
Agent Orientation in Software Engineering

Gerhard Weiß
Institut für Informatik, Technische Universität München

D-80290 München, Germany, weissg@in.tum.de

Revised Version for Knowledge Engineering Review

January 2002

Agent-oriented software engineering (AOSE) is rapidly emerging in response to ur-
gent needs in both software engineering and agent-based computing. While these two
disciplines co-existed without remarkable interaction until some years ago, today there
is rich and fruitful interaction among them and various approaches are available that
bring together techniques, concepts and ideas from both sides. This article offers a
guide to the broad body of literature on AOSE. The guide, which is intended to be of
value to both researchers and practitioners, is structured according to key issues and
key topics that arise when dealing with AOSE: methods and frameworks for require-
ments engineering, analysis, design, and implementation; languages for programming,
communication and coordination, and ontology specification; and development tools
and platforms.

1

weiss
Rectangle



Table of Contents

1 Introduction /3

2 Basic Literature /4

2.1 Foundations /4
2.2 Agents and Objects /4
2.3 Aspects of Assessing Agent Orientation /5

3 Methods and Frameworks for Requirements Engineering /6

4 Methods and Frameworks for Analysis, Design, and Implementation /8

4.1 Approaches based on Agent and Multiagent Technology /8
4.2 Approaches based on Object-Oriented Technology /9
4.3 Approaches based on Knowledge Engineering Technology /10
4.4 Formal Specification and Verification /10
4.5 Further Key Issues /11

5 Languages /12

5.1 Programming Languages /13
5.2 Languages for Communication and Coordination /13
5.3 Ontology Specification Languages /15

6 Development Tools and Platforms /16

7 Other Approaches at the Intersection of
Agent Systems and Software Engineering /17

8 Conclusions /19

References /21–34

2



1 Introduction

Recent developments in agent-based computing and software engineering have revealed a signif-
icant potential and urgent demand for a close interaction among these disciplines. On the one
hand, as the number of fielded agent-based software systems grows it becomes important to have
software engineering technology available that is specifically tailored for these systems. Thus
software engineering is crucial to the industrial and commercial application success of agent-
based computing. On the other hand, as today’s and tomorrow’s standard software systems are
required to operate in increasingly complex – distributed, large, open, dynamic, unpredictable,
heterogeneous, and highly interactive – application environments it appears to be very promising
and natural to build these systems in terms of agent and multiagent technology. Thus agent ori-
entation can serve as an useful paradigm in software engineering. The field emerging as a result
of this mutual demand for interaction has been referred to as agent-oriented software engineering
(AOSE).

This article wants to support and guide both researchers and practitioners in navigating
through and becoming acquainted with available literature on AOSE. Creating such a guide to
AOSE is challenging for three major reasons. First, AOSE constitutes a very young field that has
not yet settled on unique and commonly accepted criteria for evaluating methods, techniques,
and tools. As a response to this, not only pointers to completed and elaborated approaches were
included in this guide, but also pointers to approaches being in a relatively early and exploratory
stage of development. Second, AOSE constitutes an interdisciplinary field. As a response to this,
the guide also contains pointers to related work from the broader context of software engineering
and agent-based computing. And third, AOSE is a field that evolves very rapidly. For that
reason this guide can not be guaranteed to provide pointers to all work relevant and related to
AOSE. The guiding principle was to make this guide as comprehensive as possible while at the
same time keeping it as focused as necessary.

The article is structured as follows. Section 2 deals with various basic issues raised by AOSE.
This section points to work on the general principles and ideas underlying AOSE (2.1), work
on the relationships between agents and objects (2.2), and work contributing to an assessment
of agent orientation (2.3). Section 3 treats AOSE-related methods and frameworks for require-
ments engineering.1 There are two lines of approaches within requirements engineering, known
as agent-oriented requirements engineering and goal-oriented requirements engineering, that are
of particular relevance from the point of view of AOSE; pointers to work from both lines are
provided. Section 4 overviews methods and frameworks for analysis, design and implementation
of agent-oriented software. This includes pointers to approaches primarily based on agent and
multiagent technology (4.1), object-oriented technology (4.2), and knowledge engineering tech-
nology (4.3). What is also offered are pointers to work on the formal specification and verification
of agent-oriented software (4.4) and further notes on key issues of agent-oriented analysis and
design (4.5). Section 5 concentrates on AOSE-relevant languages. Three types of languages are
distinguished: programming languages for implementing agent-oriented software (5.1), languages
for specifying communication and coordination among agents (5.2), and languages for specifying
ontologies that enable agents to share and reuse knowledge (5.3). Section 6 focuses on devel-
opment tools and platforms for agent-oriented software, and points to research prototypes as
well as commercial products. Section 7 provides an overview of further approaches that apply
standard concepts and formalisms known from software engineering to agent-oriented software.
The concepts and formalisms considered are design patterns, software architectures, use cases
and scenarios, and the Unified Modeling Language (UML). Finally, Section 8 summarizes key

1In the literature the terms method and framework are not used uniformly, and in this article both are used
to refer to a structured description of steps, activities, and/or guidelines that aim at successfully realizing one or
several phases of the software life cycle.

3



aspects and identifies urgent open issues that need to be addressed to ensure a further successful
development of AOSE.

2 Basic Literature

2.1 Foundations

AOSE is concerned with the engineering of software that has the concept of agents as its core
computational abstraction. There are several readable articles, in particular [1, 2], that treat
various key aspects of AOSE and of the paradigma of agent-based computing in general. A
recent useful overview of the state of the art in AOSE is [3]. Earlier papers offering useful initial
considerations on AOSE are [4, 5, 6]. There are two collections of papers on AOSE [7, 8], and
related collections with a somewhat broader engineering perspective on agent systems are [9, 10].
These collections are a good starting point for exploring the field with its various facets.

2.2 Agents and Objects

Dealing with AOSE requires to deal with the notion of agency. Many different perspectives of
agency have been described and discussed, and there is nothing like an “universally accepted”
definition of what exactly determines agenthood. Among the key texts that seek to contribute
to a clarification of the concept of agents are [11, 12]. Examples of other readable introductory
texts on software agents are [13, 14]. Well written course-level texts on computational agency are
[15, Chapter 2] and [16]. Books that broadly cover agent and multiagent technology are [17, 18].
Despite dissension in detail, however, there is an increasingly broad agreement on the usefulness
of characterizations of the following kind, adapted from [19]:

An agent is an encapsulated computer system that is situated in some environment
and that is capable of flexible, autonomous action in that environment in order to
meet its design objectives.

Although not explicitly expressed by this characterization, there is also a broad agreement on
the importance of considering multiple, interacting agents rather than a single agent acting in
isolation. In fact, in most cases the terms agent-based system and multiagent system are used
synonymously.

There is an ongoing debate on the relationships between agents and objects. Valuable papers
throwing light on this issue are [1, 20]. Recent publications in the field seem to indicate that this
debate converges to the following broad consensus:

• the concept of agents is significantly different from the concept of objects in that it allows
for a qualitatively different perspective of complex systems and their development;2 and

• there is room for both the agent concept and the object concept because they are concerned
with different levels of computational abstraction.

2The main reason for this is that objects only encapsulate identity (“who”), state (“what”), and passive
behavior (“how, if invoked”), while agents additionally encapsulate multiple degrees of freedom in activity and
interaction (“when,” “why,” “with whom” and “whether at all”). As a consequence, the concept of agents is
much more adequate for capturing autonomous and flexible behavior at the cognitive and the social level. These
considerations could be refined by distinguishing between active and passive objects; the former have their own
threads of control (resulting in a decoupling of method execution from method invocation), whereas the latter
have not. Although active objects are much closer to agents than passive objects in that they also show some
kind of autonomy (or, at least, independence of invocation), they still differ w.r.t. their behavioral freedom and
flexibility. As stated in [3, p. 6], “active objects are essentially agents that do not necessarily have the ability
to exhibit flexible autonomous behavior”. This also indicates that in practice it can not be expected that it is
always easy to decide whether a real-world entity should be treated as an agent or as an object. Interestingly,
available standard characterizations of both “agents” and “objects” are of quite general flavor, which often makes
the identification of real-world representatives of both concepts difficult.

4



In other words, there is a shift from an “agents versus objects” controversy toward an “agents and
objects” perspective reflecting the growing agreement on the need for both agents and objects.

2.3 Aspects of Assessing Agent Orientation

Benefits of Agent Orientation. The question why it is worth to take an agent-oriented
approach to software is addressed in various articles. Among them are, in particular, [1, 2].
As argued there, a key point is that agent-oriented software is well suited for complex – open,
networked, large, and heterogeneous – application domains. This is mainly due to the fact
that the agent concept, as a first-order abstraction, allows a very natural and intuitively clear
modelling and implementation perspective. This application-oriented characterization of the
benefit of agent orientation is also emphasized in [21] where it is argued that an application is
particularly suited for an agent-oriented approach if it involves many components which

• are not all known a priori (i.e., at requirements specification and design time),

• can not all be assumed to be fully controllable in their behavior (e.g., due to conflicting
interests and non-public individual preferences); and

• must interact on a sophisticated level of communication and coordination to achieve their
individual or joint design goals.

Domains in which such applications can be found range from electronic and mobile commerce,
over supply chain and business process management, to telecommunication and logistics. For a
great part it is this advantage of agent orientation which has caused the broad and fast growing
interest in agent-oriented software and its engineering.

As discussed by Jennings in [1], agent orientation can be viewed as a natural next step in the
evolution of a wide range of software engineering approaches. While this step does not supplant
techniques such as object orientation, component ware and design patterns, it provides a useful
higher level of computational abstraction. In [1] it is also pointed out that agent orientation
fully supports the three techniques which Booch [22, pp. 16f] identifies as being essential for
coping with software technology, namely, decomposition, abstraction (information chunking),
and hierarchy identification. Moreover, as also argued there, agent orientation does not represent
a radical departure from current software engineering thinking; instead, legacy software can be
relatively easily incorporated in agent software. From these benefits of agent orientation, and
from the broad range of potential applications, it was concluded that agent orientation does have
the capacity to succeed as a mainstream software engineering paradigm.

No Silver Bullet. There is no silver bullet in software engineering [23]. This does hold for
object orientation (see, e.g., [24, 25]), and also for agent orientation. A difficulty specific to agent
orientation seems to lie in the term agent itself, as it inherently tends to evoke mental associations
and images (especially in the heads of people not familiar with agent technology) that are far
from any software-technical relevance and realization. In order to cope with this difficulty a
developer always has to keep in mind that “agent” is to be used strictly as a technical term that
must not be confused with the term “agent” as used in everyday life. Another difficulty of agent
orientation results from its emphasis on autonomy. As pointed out in [1], not handling autonomy
carefully enough can lead to an unpredictability of the patterns and outcomes of interactions, and
thus to undesirable emergent phenomena at the overall system level. It is further argued there
that this difficulty can be avoided, or at least reduced, by applying rigid interaction protocols
and preset organizational structures. Of course, applying such protocols and structures tends
to limit agent autonomy and the potential advantages implied by it (e.g., self-organization and
robustness), and so further research is necessary to find better, more sensitive solutions to this
difficulty.

5



Pitfalls and Challenges. A readable paper on pitfalls of the agent-oriented approach is [26].
Examples of the 24 identified pitfalls are the following:

• You oversell agents.

• You see agents everywhere.

• You get religious or dogmatic about agents.

• You don’t know what your agents are good for.

• You confuse buzzwords with concepts.

• You don’t exploit related technology.

• You forget you are developing software.

The reader interested in useful broader considerations on the challenges raised by agent-based
systems from the software engineering perspective is particularly referred to [27, 28, 29, 30].

Work Identifying Questions that Matter. Two useful papers that highlight basic questions
one has to deal with when developing industrial agent-based systems are [31, 32]. Three examples
of such questions are:

• What in a system becomes an agent?

• What communication channels and protocols do agents use?

• How mature is the application?

Another key question a developer has to deal with is what (multi-)agent architecture should be
choosen for a given application. To answer this question is not trivial, given the many available
architectures proposed in the literature [33]. Helpful guidelines for answering this question can
be found in [34].

A comprehensive list of general research questions on various aspects of multiagent systems is
given in [35]. These are not “software engineering questions,” but they help to gain an intuitive
understanding of the broad variety of issues and challenges one may be confronted with when
building a concrete agent-based software system.

3 Methods and Frameworks for Requirements Engineering

Requirements engineering is concerned with eliciting, modelling, and analyzing the functional and
non-functional capabilities a software system must possess in response to real-world constraints.
As noted in [36], requirements engineering is often regarded as the front-end activity in the
software development process, although it plays an important role in the management of change in
all phases of software development. There are two closely related streams of work on requirements
engineering, known as agent-oriented and goal-oriented requirements engineering, that are of
particular relevance from the point of view of AOSE.

Agent-Oriented Requirements Engineering. The importance of considering active software
and environmental components has been realized in field of requirements engineering more than a
decade ago. The seminal paper in this respect is [37], in which a simple framework for modelling
agents and for reasoning about their behavioral choice and constraints was introduced. Today
the modelling of agents is considered as a particular area of concern in requirements engineering
[38], and so it is not surprising that there is an increasing number of requirements engineering
approaches that primarily rely on the concept of agents. Together these approaches establish a

6



line of research and application which is usually referred to as agent-oriented requirement engi-
neering [39]. Two readable papers that clarify the role of the concept of agents in requirements
engineering are [40, 41]. As pointed out there, it is important to distinguish between two no-
tions of agents: agents as concrete software artifacts (which is the predominant notion in current
AOSE), and agents as conceptual modelling constructs (which is the predominant notion in
requirements engineering). As it is further noted in these two papers, there is no one-to-one cor-
respondence between these two notions – in particular, an agent-as-a-modelling-construct may
eventually not be materialized as an agent-as-a-software-artificat. Based on these considerations
it is proposed to distinguish two conceptions of AOSE, namely, “engineering of agent-oriented
software” (EAOS) and “agent-oriented engineering of software” (AOES).

Key examples of requirements engineering approaches that take the concept of agents as the
primary guiding concept are the following:

• i* [42]. i* – this naming refers to the notion of distributed intentionality – is a modelling
framework whose central construct is that of an agent having intentional properties such
as goals and commitments.

• ALBERT [43] and ALBERTII [44] (ALBERT stands for “Agent-oriented Language for
Building and Eliciting Real-Time requirements”). These are formal, agent-centered re-
quirements specification languages.

A good example of how i* and ALBERTII can be combined is described in [45]. A complete
requirements-driven framework for agent-oriented systems development that adopts i* is

• Tropos [46] (Tropos stands for “easily changeable” and “easily adaptable”, derived from
the Greek “tropé”).

Goal-Oriented Requirements Engineering. Closely related to agent-oriented requirements
is what has been called goal-oriented requirements engineering in the literature (especially see
[47, 48]). What makes goal-oriented requirements engineering frameworks attractive is that they
are not restricted to functional requirements (“what the software is expected to do”) but explic-
itly capture non-functional requirements (whose identification requires to repeatedly ask goal-
directed questions like why , how , and how else). Such non-functional requirements, sometimes
also called quality requirements or soft(-goal) requirements, refer to qualities like responsibilities,
environmental interactions, reliability, flexibility, integrity, and adaptability, and thus to qual-
ities that also play an essential part in the realm of agent-based systems. Goal-orientation in
requirements engineering supports an explicit identification and evaluation of goal alternatives.
Two key examples of complementary goal-oriented frameworks are

• KAOS (“Knowledge Acquistion in autOmated Specification”) [49] and

• NFR (“Non-Functional Requirements”) [50].

While KAOS is a formal framework having its focus on requirements acquisition, NFR is a qual-
itative framework having its focus on the representation of and reasoning about non-functional
requirements. Within the NFR framework the concept of softgoals – i.e., goals having no clear-cut
definition and/or satisfaction criteria – is used to represent non-functional requirements.

It is finally mentioned that there is no sharp borderline between agent-oriented and goal-
oriented requirements engineering. For instance, in i* goals are always associated with agents,
while ALBERT allows to talk about agents without talking about goals and NFR primarily deals
with goals but not with agents. In other words, goal orientation and agent orientation in current
requirements engineering approaches do neither include nor exclude each other.

7



4 Methods and Frameworks for Analysis, Design, and

Implementation

This section overviews available methods and frameworks for the analysis, design and implemen-
tation of agent-oriented software. There is a wide variety of such methods and frameworks, and
the criterion applied here to characterize and structure this variety is the disciplinary background
on which the different approaches are based. This criterion is particularly appealing because it
reveals the main foci, intentions and principles underlying the different methods and frameworks.
The following disciplinary backgrounds can be distinguished:

• Agent and multiagent technology . Approaches having this background are characterized by
a clear focus on capturing social-level abstractions such as agent, group, or organization,
that is, on abstractions that are above the conventional object level. These approaches are
treated in 4.1.

• Object orientation. Approaches with this background are characterized by the attempt to
appropriately extend existing object-oriented techniques such that they also capture the
notion of agency. These approaches are considered in 4.2.

• Knowledge engineering . Approaches with this background are characterized by an emphasis
on the identification, acquisition and modelling of knowledge to be used by the agent
components of a software system. Approaches of this type are subject of 4.3.

Formal approaches to the specification and verification of agent systems are listed in 4.4, and
further methodological considerations of more general flavor are provided in 4.5.

4.1 Approaches based on Agent and Multiagent Technology

There are a number of “pure” methods and frameworks having agent and multiagent technology
as their primary background. A key assumption underlying these approaches is that a grounding
in object orientation falls short in the sense that it does not allow to capture elementary char-
acteristics of agency. Among the most often cited representatives of this type of approaches are
the following:

• Gaia (“Generic Architecture for Information Availability”) [51]. This is a method that
distinguishes between analysis and design and associates different models with these two
phases. Gaia focuses on organizational aspects in terms of concepts such as roles, interac-
tions, and acquaintances. See also [52] which discusses an extension of Gaia based on the
concept of coordination models known from the area of standard coordination languages
(see 5.2).

• SODA (“Societies in Open and Distributed Agent spaces”) [53]. This is another good
example of an analysis and design method that concentrates on the social (inter-agent)
aspects of agent systems and that employs the concept of coordination models.

• Cassiopeia [54]. This is a design method that distinguishes three levels of behavior –
elementary, relational, and organizational – and aims at capturing both structural and
dynamic aspects of the target system.

• Aalaadin [55]. This is a general analysis and design framework that has its focus on the
organizational level of multiagent systems and is built on the three core concepts of agents,
groups, and roles. A formal extension of this approach toward specifying the requirements
on the overall multiagent system dynamics is proposed in [56].

8



Apart from these most well known “pure” approaches, recently several other distinct approaches
have been proposed that are mainly concerned with issues above the standard object level. Four
good examples are the following:

• EXPAND (“Expectation-oriented analysis and design”) [57]. This is an analysis and design
method that emphasizes the aspect of autonomy and that introduces expectations held by
individual agents as a first-order abstraction.

• In [58] an analysis and design method is described that emphasizes the distinction between
markets, networks, and hierarchies as agent society frameworks.

• In [59] a method is proposed that distinguishes between two phases – discovery and def-
inition – within which several models of the agents’ external and internal behavior are
generated. The method deals with both the visualization and specification of behavior and
employs use case maps.

• In [60] is is argued that organizational abstractions – organizational rules, organizational
structures, and organizational patterns – should play a central role in the analysis and de-
sign of multiagent systems. Initial considerations on an organization-oriented methodology
based on these abstractions are provided.

Another elaborated agent-oriented method is Tropos (see 3); the distinguishing feature of Tropos
is that it covers requirements analysis as well.

4.2 Approaches based on Object-Oriented Technology

There are several approaches to agent-oriented software systems that have the object-oriented
paradigm (e.g., [22]) as their starting point. Prototypical examples of such approaches are the
following:

• KGR [61]. This is a design and specification method for a particular class of agents, namely,
BDI agents [62]. KGR extends the object modelling technique (OMT) and considers two
viewpoints – external and internal – of agent systems.

• MaSE (“Multiagent Systems Engineering”) [63]. This method covers design and initial
implementation through two languages called AgML (“Agent Modeling Language”) and
AgDL (Agent Definition Language) and builds upon OMT and UML.

• MASSIVE (“MultiAgent SystemS Iterative View Engineering”) [64]. This method covers
analysis, design and code generation, and combines standard software engineering tech-
niques such as multiview modelling, round-trip engineering, and iterative enhancement.

• AOAD (“Agent-Oriented Analysis and Design”) [65]. This analysis and design method
proposes the use of extended class responsibility cards (CRCs) and the use of both the
Object Modelling Technique (OMT) and the Responsibility Driven Design (RDD) method
known from object-oriented development.

• MASB (“Multi-Agent Scenario-Based”) [66]. MASB is an analysis and design method that
covers issues of both objects and agents via behavior diagrams, data models, transition
diagrams, and object life cycles.

Good examples of work that do not describe complete methods but extensions of concepts and
techniques well known in the realm of object-oriented software engineering are the following:

• In [67] it is proposed to use extended role models known from object-oriented software
engineering as abstractions and patterns for agent-oriented analysis and design.

9



• AOR (“Agent-Object-Relationship modeling/diagrams”) [68]. AOR is an agent-oriented
extension of the conventional Entity-Relationship modelling technique.

Examples of other approaches that aim at extending the object-oriented perspective to cope with
issues of agency are [69, 70, 71, 72].

4.3 Approaches based on Knowledge Engineering Technology

Knowledge engineering (e.g., [73]) has served as another fruitful background for new agent-
oriented development methods and frameworks. The two best examples of such methods cur-
rently available are the following:

• CoMoMAS (“Conceptual Modelling of Multi-Agent Systems”) [74]. This is an elaborated
extension of the CommonKADS methodology [75], supporting analysis, design, and au-
tomated code generation. CoMoMAS focuses on knowledge engineering issues arising in
multiagent contexts and integrates a commercial tool called KADSTOOL for the concep-
tion of expertise models.

• MAS-CommonKADS (“Multi-Agent System CommonKADS”) [76]. This is another ex-
tension of CommonKADS that supports analysis and design of agent-oriented systems.
MAS-CommonKADS adds object-oriented methods such as the Object Modelling Tech-
nique (OMT), Object Oriented Software Engineering (OOSE) and Responsibility Driven
Design (RDD) as well as protocol engineering methods such as the Specification and De-
scription Language (SDL) and Message Sequence Charts (MSCs).

Another example of work aiming at an extension of CommonKADS to meet social level re-
quirements is [77]. By its very nature knowledge engineering has a very close relationship to
the engineering of agent and multiagent systems (more specifically, of knowledge bases used by
agents). For that reason it appears to be promising to think about development approaches
based on established knowledge engineering methods such as MIKE or PROTEGE.

4.4 Formal Specification and Verification

Generally, specification is concerned with the functionality of the desired system, given the
customers expectations and needs; the key question to be addressed is what product should be
built. Verification is concerned with the correctness of the product, given its specification; the
key question to be addressed is whether the product is built correctly. A readable overview of
formal specification and verification approaches for agent systems is [78]. As noted there, the
use of logics appears to be a very successful way to a formal specification of agent systems. Most
prominent examples of logical specification frameworks are the following:

• the theory of intention [79];

• the belief-desire-intention model [80]; and

• LORA (“Logic of Rational Agents”) [81].

Another logic-based specification scheme, allowing for a declarative representation of multiagent
systems, is described in [82]. A well known alternative formal specification approach is

• DESIRE (“DEsign and Specification of Interacting REasoning components”) [83].

This approach has its roots in knowledge engineering, although its specifications and their se-
mantics can be formalized via temporal logics. DESIRE differs from other formal knowledge
engineering specification approaches (see [84] for an overview) in that it maintains several lo-
cal states rather than a single global one – this makes DESIRE particularly interesting from

10



the agent systems perspective. A pioneering approach to the automated compilation of agent
specifications is described in [85].

With respect to verification, two types of main approaches can distinguished:

• axiomatic approaches, that is, approaches based on techniques of theorem proving (see
[86, 87, 88] for good examples); and

• semantic approaches based on model checking (see [89, 90]).

Some available approaches to AOSE employ standard formal methods, techniques, and lan-
guages that are well known in software engineering. Among these formalisms are, in particular,

• the state-based language Z [91] and

• Petri net theory.

A good example of a Z-based formal framework for agent system specification is described
in [92]. More general considerations on the value of Z for agent-based system specification are
provided in [93]. Good examples of Petri net-based specifications of multiagent systems can
be found in [94, 95]. There is other Work in mainstream computer science that appears to be
of relevance for multiagent system specification and verification. This includes, for instance,
reactive systems theory [96, 97] and concurrency theory (CCS, CSP, π-calculus, etc., see [98]).
The full value of these theories in multiagent contexts still needs to be explored.

Almost all methods and frameworks mentioned throughout this paper explicitly deal, at dif-
ferent levels and with different intensity, with coordination and communication. Some of them
(e.g., MaSE [63]) use formal or semi-formal standard notations to describe and to represent coor-
dination and communication among agents, while others (e.g., Gaia [51]) rely on more informal
ones. Examples of such standard notations are UML-type sequence diagrams and Petri nets. An
alternative representation formalism, originally developed and used in linguistics and discourse
analysis, are Dooley graphs [99]. For instance, these graphs have been used for the explica-
tion of relationships within agent-agent conversations [100] and for the engeering of multiagent
coordination requirements [101].

The reader interested in a broader discussion of the use of formalisms for multiagent systems
is pointed to [102].

4.5 Further Key Issues

Hybrid Approaches. The three types of methods and frameworks that can be distinguished
by applying the disciplinary background as the characterizing criterion are not fully orthogonal.
For instance, an approach primarily based on knowledge engineering may show specific features
of object orientation, and an approach based on multiagent technology may also cover critical
requirements engineering issues. Hence, rather than thinking of sharp borderlines between these
types, one should better assume a gradual transition among them. A good example of a method
that explicitly attempts to integrate concepts and techniques from different backgrounds is

• MESSAGE (“Methodology for Engineering Systems of Software Agents”) [103].

This method, which covers all phases of software development, merges ideas, techniques, and
approaches such as KAOS-based requirements engineering, UML, CommonKADS, Gaia, and the
Rational Unified Process model. MESSAGE has been developed in response to the needs of the
telecommunications industry, but is applicable to other domains as well. Another, yet much less
detailed and very general analysis and design method which is intended to be extensible through
techniques and concepts from different disciplines is the AWIC (“Agents-World-Interoperability-
Coordination”) method [104].

11



Alternative Characterizations. The disciplinary background is, of course, not the only
(though a very useful) criterion for characterizing available methods and frameworks for agent-
oriented software development. Five examples of alternative criteria are sketched below. None
of them should be considered as “the best” because each reveals relevant properties from a dif-
ferent perspective. At the moment no unified and generally accepted characterization scheme is
available, but it is obvious that ideally such a common scheme combines all five criteria in one
way or another.

Perhaps the most obvious alternative criterion is the portion of the development process
covered by a method. Most available approaches deal with analysis and design (e.g., SODA
[53]), although there are approaches that cover implementation as well (e.g., MASSIVE [64]).

Another alternative criterion is the modelling level on which a method primarily focuses.
Based on this criterion, one can distinguish between approaches emphasizing the intra-agent
level (which concerns e.g. the individual agent’s components, knowledge structures, and reasoning
strategies), the inter-agent level (which concerns e.g. communication and coordination protocols),
and the supra-agent level (which concerns e.g. organizational structures, norms, and social laws).
As a rough indication it can be said that most available approaches primarily based on object-
oriented technology tend to stress the intra-agent level, while available approaches primarily
based on agent and multiagent technology typlically emphasize the intra-agent and supra-agent
levels.

A third, related criterion is the developmental direction, resulting in the distinction between
bottom-up (e.g., AOAD [65]) and top-down (e.g., Aalaadin [55]) approaches. The former start
by identifying and specifying intra-agent characteristics, whereas the latter start by identifying
properties at the supra-agent level.

A fourth alternative criterion is generality . For instance, there are approaches which are
less general in that they are designed to support specific agent architectures such as contract-net
architectures (e.g., Cassiopeia [54]) or BDI architectures (e.g., KGR [61]), while other approaches
are more general and independent of specific agent views (e.g., Gaia [51]). This criterion could
be further refined by distinguishing “technological generality” and “application generality.”

Finally, a fifth alternative criterion is the level of granularity , that is, the level of detail
considered by the approaches. This criterion could be further refined by considering granularity
w.r.t. the different modelling levels mentioned above and/or w.r.t. the different phases of the
software life cycle.

Available Surveys. Two useful surveys of available development methods and frameworks for
agent-oriented software systems are available:

• The comprehensive survey in [105] compares a number of development approaches, as well
as several programming languages and simulation environments, w.r.t. their coverage of
life cycle phases and their abstraction granularity.

• The survey offered in [106] covers several agent-oriented extensions of object-oriented and
knowledge engineering methods, and additionally points to several formal specification
methods.

5 Languages

This section overviews languages for programming agent-based systems (5.1), languages for com-
munication and coordination among agents (5.2), and languages for specifying ontologies (5.3).

12



5.1 Programming Languages

Most agent systems are probably written in Java and C/C++. Apart from these standard lan-
guages, several prototype languages for implementing agent-based systems have been proposed
that all aim at enabling a programmer to better realize agent-specific conceptions. Taking a
look at these languages also helps to understand the ideas behind and the challenges of pro-
gramming agent-oriented systems. Three paradigms for implementing agent systems have been
proposed: agent-oriented programming [107] and, more recently, market-oriented programming
[108] and interaction-oriented programming [109, 110]. The basic idea behind market-oriented
programming is to view, design and implement agent systems according to economic principles
of markets and market price systems. Against that, interaction-oriented programming is based
on the idea that a designer’s and programmer’s focus should be on the events and processes oc-
curing between (rather than within) agents. The formulation and elaboration of the paradigms
of market orientation and interaction has just started, and so in the following the focus will be
on the agent-oriented programming paradigm.

Among the most prominent and best understood prototype languages following the agent-
oriented paradigm are the following:

• AGENT-0 [107] realizes the basic ideas of the agent-oriented programming paradigm as
formulated by Shoham. A language that extends AGENT-0 toward planning is PLACA
[111], and a language that aims at integrating AGENT-0 and KQML (see 5.2) is AGENT-K
[112].

• Concurrent MetateM [113] allows to specify the intended behavior of an agent based on
temporal logics. A comparison of Concurrent MetateM and DESIRE (see 4.4) is presented
in [114].

• AgentSpeak(L) [115] is a rule-based language that has a formal operational semantics
and that assumes agents to consist of intentions, beliefs, recorded events, and plan rules.
AgentSpeak(L) is based on an abstraction of the PRS architecture [116]. A formal spezifi-
cation of AgentSpeak(L) based on Z is presented in [117].

• 3APL [118] incorporates features from imperative and logic programming. 3APL has a well
defined operational semantics and supports monitoring and revising of agent goals. Work
relating 3APL and AgentSpeak(L) is described in [119].

• ConGolog [120] is a concurrent logic-based language initially designed for high-level robot
programming. Work relating ConGolog and 3APL is presented in [121].

Other examples of languages following the agent-oriented programming paradigm are April
(“Agent PRocess Interaction Language”) [122], MAIL/MAI2L (“Multiagent Interaction and Im-
plementation Language”) [123], and VIVA [124]. While standard concurrent programming lan-
guages do not support high-level agent modelling, most available languages for agent-based pro-
gramming do not support concurrency (but see Concurrent MetateM and ConGolog). A system
called DAISY that aims at overcoming this problem by including both an object-oriented lan-
guage called CUBL (“Concurrent Unit Based Language”) and an agent-oriented language called
MAPL (“Multiple Agent Programmer Language”) is described in [125]. The first commercially
available language for the network-independent implementation of mobile agents is Telescript
[126]. A discussion of design choices for agent-oriented languages and their effects on program-
ming open systems can be found in [127].

5.2 Languages for Communication and Coordination

The difficulty to precisely handle coordination and communication increases with the size of the
agent-based software to be developed. In response to this a number of languages for coordination

13



and communication have been proposed. The most prominent examples of such languages are
the following:

• KQML (“Knowledge Query and Manipulation Language”) [128, 129] is perhaps the most
widely used agent communication language. An integration of KQML into Tcl/Tk is pro-
posed in [130].

• ARCOL (“ARTIMIS COmmunication Language”) [131] is the communication language
used in the ARTIMIS system [132]. ARCOL has a smaller set of communication primitives
than KQML, but these can be composed.

• FIPA-ACL (“FIPA Agent Communication Language”) [133] is an agent communication
language that is largely influenced by ARCOL. Together FIPA-ACL, ARCOL, and KQML
establish a quasi standard for agent communication languages.

• KIF (“Knowledge Interchange Format”) [134, 135]. This logic-based language has been
designed to express any kind of knowledge and meta-knowledge. KIF is a language for con-
tent communication, whereas languages like KQML/ARCOL/FIPA-ACL are for intention
communication.

• COOL (“domain independent COOrdination Language”) [136]. COOL aims at explicitly
representing and applying coordination knowledge for multiagent systems and focuses on
rule-based conversation management. Languages like COOL can be thought of as support-
ing a coordination/communication (or “protocol-sensitive”) layer above intention commu-
nication.

Apart from these most prominent languages, several others showing unique properties have been
proposed, for instance:

• ICL (“Interagent Communication Language”) [137] is a language that encompasses both
agent-agent and agent-human communication and deals with conversational protocols and
content descriptions.

• AgentTalk [138] is a coordination protocol description language for multiagent systems.
AgentTalk supports the application-specific, incremental definition and customization of
coordination protocols.

• CoLa (“Communication and coordination Language”) [139] allows for the specification of
obligations and authorizations and supports the separation of tasks and contracts.

• TuCSoN (“Tuple Centres Spread over Networks”) [140] is a coordination model based on
the notion of programmable communication abstractions called tuple centres. This model
has its focus on Internet applications for mobile agents. An extension of TuCSoN towards
security and topology is proposed in [141].

• LuCe [142] is a coordination language that is based on first-order logic and adopts tuple
centres as coordination media. The semantics of LuCe (or LuCe-like languages) is described
in [143].

• STL++ (“Simple Thread Language ++”) [144] is a language that provides a framework
for describing the organizational structure of a multigent system. STL++ supports peer-
to-peer, multicast and generative communication.

• SDML (“Strictly Declarative Modelling Language”) [145] is a language designed to facilitate
modelling of multiagent interactions.

14



A principal problem with available communication languages lies in the definition of a unique
semantics – even implementations of quasi standard languages such as KQML resulted in different
dialects that prohibit communication beyond proprietary multiagent systems. This problem is
addressed in a number of publications; good examples are the following:

• in [146] it is proposed to emphasize social interaction rather than mental agency in the
formal semantics of communication languages in order to avoid the problem of multiple
dialects;

• a method for designing application-specific communication languages for which it is easier
to verify semantic compliance is introduced in [147]; and

• the problem of determining conformance to the semantics by an independent observer is
formally investigated in [148].

A brief overview and discussion of main topics of interest in agent communication research can
be found in [149].

Here are pointers to some survey articles:

• A recent useful survey of intentional agent communication languages can be found in [150].

• There are several readable introductions to and reviews of coordination/communication
languages and models for parallel and distributed programming; see [151, 152, 153, 154].
Though these languages and models do not explicitly deal with coordination and commu-
nication in agent systems, they obviously are relevant to it.

A valuable book bringing together a number of contributions centered around the coordination
of agents on the Internet is [155].

5.3 Ontology Specification Languages

In order to increase interoperability and to enable agents to act jointly – to solve problems,
to plan, and to learn together rather than in isolation – especially in large-scale and/or open
applications, it is necessary to specify a common ontology (i.e., an explicit and precise description
of domain concepts and relationships among them) on the basis of which they can share and reuse
knowledge. Several prototypical languages have been proposed that support the creation and
edition of ontologies. Among the most elaborated examples of such languages are the following:

• Frame-based languages such as Ontolingua [156] and Frame Logic [157]. Both Ontolingua
and Frame Logic extend first-order predicate logics. The key modelling primitive of these
languages are frames as known from artificial intelligence.

• Description logics such as CLASSIC [158] and LOOM [159] that allow an intensional defi-
nition of concepts.

• CycL [160] extends first-order predicate logic and was developed to enable the specification
of large common-sense ontologies.

As the number of agent-oriented Web-based applications (including all kinds of applications
requiring the processing of information on the Web as well as all kinds of E-commerce and
B2B applications) increases, it becomes more and more important to have ontology specification
languages that are conform to syntactic and semantic Web standards. The most prominent
approaches to such languages are the following:

• SHOE (“Simple HTML Ontology Extension”) [161] is a language that slightly extends
HTML and enables a hierachical classification of HTML documents and the specification
of relationships among them.

15



• XOL (“Ontology Exchange Language”) [162] is an XML- and frame-based language for the
exchange of ontologies.

• OIL (“Ontology Inference Layer”) [163] aims at unifying formal semantics as offered by
description logics, rich modelling primitives as offered by frame-based languages, and the
XML and RDF web standards.3 OIL can be seen as an extension of XOL offering both an
XML-based and an RDF-based syntax.

• The DAML (DARPA Agent Markup Language) languages DAML-ONT and DAML-OIL
[164]. DAML-OIL, which replaces DAML-ONT and represents the state of the art in the
field, has a well defined model-theoretic and axiomatic semantics.

Several editors for ontology creation and maintenance have been proposed. Three good
examples of such editors are

• Protégé [165] which supports single-user ontology acquisition,

• Webonto [166] which supports multiple-user ontology acquisition over the Web, and

• OntoEdit [167] which supports multilingual development of ontologies and multiple inher-
itance.

A very useful and broader introduction to ontologies is [168]. Readers interested in good
introductory articles on ontologies are pointed to [169, 170].

6 Development Tools and Platforms

A number of tools and platforms are available that support activities or phases of the process of
agent-oriented software development. Most of them are built on top of and integrated with Java.
While almost all available tools and platforms have their focus on implementation support, some
of them do also support analysis, design, and test/debugging activities. It is beyond the scope
of this article to describe and compare the available tools and platforms in detail. However, in
the following some of the most prominent representatives are listed. Examples of often cited
academic and research prototypes are the following:

• ZEUS [171] is a toolkit that has been developed at the British Telecom Intelligent Sys-
tem Research Lab. A visualization tool for agent applications built with ZEUS (or other
toolkits) is described in [172].

• JADE (“Java Agent DEvelopment Framework”) [173] has been developed at the University
of Parma, Italy.

• LEAP (“Lightweight Extensible Agent Platform”) [174] is intended to be executable on
small devises such as PDAs or phones. LEAP is being developed within European’s Fifth
Framework program by several industrial and academic contract partners (MOTOROLA,
ADAC, BROADCOM, BT, Siemens, and the University of Parma).

• agenTool [175] is a Java-based graphical development environment that supports the MaSE
method (see 4.2). agenTool was originally developed at the Artificial Intelligence Lab of
the Air Force Institute of Technology, Ohio.

3RDF (Resource Description Framework) is an XML-based framework for machine-understandable descrip-
tions of Web resources of any type. For information on XML and RDF see http://www.w3.org/XML/ and
http://www.w3.org/TR/rdf-schema/

16



• RETSINA [176] is a complex environment for networked intelligent agents that includes
different (multi-)agent architectures, location and discovery services, middle agents, and
configuration management support. RETSINA has been developed at Carnegie Mellon
University.

• JATLite (“Java Agent Template, Lite”) [177], which has been developed at the Stanford
Center for Design, is a package of Java programs that allows to create software agents that
communicate over the Internet.

• FIPA-OS [178] is a component-based toolkit for the development of FIPA compliant agents.
Two types of FIPA-OS are available, namely, “standard” for execution on standard com-
puters and “micro” for execution on PDAs.

• MADKIT [179] is a platform which is being developed at LIRMM (France). MADKIT is
based on the Aalaadin model (see 4.1).

Other examples are SIM AGENT [180], JAFMAS (“Java-based Agent Framework for Multi-
Agent Systems”) [181], ABS (“Agent Building Shell”) [182] which employs the language COOL
(see 5.2), OAA (“Open Agent Architecture”) [183], and Agentis [184] which is a modelling
framework for BDI agents.

Here are representative examples of commercial products4 for developmental support:

• AgentBuilder [185] is a tool offered by Reticular Systems Inc., USA. AgentBuilder is
available in two versions: AgentBuilder Lite (entry-level) and AgentBuilder Pro.

• JACK [186, 187] is a commercial agent framework by Agent Oriented Software Pty. Ltd.,
Melbourne, Australia. JACK is oriented towards BDI agents.

• Intelligent Agent Factory [188] by Bits & Pixels, Texas, USA.

• Grasshopper [189] is an advanced development platform for mobile agents launched by
IKV++, Germany.

Related tools can be found at the IBM Aglets Development Kit homepage [190] and the Microsoft
Agent homepage [191].

A comparison of four available platforms (AgentBuilder, Jack, MADKIT, and ZEUS) can
be found in [192]. Some of the above mentioned platforms (e.g., JADE, ZEUS, FIPA-OS, LEAP,
and Grasshopper) conform to the FIPA specifications [133]; Grasshopper is also compliant to the
OMG MASIF (“Mobile Agent System Interoperability Facility”) standard [193].

There are many testbeds available for agent-based systems. Most of them have a research-
oriented focus on experimentation and exploration. An overview of older testbeds of that kind
can be found in [194], and more recent examples are IMPACT [195], SWARM [196], and Agent
Factory [197]. Good examples of testbeds explicitly oriented towards industrial needs and real-
world applications are ARCHON [198] and MECCA [123].

7 Other Approaches at the Intersection of

Agent Systems and Software Engineering

The complexity of modern software and software environments has resulted in an increasing use
of concepts and formalisms that aim at building applications more efficiently and cost-effectively.
Standard examples of such concepts and formalisms are design patterns, software architectures,

4See the companies’ web pages for free downloads and/or evaluation versions.

17



use cases and scenarios, and UML.5 In the following, selected pointers to related work on agent
system engineering are provided.

Design patterns (e.g., [199]) are abstract and reusable desciptions of solutions to particular
(software) design problems. Good examples of work on design patterns for agent software are:

• In [200] a generic agent pattern format and specific patterns for agent-agent coordination
are proposed.

• In [201] several patterns for agent behavior (hence also called behavior patterns), together
with a development method using these patterns, are described.

• In [202] an agent design pattern for developing dynamic and distributed applications is
introduced.

• In [203, 204] a general pattern composed of seven layers (e.g., “sensory”, “beliefs”, “reason-
ing”) for intelligent and mobile agents, together with layer-internal patterns, are proposed.

• In [205] and [206] several patterns for mobile agents applications are identified.

Software architectures (e.g., [207, 208]) are structured descriptions of elements from which
software systems are built. As mentioned earlier in 2.3, a number of agent architectures have
been developed so far. Good examples of work dealing with agent architectures from an explicit
software engineering perspective are the following:

• In [209, 210] several high-level organizational patterns for multiagent architectures are
presented.

• In [211, 212] several object-oriented reference architectures for software agent applications
are described.

The former work has a focus on requirements engineering issues, whereas the latter concentrates
on design issues.

Use cases and scenarios play an important role in standard software and knowledge engi-
neering (e.g., [213, 214, 215]). Several of the agent-oriented methods mentioned earlier apply
use cases and scenarios during analysis and design; for instance, see [59] (4.1) and [63, 66] (4.2).
Other good examples of related work on agent system engineering are the following:

• In [216, 217] use case maps are applied to model and visualize overall system behavior
patterns.

• In [218] an object-oriented analysis method based on use cases and IDEF functions is
described.

UML (“Unified Modeling Language”, e.g. [219]) is a de facto standard representational formalism
in object-oriented analysis and design. Many of the methods mentioned in section 4 apply UML
to describe agent structures and interaction types. Here are good examples of work relating
agency and UML:

• In [220, 221, 222] an agent-oriented extension of UML, called AGENT UML or AUML, is
described and illustrated. AUML is a result of cooperation among FIPA and OMG with
the goal of increasing industrial acceptance of agent technology.

• In [223] the UML-based representation of social structures such as groups and roles is
investigated. UML conventions and AUML extensions are proposed that support the use
of social structures in analysis and design.

5Another example is Z; see 4.4.

18



• In [224] the specification of agent interaction protocols through standard UML is proposed.

• In [225] an approach to the modelling of agents that uses UML and graph transformation
is described.

• In [226] a proposal for the integration of agent roles in UML can be found.

• In [227] an approach to the UML-based modelling of multiagent architectures and ontologies
for agent-agent communication is introduced.

General considerations on the requirements an ideal “unified agent-oriented modelling language”
(UAML) should fulfill are provided in [105, Section 5].

8 Conclusions

AOSE is an important and exciting field emerging at the intersection of agent-based computing
and software engineering. This field deals with practical and theoretical aspects and facets of
software that possesses key characteristics of agents and multiagent systems such as goal-directed
autonomous activity and peer-to-peer interaction in cooperative and competitive settings. In par-
ticular, AOSE does not only concern a few specific developmental activities but covers all phases
of software development, ranging from early requirements engineering to maintenance. Moreover,
as recent developments in the field indicate, agent orientation as pursued by AOSE is in some
sense twofold, concerning both the software itself and the engineering process – a duality that is
well captured by the slogans “agent-oriented software (and its engineering)” and “agent-oriented
engineering (of software)”. The current main foci of the field are on analysis and design methods,
development tools, and languages for programming and communication. It is important to see
that AOSE does not question general software engineering techniques, principles and solutions
(including, e.g., basics such as structured development, life-cycle models, patterns, and software
project management guidelines), as most of them do apply to agent-oriented software as well.
This is not surprising, simply because agent-oriented software is software and agent-oriented
engineering is engineering. What AOSE questions, however, is the suitability of available spe-
cific (e.g., object-oriented) software-technical approaches for capturing and comfortably handling
agent orientation with all its characteristics and implications. AOSE aims at satisfying the need
for approaches that are specifically tailored for “agent-oriented engineering” and “agent-oriented
software”.

Agent orientation in software engineering possesses a highly innovative scientific and tech-
nological potential and the capacity to produce novel perspectives and first-rate solutions to a
broad range of complex applications. This is the main reason for the steadily growing interest
in AOSE. The field has experienced a rapid development and enormous progress in the recent
years. Despite this, and with regard to the state of the art in the field, it can be said that
most available approaches – methods and frameworks, developmental tools, and languages – still
are in an early prototypical stage which is characterized by an emphasis on experimental and
conceptual exploration and/or by a lack of systematical testing. The following lines of future
practical and theoretical work are identified as being particularly important:

• Further clarification of the notion of agency and the meaning of agent-specific key concepts
such as role, group, and organization. This includes the specification and refinement of
these concepts in terms of software-technical requirements.

• Further clarification of the unique characteristics of agent orientation and agent-oriented
software. This includes an in-depth analysis of the relationships between agent orientation
and object orientation, and the specification of precise guidelines for identifying applications
that demand agent-oriented solutions. Moreover, as autonomy is a main feature of agency,
it also includes a careful analysis of organizational, economic, social and legal consequences
of integrating agent-oriented software into decision and business processes.

19



• Development of industrial-strength methods, frameworks and tools for building agent-
oriented software which are more concrete and detailed than currently available agent-
oriented approaches.

• Further standardization efforts w.r.t. agent-specific languages, interaction protocols, and
specification and representational formalisms. This includes, in particular, the development
of communication languages having an unambiguous formal semantics.

Progress along these lines is a necessary prerequisite for a widespread use of agent technology in
industrial and commercial applications in general and for the establishment of agent orientation
as a significant or even dominant paradigm in software engineering in particular. This widespread
technological use and this paradigmatic establishment constitute a very challenging goal. It is
realistic to assume that this goal can be achieved, although not within the next few years. Both
researchers and practitioners should protect themselves against unrealistic expectations towards
the rate of future advancement of AOSE – and in this respect it may be useful to keep in mind
that the establishment of object orientation as a mainstream paradigm in software engineering
did not happen overnight but has been a scientific and commercial process that took around
twenty years.

Acknowledgements. The author would like to thank the reviewers for their valuable comments.
Parts of this article resulted from an evaluation study on AOSE which was conducted within a
research project supported by Deutsche Forschungsgemeinschaft under contract Br609/11-1.

20



References

2 Basic Literature

2.1 Foundations

[1] N.R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277–296, 2000.

[2] N.R. Jennings and M. Wooldridge. Agent-oriented software engineering. In J. Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT Press, 2002.

[3] M.J. Wooldridge and P. Ciancarini. Agent-oriented software engineering: the state of the art. In
P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering. Proceedings of
the First International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence, Vol. 1957,
pages 1–28. Springer-Verlag, 2001.

[4] M.R. Genesereth and S.P. Ketchpel. Software agents. Communications of the ACM, 37(7):48–53
and 147 (continued), 1994.

[5] R. Gustavsson. Agent oriented software engineering: A motivation for and an introduction to
a novel approach to modeling and development of open distributed systems. Technical Re-
port 5/94, Department of Computer Science and Business Administration, University of Karl-
skrona/Ronneby, 1994.

[6] G.M.P. O’Hare and M. Wooldridge. A software engineering perspective on multi-agent system
design. In N. Avouris and L. Gasser, editors, Distributed Artificial Intelligence – Theory and
Practice, pages 109–127. Kluwer Academic Publ., Dordrecht u.a., 1992.

[7] P. Ciancarini and M. Wooldridge, editors. Agent-oriented software engineering. Proceedings of
the First International Workshop (AOSE-2000). Lecture Notes in Computer Science, Vol. 1957.
Springer-Verlag, 2001.

[8] M. Wooldridge, G. Weiß, and P. Ciancarini, editors. Agent-oriented software engineering II.
Proceedings of the Second International Workshop (AOSE-2001). Lecture Notes in Computer
Science, Vol. 2222. Springer-Verlag, 2002.

[9] F.J. Garijo and M. Boman, editors. Multi-Agent System Engineering. Proceedings of the Ninth
European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-99).
Lecture Notes in Artificial Intelligence Vol. 1647. Springer-Verlag, Berlin et al., 1999.

[10] A. Omicini, R. Tolksdorf, and F. Zambonelli, editors. Engineering Societies in the Agents World.
Proceedings of the First International Workshop (ESAW 2000). Lecture Notes in Artificial Intel-
ligence, Vol. 1972. Springer-Verlag, Berlin et al., 2000.

2.2 Agents and Objects

[11] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for autonomous agents.
In J.P. Müller, M.J. Wooldridge, and N.R. Jennings, editors, Intelligent Agents III, Lecture Notes
in Artificial in Artificial Intelligence, Vol. 1193, pages 21–36. Springer-Verlag, Berlin et al., 1997.

[12] M.J. Wooldridge and N.R. Jennings. Agent theories, architectures, and languages: A survey. In
M.J. Wooldridge and N.R. Jennings, editors, Intelligent Agents, Lecture Notes in Artificial in
Artificial Intelligence, Vol. 890, pages 1–39. Springer-Verlag, Berlin et al., 1995.

[13] J.M. Bradshaw. An introduction to software agents. In J.M. Bradshaw, editor, Software Agents,
pages 3–46. AAAI Press/The MIT Press, 1997.

[14] H.S. Nwana. Software agents: An overview. The Knowledge Engineering Review, 11(3):205–244,
1996.

[15] S.J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

21



[16] M.J. Wooldridge. Intelligent agents. In G. Weiss, editor, Multiagent Systems, pages 27–77. The
MIT Press, Cambridge et al., 1999.

[17] J.M. Bradshaw, editor. Handbook of agent technology. AAAI Press/The MIT Press, 2002.

[18] G. Weiß, editor. Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence.
The MIT Press, Cambridge, MA, 1999.

[19] M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

[20] J. Odell. Objects and agents: How do they differ?, Working Paper v2.2
(http://www.jamesodell.com), September 1999.

2.3 Aspects of Assessing Agent Orientation

[21] G. Weiß. Agentenorientiertes Software Engineering. Informatik Spektrum, 24(2):98–101, 2001.

[22] G. Booch. Object-Oriented Analysis and Design with applications (2nd edition). Addison Wesley,
Reading, MA, 1994.

[23] F.P. Brooks. No silver bullet. In Proceedings of the IFIP Tenth World Computer Conference,
pages 1069–1076, 1986.

[24] M. Aksit and L. Bergmans. Obstacles in object-oriented software development. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’92), pages 341–358. ACM Press, 1992.

[25] G. Fischer, D. Redmiles, L. Williams, G. Puhr, A. Aoki, and K. Nakakoji. Beyond object-oriented
technology: where current object-oriented approaches fall short. Human-Computer Interaction,
10(1):79–119, 1995.

[26] M.J. Wooldridge and N.R. Jennings. Pitfalls of agent-oriented development. In Proceedings of the
Second International Conference on Autonomous Agents (Agents’98), pages 385–391, 1998.

[27] B. Crabtree. What chance software agents? The Knowledge Engineering Review, 13(2):131–136,
1998.

[28] M. Luck. From definition to deployment: What next for agent-based systems? Knowledge
Engineering Review, 2:119–124, 1999.

[29] C. Petrie. Agent-based software engineering. In P. Ciancarini and M.J. Wooldridge, editors,
Agent-oriented software engineering. Proceedings of the First International Workshop (AOSE-
2000), Lecture Notes in Artificial Intelligence, Vol. 1957, pages 59–76. Springer-Verlag, 2001.

[30] M. Fisher, J. Müller, M. Schroeder, G. Staniford, and G. Wagner. Methodological foundations for
agent-based systems. Knowledge Engineering Review, 12(3):323–329, 1997.

[31] V. Parunak. Industrial and practical applications of DAI. In G. Weiss, editor, Multiagent Systems,
pages 377–421. The MIT Press, Cambridge et al., 1999.

[32] V. Parunak. Agents in overalls: Experiences and issues in the development and deployment
of industrial agent-based systems. International Journal of Cooperative Information Systems,
9(3):209–227, 2000.

[33] J.P. Müller. Control architectures for autonomous and interacting agents: A survey. In L. Cavedon,
L. Rao, and W. Wobcke, editors, Intelligent Agents Systems: Theoretical and Practical Issues,
Lecture Notes in Artificial in Artificial Intelligence, Vol. 1209. Springer-Verlag, Berlin et al., 1996.

[34] J.P. Müller. The right agent (architecture) to do the right thing. In J.P. Müller, M.P. Singh, and
A.S. Rao, editors, Intelligent Agents V, Lecture Notes in Artificial in Artificial Intelligence, Vol.
1555, pages 211–226. Springer-Verlag, Berlin et al., 1999.

22



[35] K.S. Decker, E.H. Durfee, and V.R. Lesser. Evaluating research in cooperative distributed problem
solving. In M.N. Huhns and L. Gasser, editors, Distributed Artificial Intelligence, Volume 2, pages
487–519. Pitman/Morgan Kaufmann, Cambridge, MA, 1989.

3 Methods and Frameworks for Requirements Engineering

[36] B.A. Nuseibeh and S.M. Easterbrook. Requirements engineering: A roadmap. In Proceedings of
the 22nd International Conference on Software Engineering (ICSE’00), 2000.

[37] M. Feather. Language support for the specification and development of composite systems. ACM
Transactions on Programming Languages and Systems, 9(2):198–234, 1987.

[38] A. van Lamsweerde. Requirements engineering in the year 00: A research perspective. In Pro-
ceedings of the 22nd International Conference on Software Engineering (ICSE’00), 2000.

[39] E.S.K. Yu. Why agent-oriented requirements engineering? In Proceedings of 3rd International
Workshop on Requirements Engineering: Foundations for Software Quality, 1997.

[40] E.S.K. Yu. Agent orientation as a modelling paradigm. Wirtschaftsinformatik, 43(2):123–132,
2001.

[41] E.S.K. Yu. Agent-oriented modelling: software versus the world. In M.J. Wooldridge, G. Weiß, and
P. Ciancarini, editors, Agent-oriented software engineering. Proceedings of the Second International
Workshop (AOSE-2001), Lecture Notes in Artificial Intelligence, Vol. 2222. Springer-Verlag, 2002.

[42] E.S.K. Yu. Towards modelling and reasoning support for early-phase requirements engineering. In
Proceedings of 3rd IEEE International Symposium on Requirements Engineering (RE’97), pages
226–235, 1997.

[43] E. Dubois, P. Du Bois, F. Dubru, and M. Petit. Agent-oriented requirements engineering: A case
study using the albert language. In Proceedings of the Fourth International Working Conference
on Dynamic Modelling and Information Systems (DYNMOD’94), pages 205–238, 1994.

[44] P. Du Bois. The albert ii reference manual. Technical Report RR-97-002, Computer Science
Department, University of Namur, Belgium, 1997.

[45] E.S.K. Yu, P. Du Bois, E. Dubois, and J. Mylopoulos. From organization models to system require-
ments – A “cooperating agents” approach. In Proceedings of the Third International Conference
on Cooperative Information Systems (CoopIS’95), pages 194–204, 1995.

[46] J. Mylopoulos and J. Castro. Tropos: A framework for requirements-driven software development.
In J. Brinkkemper and A. Solvberg, editors, Information systems engineering: State of the art and
research themes. Springer-Verlag, 2000.

[47] J. Mylopoulos, L. Chung, and E.S.K. Yu. From object-oriented to goal-oriented requirements
analysis. Communications of the ACM, 42(1):31–37, 1999.

[48] E.S.K. Yu and J. Mylopoulos. Why goal-oriented requirements engineering? In Proceedings of the
4th International Workshop on Requirements Engineering, pages 15–22, 1998.

[49] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. Science
of Computer Programming, 20:3–50, 1993.

[50] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements in software engi-
neering. Kluwer Academic Press, Boston et al., 2000.

4 Methods and Frameworks for Analysis, Design, and Implementation

4.1 Approaches based on Agent and Multiagent Technology

[51] M.J. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia methodology for agent-oriented analysis
and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

23



[52] F. Zambonelli, N.R. Jennings, A. Omicini, and M. Wooldridge. Agent-oriented software engineer-
ing for Internet applications. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors,
Coordination of Internet Agents: Models, Technologies and Applications. Springer-Verlag, Berlin
et al., 2000.

[53] A. Omicini. SODA: Societies and infrastructures in the analysis and design of agent-based systems.
In P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering. Proceedings
of the First International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence, Vol.
1957, pages 185–194. Springer-Verlag, 2001.

[54] A. Drogoul and A. Collinot. Applying an agent-oriented methodology to the design of artificial
organizations: a case study in robotic soccer. Autonomous Agents and Multi-Agent Systems,
1(1):113–129, 1998.

[55] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of the 3nd International Conference on Multi-Agent Systems
(ICMAS-98), pages 128–135, 1998.

[56] J. Ferber, O. Gutknecht, C.M. Jonker, J.-P. Müller, and J. Treur. Organization models and be-
havioural requirements specification for multi-agent systems. In Notes of the ECAI2000 Workshop
on Modelling Artificial Societies and Hybrid Organizations (MASHO), pages 10–25, 2000.

[57] W. Brauer, M. Nickles, M. Rovatsos, G. Weiß, and K.F. Lorentzen. Expectation-oriented analysis
and design. In M.J. Wooldridge, G. Weiß, and P. Ciancarini, editors, Agent-oriented software
engineering. Proceedings of the Second International Workshop (AOSE-2001), Lecture Notes in
Artificial Intelligence, Vol. 2222. Springer-Verlag, 2002.

[58] V. Dignum, H. Weigand, and L. Xu. Agent societies: Toward frameworks-based design. In M.J.
Wooldridge, G. Weiß, and P. Ciancarini, editors, Agent-oriented software engineering. Proceedings
of the Second International Workshop (AOSE-2001), Lecture Notes in Artificial Intelligence, Vol.
2222. Springer-Verlag, 2002.

[59] M. Elammari and W. Lalonde. An agent-oriented methodology: High-level and intermediate
models. In First International Workshop on Agent-Oriented Information Systems (AOIS’99),
1999.

[60] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Organisational abstractions for the analysis and
design of multi-agent systems. In P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented soft-
ware engineering. Proceedings of the First International Workshop (AOSE-2000), Lecture Notes
in Artificial Intelligence, Vol. 1957, pages 235–252. Springer-Verlag, 2001.

4.2 Approaches based on Object-Oriented Technology

[61] D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for systems of
BDI agents. In W. van der Velde and J. Perram, editors, Agents Breaking Away: Proceedings
of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW-96), Lecture Notes in Artificial Intelligence Vol. 1038, pages 56–71. Springer-Verlag,
1996.

[62] M.P. Georgeff and A.S. Rao. BDI agents: From theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, 1995.

[63] M. Wood and S.A. DeLoach. An overview of the multiagent systems engineering methodology.
In P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering. Proceedings
of the First International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence, Vol.
1957, pages 207–222. Springer-Verlag, 2001.

[64] J. Lind. Iterative software engineering for multiagent systems: The MASSIVE method. Lecture
Notes in Computer Science, Vol. 1994. Springer-Verlag, Berlin u.a., 2001.

24



[65] B. Burmeister. Models and methodology for agent-oriented analysis and design. In K. Fischer,
editor, Working Notes of the KI96 Workshop on Agent-oriented Programming and Distributed
Systems. DFKI Dokument D-96-06, 1996.

[66] B. Moulin and M. Brassad. A scenario-based design method and an environment for the devel-
opment of multiagent systems. In D. Luckose and C. Zhang, editors, Proceedings of the First
Australian Workshop on DAI, Lecture Notes in Artificial Intelligence, pages 216–296. Springer-
Verlag, 1996.

[67] E.A. Kendall. Agent roles and role models: New abstractions for multiagent system analysis and
design. In International Workshop on Intelligent Agents in Information and Process Management,
1998.

[68] G. Wagner. The Agent-Object-Relationship meta-model: Towards a unified conceptual view of
state and dynamics. Technical report, Faculty of Technology Management, Eindhoven University
of Technology, 2000.

[69] J. Bryson and B. McGonigle. Agent architecture as object oriented design. In M.P. Singh, A.
Rao, and M.J. Wooldridge, editors, Intelligent Agents IV. Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-97), Lecture Notes in Artificial
Intelligence Vol. 1365, pages 15–30. Springer-Verlag, 1998.

[70] A. Gadomski. TOGA: A methodological and conceptual pattern for modeling abstract intelligent
agents. In Proceedings of the First AIA Round-Table on Abstract Intelligent Agents, 1993.

[71] M. Pont and E. Moreale. Towards a practical methodology for agent-oriented software engineering
with C++ and Java. Technical Report 96-33, Department of Engineering, Leicester University,
1996.

[72] G. Satapathy and S.R.T. Kumara. Object oriented design based agent modeling. In Proceedings of
the Fourth International Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM’99), pages 143–162, 1999.

4.3 Approaches based on Knowledge Engineering Technology

[73] R. Studer, V. Benjamins, and D. Fensel. Knowledge engineering: Principles and methods. IEEE
Transactions on Data and Knowledge Engineering, 25:161–197, 1998.

[74] N. Glaser. Contribution to Knowledge Modelling in a Multi-agent Framework. PhD thesis, Uni-
versité Henry Poincaré, Nancy, France, 1996.

[75] G. Schreiber, H. Akkermans, Anjo Anjewierden, R. de Hoog, N. Shadbolt, W. van de Velde, and
B. Wielinga. Knowledge Engineering and Management. The CommonKADS Methodology. The
MIT Press, 1999.

[76] C. Iglesias, M. Garijo, J.C. Gonzales, and J.R. Velasco. Analysis and design of multi-agent sys-
tems using MAS-CommonKADS. In M.P. Singh, A. Rao, and M.J. Wooldridge, editors, Intelli-
gent Agents IV. Proceedings of the Fourth International Workshop on Agent Theories, Architec-
tures, and Languages (ATAL-97), Lecture Notes in Artificial Intelligence Vol. 1365, pages 313–326.
Springer-Verlag, 1998.

[77] R.E. Gustavsson. Multi agent systems as open societies – A design framework. In M.P. Singh, A.
Rao, and M.J. Wooldridge, editors, Intelligent Agents IV. Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-97), Lecture Notes in Artificial
Intelligence Vol. 1365, pages 329–337. Springer-Verlag, 1998.

4.4 Formal Specification and Verification

[78] M.J. Wooldridge. Agents and software engineering. AI*IA Notizie, XI(3):31–37, September 1998.

[79] P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42:213–261, 1990.

25



[80] A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, 1995.

[81] M.J. Wooldridge, editor. Reasoning About Rational Agents. The MIT Press, Cambridge, MA,
2000.

[82] M.P. Singh, M.N. Huhns, and L.M. Stephens. Declarative representations of multiagent systems.
IEEE TKDE, 5(5):721–739, 1993.

[83] F.M.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur. DESIRE: Modelling multi-
agent systems in a compositional framework. International Journal of Cooperative Information
Systems, 6(1):67–94, 1997.

[84] P. van Eck, J. Engelfriet, D. Fensel, F. van Harmelen, Y. Venema, and M. Willems. A survey of
languages for specifying dynamics: A knowledge engineering perspective. IEEE Transactions on
Knowledge and Data Engineering, 13(3):462–496, 2001.

[85] S.J. Rosenschein and L.P. Kaelbling. The synthesis of digital machines with provable epistemic
properties. In Proceedings of the Conference on Theoretical Aspects of Reasoning About Knowledge,
pages 83–98, 1986.

[86] M. Fisher and M. Wooldridge. On the formal specification and verification of multi-agent systems.
International Journal of Cooperative Information Systems, 6(1):37–65, 1997.

[87] M.J. Wooldridge. The Logical Modelling of computational Multi-Agent Systems. PhD thesis,
Department of Computation, UMIST, Manchester, UK, 1992.

[88] K. Schild. On the relationship between BDI logics and standard logics of concurrency. In J.P.
Müller, M.P. Singh, and A. Rao, editors, Intelligent Agents V. Proceedings of the Fifth Interna-
tional Workshop on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in
Artificial Intelligence Vol. 1555, pages 47–61. Springer-Verlag, 1999.

[89] M. Benerecetti, F. Giunchiglia, and L. Serafini. A model checking algorithm for multi-agent
systems. In J.P. Müller, M.P. Singh, and A. Rao, editors, Intelligent Agents V. Proceedings of
the Fifth International Workshop on Agent Theories, Architectures, and Languages (ATAL-98),
Lecture Notes in Artificial Intelligence Vol. 1555, pages 163–176. Springer-Verlag, 1999.

[90] A.S. Rao and M.P. Georgeff. A model-theoretic approach to the verification of situated reasoning
systems. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence
(IJCAI-93), 1993.

[91] J.M. Spivey. The Z Notation 2nd edition). Prentice Hall, Hempstead, 1992.

[92] M. d’Inverno and M. Luck, editors. Understanding agent systems. Springer-Verlag, 2001.

[93] M. Fisher. If Z is the answer, what could the question possibly be? In J.P. Müller, M.J. Wooldridge,
and N.R. Jennings, editors, Intelligent Agents III, Lecture Notes in Artificial in Artificial Intelli-
gence, Vol. 1193, pages 65–69. Springer-Verlag, Berlin et al., 1997.

[94] T. Holvoet. Synchronization specifications for agents with net-based behavior description. In Pro-
ceedings of CESA’96 (Computational Engineering in Systems Applications), Symposium Discrete
Events and Manufacturing Systems, pages 613–618, 1996.

[95] D. Moldt and F. Wienberg. Multi-agent systems based on coloured Petri nets. In Proceedings of
the 18th International Conference on Application and Theory of Petri Nets (ICATPN’97), pages
82–101, 1997.

[96] Z. Manna and A. Pnueli, editors. Temporal Verification of Reactive Systems. Springer-Verlag,
Berlin u.a., 1995.

[97] A. Pnueli. Specification and development of reactive systems. In Information Processing 86.
Elsevier Science Publ., 1986.

26



[98] A.W. Roscoe, editor. Theory and practice of concurrency. Prentice Hall, 1997.

[99] R.A. Dooley. Appendix B: Repartee as a graph. In R.E. Longacre, editor, An anatomy of speech
notions, pages 348–358. Peter de Ridder: Lisse, Holland, 1976.

[100] V. Parunak. Visualizing agent conversations: Using enhanced Dooley graphs for agent design and
analysis. In Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS-96),
pages 275–282, 1996.

[101] M.P. Singh. Synthesizing coordination requirements for heterogeneous autonomous agents. Au-
tonomous Agents and Multi-Agent Systems, 3(2):107–132, 2000.

[102] M. d’Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M. Wooldridge.
Formalisms for multi-agent systems. The Knowledge Engineering Review, 3(12), 1997.

4.5 Further Key Issues

[103] EURESCOM/MESSAGE. EURESCOM (European Institute for the Research and Strategic Stud-
ies in Telecommunications) Project on a Methodology for Engineering Systems of Software Agents
(MESSAGE), Deliverable 1: Initial Methodology, July 2000.

[104] J. Müller. Towards agent systems engineering. International Journal on Data and Knowledge
Engineering, 23:217–245, 1996.

[105] O. Arazy and C.C. Woo. Analysis and design of agent-oriented information systems. Work-
ing Paper 99-MIS-004, Faculty of Commerce and Business Administration, University of British
Columbia, Canada, 2000.

[106] C. Iglesias, M. Garijo, and J.C. Gonzales. A survey of agent-oriented methodologies. In J.P. Müller,
M.P. Singh, and A. Rao, editors, Intelligent Agents V. Proceedings of the Fifth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in Artificial
Intelligence Vol. 1555, pages 317–330. Springer-Verlag, 1999.

5 Languages

5.1 Programming Languages

[107] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

[108] M.P. Wellman. Market-oriented programming: Some early lessons. In S.H. Clearwater, editor,
Market-based control, pages 74–95. World Scientific, 1996.

[109] M.P. Singh. Toward interaction-oriented programming. In Proceedings of the 2nd International
Conference on Multi-Agent Systems (ICMAS-96), page 457, 1996.

[110] M.N. Huhns. Interaction-oriented programming. In P. Ciancarini and M.J. Wooldridge, editors,
Agent-oriented software engineering. Proceedings of the First International Workshop (AOSE-
2000), Lecture Notes in Artificial Intelligence, Vol. 1957, pages 29–44. Springer-Verlag, 2001.

[111] S.R. Thomas. The PLACA agent programming language. In M.J. Wooldridge and N.R. Jennings,
editors, Intelligent Agents, Lecture Notes in Artificial in Artificial Intelligence, Vol. 890, pages
355–370. Springer-Verlag, Berlin et al., 1995.

[112] W.H.E. Davies and P. Edwards. AGENT-K: An integration of AOP and KQML. In Proceedings
of the CIKM’94 Workshop on Intelligent Agents, 1994.

[113] M. Fisher. Representing and executing agent-based systems. In M.J. Wooldridge and N.R. Jen-
nings, editors, Intelligent Agents, Lecture Notes in Artificial in Artificial Intelligence, Vol. 890,
pages 307–323. Springer-Verlag, Berlin et al., 1995.

27



[114] M. Mulder, J. Treur, and M. Fisher. Agent modelling in metatem and DESIRE. In M.P. Singh, A.
Rao, and M.J. Wooldridge, editors, Intelligent Agents IV. Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages (ATAL-97), Lecture Notes in Artificial
Intelligence Vol. 1365, pages 193–208. Springer-Verlag, 1998.

[115] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In W. van der
Velde and J. Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-96), Lecture Notes
in Artificial Intelligence Vol. 1038, pages 42–55. Springer-Verlag, 1996.

[116] M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning. In Proceedings of the 6th
National Conference on Artificial Intelligence (AAAI-87), pages 677–682, 1987.

[117] M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational model. Journal
of Logic and Computation, 8(3):233–260, 1998.

[118] K.v. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J. Meyer. Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[119] K.v. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J. Meyer. A formal embedding of AgentS-
peak(L) in 3APL. In G. Antoniou and J. Slaney, editors, Advanced Topics in Artificial Intelligence,
Lecture Notes in Artificial Intelligence, Vol. 1502, pages 155–166. Springer-Verlag, Berlin et al.,
1998.

[120] G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog: A concurrent programming language
based on the situation calculus. Artificial Intelligence, 121:109–169, 2000.

[121] K.v. Hindriks, Y. Lespérance, and H.J. Levesque. A formal embedding of ConGolog in 3APL.
In Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), pages
558–562, 2000.

[122] F.G. McCabe and K.L. Clark. April – Agent PRocess Interaction Language. In M.J. Wooldridge
and N.R. Jennings, editors, Intelligent Agents, Lecture Notes in Artificial in Artificial Intelligence,
Vol. 890, pages 324–340. Springer-Verlag, Berlin et al., 1995.

[123] D.D. Steiner. IMAGINE: An integrated environment for constructing distributed artificial intelli-
gence systems. In G.M.P. O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial
Intelligence, pages 345–364. Wiley, New York et al., 1996.

[124] G. Wagner. VIVA knowledge-based agent programming. Preprint, Institut für Informatik, Univer-
sität Leipzig, Germany, 1996.

[125] A. Poggi. Daisy: An object-oriented system for distributed artificial intelligence. In M.J.
Wooldridge and N.R. Jennings, editors, Intelligent Agents, Lecture Notes in Artificial Intelligence,
Vol. 890, pages 341–354. Springer-Verlag, Berlin et al., 1995.

[126] J.E. White. Mobile agents. In J.M. Bradshaw, editor, Software Agents, pages 437–472. AAAI
Press/The MIT Press, 1997.

[127] H.D. Burkhard. Agent-oriented programming in open systems. In M.J. Wooldridge and N.R.
Jennings, editors, Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol. 890, pages 291–
306. Springer-Verlag, Berlin et al., 1995.

5.2 Languages for Communication and Coordination

[128] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In J.M.
Bradshaw, editor, Software Agents, pages 291–316. AAAI Press/The MIT Press, 1997.

[129] KQML. The UMBC KQML Web, http://www.cs.umbc.edu/kqml/, 1999.

28



[130] R.S. Cost, I. Soboroff, J. Lakhani, T. Finin, E. Miller, and C. Nicholas. TKQML: A scripting
tool for building agents. In M.P. Singh, A. Rao, and M.J. Wooldridge, editors, Intelligent Agents
IV. Proceedings of the Fourth International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-97), Lecture Notes in Artificial Intelligence Vol. 1365, pages 339–343. Springer-
Verlag, 1998.

[131] M.D. Sadek. Dialogue acts are rational plans. In Proceedings of the ESCA/ETRW Workshop on
the Structure of multimodal Dialogue, pages 1–29, 1991.

[132] M.D. Sadek, P. Bretier, and F. Panaget. Artimis: natural dialogue meets rational agency. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97), 1997.

[133] FIPA. FIPA (Foundation for Intelligent Agents), http://www.fipa.org, 1999.

[134] M.R. Genesereth and R.E. Fikes. Knowledge Interchange Format. Version 3.0, Reference Manual.
Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992.

[135] KIF. http://www.cs.umbc.edu/kse/kif/, 1999.

[136] M. Barbuceanu and M.S. Fox. Capturing and modeling coordination knowledge for multiagent
systems. International Journal of Cooperative Information Systems, 5(2-3):275–314, 1996.

[137] D.L. Martin, A.J. Cheyer, and D.B. Moran. The open agent architecture: a framework for building
distributed software systems. Applied Artificial Intelligence, 13(1/2):91–128, 1999.

[138] D. Kuwabara, T. Ishida, and N. Osato. AgentTalk: Coordination protocol description for mul-
tiagent systems. In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), page 455, 1995.

[139] E.M. Verharen, F. Dignum, and S. Bos. Implementation of a cooperative agent architecture
based on the language-action perspective. In M.P. Singh, A. Rao, and M.J. Wooldridge, editors,
Intelligent Agents IV. Proceedings of the Fourth International Workshop on Agent Theories, Ar-
chitectures, and Languages (ATAL-97), Lecture Notes in Artificial Intelligence Vol. 1365, pages
31–44. Springer-Verlag, 1998.

[140] A. Omicini and F. Zambonelli. Coordination for Internet application development. Autonomous
Agents and Multi-Agent Systems, 2(3):251–269, 1999.

[141] M. Cremonini, A. Omicini, and F. Zambonelli. Multi-agent systems on the Internet: Extending
the scope of coordination towards security and topology. In F.J. Garijo and M. Boman, editors,
Multi-Agent System Engineering. Proceedings of the Ninth European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAAMAW-99), Lecture Notes in Artificial Intelligence
Vol. 1647, pages 77–88. Springer-Verlag, 1999.

[142] E. Denti and A. Omicini. Engineering multi-agent systems in LuCe. In Stephen Rochefort, Fariba
Sadri, and Francesca Toni, editors, Proceedings of the ICLP’99 International Workshop on Multi-
Agent Systems in Logic Programming (MAS’99), Las Cruces (NM), 1999.

[143] A. Omicini. On the semantics of tuple-based coordination models. In Proceedings of the ACM
Symposium on Applied Computing (SAC’99), pages 175–182, 2000.

[144] M. Schumacher, F. Chantemargue, and B. Hirsbrunner. The STL++ coordination language:
A base for implementing distributed multi-agent applications. In P. Ciancarini and A.. Wolf,
editors, Proceedings of the Third International Conference on Coordination Languages and Models
(COORDINATION’99). Springer-Verlag, 1999.

[145] S. Moss, H. Gaylard, S. Wallis, and B. Edmonds. SDML: A multi-agent language for organizational
modelling. CPM Report 97-19, Centre for Policy Modelling, Manchester Metropolitan University,
United Kingdom, 1996.

[146] M.P. Singh. Agent communication languages: Rethinking the principles. IEEE Computer,
31(12):55–61, 1998.

29



[147] J. Pitt and A. Mamdani. A protocol-based semantics for an agent communication language. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), 1999.

[148] M.J. Wooldridge. Verifiable semantics for agent communication languages. In Proceedings of the
3nd International Conference on Multi-Agent Systems (ICMAS-98), pages 349–356, 1998.

[149] F. Dignum. Agent communication and cooperative information agents. In M. Klusch and L.
Kerschberg, editors, Cooperative Information Agents IV. Proceedings of the Fourth International
Workshop on Cooperative Information Agents (CIA-2000), Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1860, pages 191–207, Berlin et al., 2000. Springer-Verlag.

[150] M.T. Kone, A. Shimazu, and T. Nakajima. The state of the art in agent communication languages.
Knowledge and Information Systems, 2:259–284, 2000.

[151] F. Arbab, P. Ciancarini, and C. Hankin. Coordination languages for parallel programming. Parallel
Computing, 1998.

[152] P. Ciancarini. Coordination models and languages as software integrators. ACM Computing
Surveys, 28(2):300–302, 1996.

[153] D. Gelernter and N. Carriero. Coordination languages and their significance. Communications of
the ACM, 35(2):97–107, 1992.

[154] G.A. Papadopoulos and F. Arbab. Coordination models and languages. Advances in Computers,
46:329–400, 1998.

[155] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors. Coordination of Internet Agents:
Models, Technologies, Applications. Springer-Verlag, Berlin et al., 2000.

5.3 Ontology Specification Languages

[156] T.R. Gruber. Ontolingua: A mechanism to support portable ontologies. Technical Report KSL-
91-66, Knowledge Systems Laboratory, Stanford University, 1992.

[157] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages.
Journal of the ACM, 42, 1995.

[158] A. Bordiga, R.J. Brachman, D.L. McGuinness, and L.A. Resnick. CLASSIC: A structural data
model for objects. In Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, pages 59–67, 1989.

[159] R. MacGregor. A description classifier for the predicate calculus. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94, pages 213–220, 1994.

[160] D.B. Lenat and R.V. Guha, editors. Building large knowledge-based systems. Representation and
inference in the Cyc project. Addison-Wesley, Reading, MA, 1990.

[161] SHOE. http://www.cs.umd.edu/projects/plus/shoe/, 2001.

[162] XOL. http://www.ontologos.org/ontology/xol.htm, 2001.

[163] OIL. http://www.ontoknowledge.org/oil/, 2001.

[164] DAML-LANGUAGE. http://www.daml.org/language/, 2001.

[165] PROTEGE. http://protege.stanford.edu/index.shtml, 2001.

[166] WEBONTO. http://webonto.open.ac.uk, 2001.

[167] ONTOEDIT. http://www.ontoprise.com, 2001.

[168] D. Fensel. Ontologies: a silver bullet for knowledge management and electronic commerce.
Springer-Verlag, 2001.

30



[169] T.R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. Interna-
tional Journal of Human-Computer Studies, 41:399–424, 1995.

[170] M. Uschold and M. Gruninger. Ontologies: principles, methods and applications. The Knowledge
Engineering Review, 11(2):93–155, 1996.

6 Development Tools and Platforms

[171] ZEUS. http://www.labs.bt.com/projects/agents/zeus/index.htm, 1999.

[172] D.T. Ndumu, H.S. Nwana, L. Lee, and J. Collins. Visualising and debugging distributed multi-
agent systems. In Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 326–333, 1999.

[173] JADE. http://sharon.cselt.it/projects/jade/, 1999.

[174] LEAP. http://leap.crm-paris.com/, 2000.

[175] agenTool. http://www.cis.ksu.edu/˜sdeloach/ai/agentool.htm, 2000.

[176] RETSINA. http://www-2.cs.cmu.edu/˜softagents/, 2000.

[177] JATLite. http://java.stanford.edu/java agent/html/, 2000.

[178] FIPA-OS. http://fipa-os.sourceforge.net/, 2000.

[179] MADKIT. Multi-Agent Development KIT, http://www.madkit.org/, 1999.

[180] SIM AGENT. http://www.cs.bham.ac.uk/˜axs/cog affect/sim agent.html, 1996.

[181] JAFMAS. http://www.ececs.uc.edu/˜abaker/jafmas/, 2000.

[182] ABS. Agent Building Shell, http://www.eil.utoronto.ca/abs-page/abs-overview.html, 1999.

[183] OAA. Open Agent Architecture, http://www.ai.sri.com/˜oaa/, 1999.

[184] D. Kinny. The Agentis agent interaction model. In J.P. Müller, M.P. Singh, and A. Rao, ed-
itors, Intelligent Agents V. Proceedings of the Fifth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), Lecture Notes in Artificial Intelligence Vol. 1555, pages
331–344. Springer-Verlag, 1999.

[185] AgentBuilder. http://www.agentbuilder.com/, 1999.

[186] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents – Components for
intelligent agents in Java. Agentlink News, 2:2–5, 1999.

[187] JACK. JACK Intelligent Agents, ttp://www.agent-software.com.au/shared/home/index.html,
1998.

[188] Intelligent Agent Factory. http://www.bitpix.com, 2000.

[189] Grasshopper. http://www.grasshopper.de/index.html, 1998.

[190] IBM Aglets Development Kit. http://www.trl.ibm.com/aglets/, 2000.

[191] Microsoft Agent. http://msdn.microsoft.com/ library/ default.asp?url=/library/ en-us/ msagent/
agentstartpage 7gdh.asp, 2000.

[192] P.-M. Ricordel and Y. Demazeau. From analysis to deployment: A multi-agent platform survey.
In Working Notes of the First International Workshop on Engineering Societies in the Agents’
World (ESAW-00), 2000.

[193] OMG MASIF Standard. http://www.fokus.gmd.de/research/cc/ecco/masif/, 1999.

31



[194] K.S. Decker. Distributed artificial intelligence testbeds. In G.M.P. O’Hare and N.R. Jennings,
editors, Foundations of Distributed Artificial Intelligence, pages 119–138. John Wiley & Sons Inc.,
New York, 1996.

[195] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Heterogeneous
agent systems. The MIT Press, Cambridge et al., 2000.

[196] Swarm. Swarm Development Group, http://www.swarm.org/, 2000.

[197] G.M.P. O’Hare. Agent factory: An environment for the fabrication of multiagent systems. In
G.M.P. O’Hare and N.R. Jennings, editors, Foundations of Distributed Artificial Intelligence, pages
449–484. Wiley, New York et al., 1996.

[198] D. Cockburn and N.R. Jennings. ARCHON: A distributed artificial intelligence system for in-
dustrial applications. In G.M.P. O’Hare and N.R. Jennings, editors, Foundations of Distributed
Artificial Intelligence, pages 319–344. Wiley, New York et al., 1996.

7 Other Approaches

[199] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, editors. Design patterns. Addison-Wesley,
Reading, MA, 1995.

[200] D. Deugo, M. Weiss, and E. Kendall. Reusable patterns for agent coordination. In A. Omicini,
F. Zambonelli, M. Klusch, and R. Tolksdorf, editors, Coordination of Internet Agents: Models,
Technologies and Applications, pages 347–368. Springer-Verlag, Berlin et al., 2000.

[201] Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development method based on agent
patterns. In Proceedings of the International Conference on Software Engineering, pages 356–367.
ACM, 1999.

[202] A. Silva and J. Delgado. The agent pattern: A design pattern for dynamic and distributed
applications. In Proceedings of the European Conference on Pattern Languages of Programming
and Computing (EuroPLoP’98), 1998.

[203] E.A. Kendall and M.T. Malkoun. The layered agent patterns. In Pattern Languages of Programs
(PLoP’96), 1996.

[204] E.A. Kendall, C.V. Pathak, P.V.M. Krishna, and C.B. Suresh. The layered agent pattern language.
In Proceedings of the Conference on Pattern Languages of Programs (PLoP’97), 1997.

[205] Y. Aridor and D.B. Lange. Agent design patterns: Elements of agent application design. In
Proceedings of the Second International Conference on Autonomous Agents (Agents’98), pages
108–115, 1998.

[206] D. Deugo, F. Oppacher, J. Kuester, and I.V. Otte. Patterns as a means for intelligent software
engineering. In Proceedings of the International Conference on Artificial Intelligence (IC-AI’99),
volume II, pages 605–611, 1999.

[207] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented software
architecture. A system of patterns. Wiley, New York, 1996.

[208] M. Shaw and D. Garlan. Software architecture: Perspectives on an emerging discipline. Prentice
Hall, 1996.

[209] M. Kolp, J. Castro, and J. Mylopoulos. A social organization perspective on software architectures.
In Proceedings of the First International Workshop From Software Requirements to Architectures
(STRAW 01) at ICSE 2001, 2001.

[210] M. Kolp, P. Giorgini, and J. Mylopoulos. An goal-based organizational perspective on multi-
agents architectures. In Proceedings of the Eighth International Workshop on Agent Theories,
architectures, and languages (ATAL-2001), 2001.

32



[211] E. Horn, M. Kupries, and T. Reinke. Object-oriented software architecture types for the substan-
tiation, development, and facrication of agent application systems. In Proceedings of the Eleventh
International Conference on Software Engineering and its Applications, 1998.

[212] T. Reinke. Architecture-based construction of multiagent systems. In Notes of the ECAI2000
Workshop on odelling Artificial Societies and Hybrid Organizations (MASHO-2000), pages 99–
111, 2000.

[213] M. Erdmann and R. Studer. Use-cases and scenarios for developing knowledge-based systems. In
Proceedings of the 15th IFIP World Computer Congress (WCC’98), Conference on Information
Technologies and Knowledge Systems, pages 259–272, 1998.

[214] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-oriented software engineering.
A use case driven approach. Addison-Wesley, 1994 (Revised Printing).

[215] K. Weidenhaupt, M. Pohl, M. Jarke, and P. Haumer. Scenario usage in system development: A
report on current practice. IEEE Software, pages 34–45, 1998.

[216] R. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski. High-level, multi-agent
prototypes from a scenario-path notation: A feature-interaction example. In Proceedings of the
Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent
Systems (PAAM’98), pages 277–298, 1998.

[217] R. Buhr, M. Elammari, T. Gray, and S. Mankovski. Applying use case maps to multi-agent
systems: A feature interaction example. In Hawaii International Conference on System Sciences
(HICSS’98), 1998.

[218] E.A. Kendall, M.T. Malkoun, and C. Jiang. The application of object-oriented analysis to agent
based systems, 1997.

[219] C. Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and Design.
Prentice Hall, Englewood Cliffs, NJ, 1997.

[220] B. Bauer. UML class diagrams revisited in the context of agent-based systems. In M.J. Wooldridge,
G. Weiß, and P. Ciancarini, editors, Agent-oriented software engineering. Proceedings of the Second
International Workshop (AOSE-2001), Lecture Notes in Artificial Intelligence, Vol. 2222. Springer-
Verlag, 2002.

[221] B. Bauer, J.P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent software
systems. In P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering. Pro-
ceedings of the First International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence,
Vol. 1957, pages 91–103. Springer-Verlag, 2001.

[222] J. Odell, V. Parunak, and B. Bauer. Representing agent interaction protocols in UML. In P.
Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering. Proceedings of the
First International Workshop (AOSE-2000), Lecture Notes in Artificial Intelligence, Vol. 1957,
pages 121–140. Springer-Verlag, 2001.

[223] V. Parunak and J. Odell. Representing social structures in UML. In M.J. Wooldridge, G. Weiß, and
P. Ciancarini, editors, Agent-oriented software engineering. Proceedings of the Second International
Workshop (AOSE-2001), Lecture Notes in Artificial Intelligence, Vol. 2222. Springer-Verlag, 2002.

[224] J. Lind. Specifying agent interaction protocols with standard UML. In M.J. Wooldridge, G.
Weiß, and P. Ciancarini, editors, Agent-oriented software engineering. Proceedings of the Second
International Workshop (AOSE-2001), Lecture Notes in Artificial Intelligence, Vol. 2222. Springer-
Verlag, 2001.

[225] R. Depke, R. Heckel, and J.M. Küster. Improving the agent-oriented modelling process with roles.
In Proceedings of the Fifth International Conference on Autonomous Agents (Agents’01), pages
640–647, 2001.

33



[226] R. Depke, G. Engels, and J.M. Küster. On the integration of roles in UML. Technical Report No.
214, University of Paderborn, Germany, 2000.

[227] F. Bergenti and A. Poggi. A development environment for the realization of open and scalable
multi-agent systems. In F.J. Garijo and M. Boman, editors, Multi-Agent System Engineering.
Proceedings of the Ninth European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW-99), Lecture Notes in Artificial Intelligence Vol. 1647, pages 52–62. Springer-
Verlag, 1999.

34


