely is in the line of Castelfranchi’s view according to which a socially oriented
perspective of engineering social order in agent systems is needed and most effective [6]. In addition
to that, and more generally, this thorough sociological grounding also makes EOM different from
other approaches that apply sociological concepts and terminology in a comparatively superficial
and ad hoc manner. On these grounds, we hope that taking computational expectations as a level
of social reasoning, analysis and design opens a qualitatively new perspective of agent-oriented
software.
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