Robotics and
Autonomous
Systems

S AR S

ELSEVIER

Robotics and Autonomous Systems 15 (1995) 135-142

Distributed reinforcement learning
Gerhard Weill

Institut fiir Informatik, Technische Universitit Miinchen, D-80290 Miinchen, Germany

Abstract

In multi-agent systems two forms of learning can be distinguished: centralized learning, that is, learning done by a single
agent independent of the other agents; and distributed learning, that is, learning that becomes possible only because several
agents are present. Whereas centralized learning has been intensively studied in the field of artificial intelligence, distributed
learning has been completely neglected until a few years ago.

This paper summarizes work done on distributed reinforcement learning. The problem addressed is how multiple agents
can learn to coordinate their actions such that they collectively solve a given environmental task, Two learning algorithms

called ACE and DFG are described that provide answers to the following two questions:

® How can multiple agents learn which actions have to be carried out concurrently?

® How can multiple agents learn which sets of concurrent actions have to be carried out sequentially?
Initial experimental results are provided which illustrate the learning abilities of these algorithms.

Keywords: Multi-agent systems; Distributed reinforcement learning; Activity coordination; ACE algorithm; DFG algorithm

1. Motivation

Multi-agent systems establish a central research
area in distributed artificial intelligence (see, e.g.,
[2,15,7,3]). The interest in these systems bases on
the insight that many real-world problems are better
modelled using a set of interacting agents instead of a
single agent [8]. In particular, multi-agent modelling
allows to cope with natural constraints like the limited
processing power of a single agent or the geograph-
ical distribution of data and to profit from inherent
properties of distributed systems like robustness, par-
allelism and scalability. Various multi-agent systems
have been described in the literature. According to the
standard or “prototypical” point of view a multi-agent
system consists of a number of agents being able to
interact and differing from each other in their skills
and their knowledge about the environment. Each

agent is assumed to be composed of a sensor com-

ponent, a motor component, a knowledge base and a

learning component. An agent typically is restricted

in its activity for three reasons:

e because of limitations imposed on the sensor com-
ponent, it knows only a part of the environment
(i.e., it is not “omniscient”),

e because of limitations imposed on the motor com-
ponent, it is specialized in carrying out a specific
action (i.e., it is not “omnipotent™), and

e its action can be incompatible with actions carried
out by other agents (i.e., different actions may pre-
vent each other from being executed).

This prototypical point of view also underlies the work

described in this paper.

Two forms of learning can be distinguished in a
multi-agent system (see also [16]). First, isolated or

centralized learning, that is, learning that is done by a

0921-8890/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

S8D10921-8890(95)00018-6

136 G. Weifi/Roboties and Autonomous Systems 15 (1995) 135-142

single agent and that does not require the presence of
other agents (e.g., learning by creating new knowl-
edge structures). Second, collective or distributed
learning, that is, learning that is done by several
agents and that becomes possible only because sev-
eral agents are present (e.g., learning by exchanging
knowledge). Whereas centralized learning has been
intensively studied since the early days of artificial
intelligence, distributed learning has been neglected
until a few years ago. This is in contrast to the com-
mon agreement that there are two important reasons
for studying this subject:

e to be able to endow artificial multi-agent systems,
which typically are very complex and hard to spec-
ify, with the ability to improve their behavior on
their own; and

e to get a better understanding of the learning pro-
cesses in natural (human and animal) multi-agent
systems.

Despite some initial rescarch efforts (e.g., [4,16-

19]), however, there is a great number of open

problems and questions on distributed learning.

This paper summarizes work that focused on the
relation between learning and action coordination in
multi-agent systems and that has been part of a broader
research project aiming at a more unified perspective
of learning in parallel and distributed systems [23].
The central problem addressed is how several agents
can learn to coordinate their actions such that they col-
lectively solve environmental tasks, even if the learn-
ing feedback is minimal and consists only of a scalar
reinforcement value. Two algorithms called the ACE
algorithm and the DFG algorithm are described which
implement distributed reinforcement learning and en-
dow multiple agents with the ability to generate ap-
propriate sequences of sets of compatible actions.

2. The ACE algorithm
2.1. Overview

The ACE algorithm (ACE stands for “ACtion Es-
timation™) is designed to solve the problem of learn-
ing appropriate sequences of action sets in multi-agent

systems (e.g., [21])'. The working method of this

!'Theyge a slightly different notation was used.

algorithm can be overviewed as follows. Each agent
estimates the usefulness of its action in different en-
vironmental states. Based on these estimates, in each
environmental state the agents compete for the right to
become active. Only the winning agents are allowed
to perform their actions and, by the way, to transform
the actual into the next environmental state. The agents
learn by collectively adjusting and improving, over
time, the estimates of their actions. This adjustment,
which is also known as credit assignment or apportion-
ment of credit, is done according to the action-oriented
variant [20] of a reinforcement learning model called
bucket brigade [14] which originally comes from the
field of classifier systems. All together, according to
the ACE algorithm the overall behavior of the multi-
agent system results from the repeated execution of the
competition and the credit assignment activities. The
next subsections give a detailed description of these
two activities.

2.2. Competition

In each environmental state §; a compeltition runs
between the agents. Each agent A; makes a bid B/ for
the right to carry out its action and announces this bid
to the other agents. This bid is calculated by

BJ-:{(QJF,G)-E{ if £/ > 0,)

i 0 otherwise,

where « is a small constant called risk factor, 8 is a
small random number called noise term, @ is a con-
stant called estimate minimum, and E/ is A;’s estimate
of the usefulness of its action dependent on what it
knows about S;. (E! is initialized with a predefined
value EM') The a indicates the fraction of E] the
agent A; is willing to risk for being allowed to be-
come active. The B introduces noise into the com-
petition process in order to avoid getting stuck into
local learning minima. (In the literature on classifier
systems various methods of introducing noise into the
bidding process have been described; see, for instance,
[10].) The @ helps to prevent executing useless (low-
estimated) actions. In the following, a - E] is called
the deterministic part and 8- E;-j is called the stochastic
part of B/.

After the agents have announced their bids, they se-
lect the actions that are carried out concurrently. The

G. Weifi/ Robotics and Autonomous Systems 15 (1995) 135-142 137

agent having made the highest bid is allowed to exe-
culte its action, and each potentially active agent whose
action is incompatible to the selected one withdraw its
bid; this is repeated until no further action associated
with a non-zero bid can be selected. Formally, action
selection is described by
o APY[S;] =qer set of agents that could become
active in §j,

A8,] =der 05
e until AP'[S;] =0 do

- select A; € AP'[S;] with B! > Bj for all Ay €

AP S
- A:IDI[SJ_] :Aacl[Sj] U {A,_}
- APS;] = AP!S;] \ (AU {Ax € APP[S;] -
Ay and A; are incompatible});

e only the agents in A™'[S;] become active.
(Note that this kind of competition requires a rational
or non-egoistic behavior of the agents in the sense that
none of the agents insists the execution of a low-bid
or an incompatible action.) '

2.3. Credit assignment

The agents assign credit to each other by adjusting
the estimates of the usefulness of their actions. Infor-
mally, this is done as follows. The agents that won
the actual competition reduce the estimates of their
actions (the actual winners pay for their privilege to
carry out their actions) by the amount of the deter-
ministic part of their bids, and hand the sum of all
reductions back to the agents that won the previous
competition (the previous winners are rewarded for
appropriately setting up the environment). The pre-
vious winners, in turn, add the received sum to the
estimates of their own actions. Additionally, if there
is an external reward from the environment, then it is
distributed among the actual winners. This adjustment
of the estimates is formally described as follows. Let
§; and §; be the actual and the previous environmen-
tal state, respectively. The estimate £/ of each actual
winner A; is modified according to

E{ =E;f - afL‘{ o Rex[/|AnCLlSj]

i (2)

where R“*' is the external reward (if there is any). The
estimate E} of each previous winner Ay is increased
according to

Ej = Ei + B/|A'(S1]]. (3)

where B =)", qus, @ E/ is the sum of all reduc-
tions made by the actual winners.

The effects of this bucket-brigade-type credit as-
signment are as follows (see [13]). An agent’s esti-
mate of its action increases (decreases), if the agent
pays less (more) than it receives. As a consequence,
the estimates of actions that are involved in successful
sequences of action sets (i.e., sequences that lead to
external reward) increase over time and stabilize this
sequence; and conversely, the estimates of actions that
are involved in unsuccessful sequences decrease over
time and destabilize this sequence.

3. The DFG algorithm
3.1. Overview

Like the ACE algorithm, the DFG algorithm (DFG
is an abbreviation for “Dissolution and Formation of
Groups”) implements distributed reinforcement learn-
ing of action sequences (e.g., [22]). In contrast to the
ACE algorithm, however, the DFG algorithm explic-
itly distinguishes between single agents and groups of
compatible agents as the acting units in a multi-agent
system. Now agents as well as groups estimate the
usefulness of their activities in different environmen-
tal states, and agents as well as groups compete for
the right to become active. In particular, now learning
encompasses two interrelated processes: first, bucket-
brigade-type credit assignment; and second, group de-
velopment, that is, the process of dissolving existing
(useless) and forming new (useful) groups. The fol-
lowing subsections describe the DFG algorithm in de-
tail.

3.2. Groups as acting units

As it is known from organization theory and man-
agement science, single agents typically serve as
building blocks for more complex structured and au-
tonomously acting units (see, e.g., [5,6]). The DFG
algorithm adopts this point of view, and distinguishes
between single agents and groups as the acting units
in a multi-agent system. A group is considered to be
composed of a group leader and several compatible
group members, where a group leader is a single agent
and a group member is either a single agent or an-

138 G. Weifi/Robotics and Autonomous Systems 15 (1995) 135-142

IZI/D\D ' |)

E S

00O
i iy
&) (b}

Fig. 1. Examples of group structures. (a) shows the most simple
group which consists of a leader and two members each being a
single agent. (b) shows a more complicated group which has two
members, one being a group (dashed box) and the other being a
single agent. The “dashed group” also has a group (dotted box)
and a single agent as its members, where the “dotted group™ has
three members each being a single agent. (Legend: [single agent,
/\ leader-member relations.)

other group. This recursive definition is rather general
and covers both low and high structured groups; see
Fig. 1 for an illustration. The task of a group leader
is to represent the group’s interests; this includes, for
instance, to decide whether the group should persist
as an autonomously acting unit, cooperate with an-
other acting unit, or dissolve. The group members
have to be compatible in the sense that the activity
of no member leads to environmental changes that
prevent the activity of another member.

The following simple notation is used in the fol-
lowing subsections. U; refers to an acting unit, that is,
either to a single agent or to a group. If U; refers to a
group, then U; denotes the leader of this group; oth-
erwise, if U; refers to a single agent, then U; simply
denotes this agent, too. Finally, [U;, §;] denotes the
knowledge that the agents contained in U; have about
Sis U, S;] is called the knowledge context of U in
S;. (Note that [U;, §;] N [Uy, S;] may but need not be
empty, and that | J;[U}, §;] is not necessarily equal to
S;. Similarly, [U;, S;] M [U;, 8¢] may but need not be
empty; in particular, it may be the case that [U;, §;] =
[U;, Sk], which means that a unit may be unable to
distinguish between different environmental states.)

3.3. Competition and credit assignment

Competition and credit assignment is done analo-
gously to the ACE algorithm, In each environmental
state S; the acting units compete for the right to be-
come active. Each unit U; calculates a bid B/,

B! =(a+B)-E, (4)

where « is the risk factor, £ is the noise factor, and Ef
is U;'s estimate of U;’s usefulness dependent on the
knowledge context [U;, S;]. Only the unit making the
highest bid is allowed to become active and, in this
way, transforms the actual into a new environmental
state. This selection of a single winning unit corre-
sponds to the selection of the action set that is carried
out in the actual state.

Credit assignment again is done in a bucket brigade
style. Let U; be the winning unit in the actual state §;,
and let Uy be the winning unit in the preceding state
8). U; reduces its estimate E/ by the amount of the
deterministic part of its bid Bf and hands this amount
back to Uy. Uy, in turn, adds the received amount to
its estimate Ei.. Additionally, if the activity of U; leads
to an external reinforcement R, then U; adds this
reinforcement to its estimate E/. All together, credit
assignment involves the following adjustments:

E/=E —a-E +R™, (5)
E,=E}+a-E. (6)

Based on Grefenstette’s [11] convergence result it
has been shown that under the DFG algorithm the es-
timates of successively active units tend to converge to
an equilibrium level [22]. Moreover, it can be shown
that every solution path learnt under the DFG algo-
rithm is cycle-free in the sense that no environmental
state is involved in this path more than one time.

3.4. Group development

The DFG algorithm distinguishes two contrary pro-
cesses of group development, namely, group formation
and group dissolution. Both processes largely depend
on the past usefulness of the agents’ and the groups’
activities. In order to be able to decide about the for-
mation of new groups and the dissolution of existing
ones, each U; calculates the mean values of its esti-
mates over the previous episodes, where an episode
is defined as the time interval between the receipts of
two successive environmental reinforcements. More
exactly, during each cpisode T+ 1, U; calculates the
gliding mean value M![7+ 1] of its estimate E! as

G. Weifi/Robotics and Autonomous Systems 15 (1995) 135-142 139

Mfrr+1]——

Z E/[T], (7)

T=r—r4l

where v is a constant called window size and E”lT]
is £/ at the end of episode T. Both group formation
and group dissolution proceed in dependence on the
gliding mean values of the estimates.

In the following, let S; be the actual environmental
state and let 741 be the actual episode. For each unit
U; that is potentially active in S;, U; decides that U;
is ready to cooperate and to form a new group with
other units in the context LU S;] if

Mir+1]<o- EJ[T—V] (8)

where o is a constant called cooperation factor which
influences the units’ readiness to form new groups.
In words, according to this decision criterion a unit
intends to cooperate in a specific context, if the esti-
mate of its usefulness tends to increase too slowly, to
stagnate or to decrease. The units that are ready to co-
operate in their activity contexts form new groups ac-
cording to the simple principles “stronger units choose
their cooperation partners first” and “stronger units are
preferred as cooperation partners”. Formally, group
formation is done as follows. Let I be the set of all
units that are ready to cooperate:

until &4 =) do

e Let U; € U be the unit with EJr = rnax;{E U e
U}. Then U; announces a “cooperation offer” to the
other units.

e For each unit U; € U that is compatible with U;, U,
sends a “cooperation response” to U,.

o Let U™P C U be the set of all responding units.
Then U; chooses the unit Uy € U™P with E’ =
Imx;{ E] : U € U™} as the cooperation partner of
U;. U; and Uy, form a new group G that has U; and U}
as its membcrs and either U; or Uy as its leader. (The
leader initializes the estimate of the new group’s
usefulness with a predefined value E™,)

o U=U\{U, U} .

(Note that each group has exactly two members;
this could be easily extended towards multi-member
groups by allowing U; to chose several coopera-
tion partners.) There are two things that have to be
stressed. First, if two units form a new group, then
this occurs within the frame of the units’ knowledge

.

contexts. Second, the process of group formation does
not require an exchange of environmental information
— neither among group members, nor among group
members and leaders, nor among leaders of different
groups. With that, cooperation and group formation
is a highly context-sensitive process, but does not
require an exchange of environmental information
among the units.

For each group U; that is potentially active in S}, U;
decides that U; has to dissolve in its members if

MJIT"F l] p- E'mli . (9)

where p is a constant called dissolution factor which
influences the robustness of the existing groups, and
E™ js the initialization value of the estimates. Accord-
ing to this criterion a group dissolves, if the estimate
of its usefulness, averaged over the previous episodes,
falls below a certain minimum.

4. Experiments
4.1. Task domain and analysis

As a lask domain the blocks world is chosen. This
domain has been intensively studied in the fields of
problem solving and planning, and is clear enough for
doing the initial experimental studies in the unknown
field of multi-agent learning. What has to be learnt by
a given set of agents is to transform a start constella-
tion of blocks into a goal constellation within a lim-
ited time interval. This paper summarizes the results
on the task shown in Fig. 2. In this task, each agent is
specialized in a specific action; for instance, agent A,
is able to put block A on the bottom (symbolized by
a 1) and agent Ag is able to put block D on block A.
The precondition for applying an action put(x,y) is
that no other blocks are placed on x and y, i.e. x and
v have to be empty. Each agent is assumed to have
only minimal information about the environment: it
only knows (“sees”) whether the precondition of its
action put(x, y) is fulfilled. Because of this constraint,
an agent is unable to distinguish between all differ-
ent environmental states. In particular, an agent may
be unable to distinguish between a state in which its
action is useful and a state in which its action is not
useful. (For instance, agent A, cannot distinguish be-
tween a “relevant state” in which block B is placed on

140 G. Weifi/Robotics and Autonomous Systems 15 (1995) 135-142

Start Constellation Goal Constellation

Agents; Ay oput(A L) Aar put(A, B)
Ay pul(B. F) Aqr pul(C, L)
As put(C, D) Ag: pul(D, A)
Az pul(EF) Aar put(F L)
Ag: pul(F, E)
Limited Time Interval: at most 4 cycles

Fig. 2. A basic blocks world task.

the bottom and an “irrelevant state” in which block B
is placed on block F. The fact that an action may be
relevant in one state but irrelevant in another is some-
times called the Sussman’s anomaly; see, e.g., [9].)
Two actions are considered to be incompatible if their
concurrent execution is not possible. Examples of sets
of incompatible actions are {put(A, L),put(A,B)}
(i.e., a block cannot be placed on different positions
at the same time), {put(B, F),put(E,F)} (ie., dif-
ferent blocks cannot be put on the same block), and
{put(C,D),put(D,A)} (i.e., a block cannot be put
on a block which, at the same time, is put on another
block). The transformation from the start into the goal
constellation has to be done in at most four cycles.
There is one solution sequence (i.e., a sequence
of action sets that transforms the start into the
goal constellation) of length 2, 24 solution se-
quences of length 3, and 210 solution sequences
of length 4. The solution sequence of length 2
is given by ({put(A,L),put(C, L), put(F, L)},
{put(A,B),put(C,D),put(E,F)}). Because every
solution sequence contains at least 5 actions, this
task cannot be solved by means of a sequential “one-
action-per-cycle” approach. In the case of a random
walk through the search space, the probability of find-
ing the solution sequence of length 2 is less than 1
percent, the probability of finding a solution sequence
of length 3 is less than 4 percent, and the probability
of finding a solution sequence of length 4 is less than
5 percent. With that, the probability that a random
sequence of maximal length four transforms the start
into the goal constellation is less than 10 percent.

1wood+
900 ‘ [0 DFG [ACE M rand
00 4

700
800 F
500
4004
100
200
1004
0

-

reward

trials

Fig. 3. Performance profiles.

4.2. Results

The experimental setting was as follows. A trial is
defined as any sequence of at most four cycles that
transforms the start into the goal constellation (suc-
cessful trial), as well as any other sequence of exactly
four cycles that transforms a start into a non-goal con-
stellation. Learning proceeds by the repeated execu-
tion of trials, At the end of each trial the start constel-
lation is restored, and the agents again try to solve the
task. Additionally, only at the end of each successful
trial a non-zero external reward R**' is provided. Pa-
rameter setting: EM = R = 1000, @ = 0.15, B €
[—a/5...+ a/5] (randomly chosen for every bid),
v=4o=1+4+3a,and p=1—a.

Fig. 3 shows the performance profiles of the ACE
algorithm, the DFG algorithm, and a random-walk
algorithm that randomly chooses an applicable set of
compatible actions at the beginning of each trial. (Fur-
ther experimental results are described in [21,22].)
Each data value reflects the mean environmental re-
ward per trial obtained during the previous 10 trials,
averaged over 10 runs started with different random-
number-generator seeds. There are several important
observations. First, the learning performance of ACE
and the DFG algorithm was significantly above the
random performance level which is about 100. Both
algorithms reached their highest average performance
level after about 80 trials. This shows that under
both algorithms the agents are able to learn useful
sequences of action sets. Second, the DFG algorithm
clearly performed better than the ACE algorithm; ad-
ditionally, the DFG algorithm shows a more ‘smooth”
performance than the ACE algorithm. The reason for
that is that under the ACE algorithm the usefulness of
an action is estimated only in dependence on the envi-

G. Weifs/Robotics and Autonomous Systems 15 (1995) 135-142 141

ronmental state, whereas under the DFG algorithm it
is estimated in dependence on both the environmental
state and other actions carried out concurrently. As
a consequence, the DFG algorithm does better cope
with the fact that the usefulness of an action set does
nothing say about the usefulness of a subset or a su-
perset of this action set. Finally, as a consequence of
the minimal-information constraint described above,
the average performance of the ACE and the DFG
algorithm remained below the maximum reward
level (1000). This observation clearly shows the im-
portance of information and information exchange
mechanisms in the context of cooperating agents.

5. Critique and future work

This paper summarized work on learning and action
coordination in multi-agent systems. Two algorithms,
ACE and DFG, were described which enable multiple
agents to learn useful action sequences.

The experimental results are very encouraging, but
they also showed that the ACE and the DFG algorithm
leave room for improvement. A limitation of both al-
gorithms is that their learning success relies on an ex-
plicit exploration of a sufficient number of state-action
pairs. This leads to an impractical amount of time re-
quired for learning, if the state and action spaces are
too large and complex. There are two standard meth-
ods which can be used in order to cope with this kind
of limitation: to endow the agents with the ability to
generalize over the search space; and to endow the
agents with the ability to built up an internal world
model which can be used for look-ahead and planning
activities. The ACE and the DFG algorithm are very
general learning schemes which both allow an incor-
poration of these methods. This incorporation has to
be a topic of future research.

Other important research topics are, for instance,
the investigation of alternative group concepts (e.g.,
groups with variable bindings between the members)
and alternative strategies for the dissolution and the
formation of groups. In attacking these topics, it may
well be useful to take also into consideration related
work from other disciplines such as psychology (e.g.,
[12]) and economics (e.g., [1]). A long-term goal
should be the development of a general framework of
organizational adaptation in multi-agent systems.

.

References

[1] C. Argyris and D.A. Schin, Organizational Learning
(Addison Wesley, Reading, MA, 1978).

[2] AH. Bond and L. Gasser, eds., Readings in Distributed
Artificial Intelligence (Morgan Kaufmann, San Mateo, CA,
1988).

[3] W. Brauer and D. Hemdndez, eds., Verfeilte Kiinstliche
Intelligenz und kooperatives Arbeiten (Springer, Berlin,
1991).

[4] P. Brazdil and S. Muggleton, Learning to relate terms in a
multiple agent environment, in: Y. Kodratoff, ed., Machine
learning - EWSL-91 (Springer, Berlin, 1991) 424-439.

|5] M.S. Fox, An organizational view of distributed systems,
IEEE Trans. Sys. Man Cyberner. SMC-11(1) (1981) 70-80.

[6] J. Galbraith, Designing Complex Organizations (Wiley, New
York, 1973).

[7] L. Gasser and M.N. Huhns, eds., Distributed Artificial
Intelligence (Vol. 2) (Pitman, London, 1989).

[8] M.P. Georgeff, Many agents are better than one, SRI
International, Menlo Park, CA, Technical Report 417, 1987,

[9] M.L. Ginsberg, Possible worlds planning, in: M.P. Georgeff
and A.L. Lansley, eds., Reasoning About Actions and Plans
- Proceedings of the 1986 Workshop (Morgan Kaufmann,
1986) 213-243,

[10] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning (Addison-Wesley, Reading, MA,
1989).

[11] 1.). Grefenstette, Credit assignment in rule discovery systems
based on genetic algorithms, Mach. Learning 3 (1988) 225-
245,

[12] R.A. Guzzo, Improving Group Decision Making in
Organizations — Approaches from Theory and Research
(Academic Press, New York, 1982).

[13] J.H. Holland, Properties of the bucket brigade algorithm, in:
1.1. Grefenstette, ed., Proc. st Imternat. Conf. on Genetic
Algorithms and Their Applications (Lawrence Erlbaum,
Hillsdale, NJ, 1985) 1-7.

[14] J.H. Holland, Escaping brittleness: The possibilities of
general-purpose learning algorithms to parallel rule-based
systems, in: R.S. Michalski, J.G. Carbonell and T.M.
Mitchell, eds., Machine Learning: An Artificial Intelligence
Approach (Vol. 2) (Morgan Kaufmann, 1986) 593-632.

[15] M.N. Huhns, ed., Distributed Artificial Intelligence (Pitman,
London, 1987}.

[16] M.J. Shaw and A.B. Whinston, Learning and adaptatation
in distributed artificial intelligence, in [7], 413-429.

[17] S.S. Sian, Adaptation based on cooperative learning in multi-
agent systems, in: Y. Demazeau and J.-P. Miiller, eds.,
Decentralized Al (Vol. 2) (Elsevier, Amsterdam, 1991),

[18] R. Sikora and M.J. Shaw, A distributed problem-solving
approach to inductive learning, College of Commerce and
Business Administration, University of Nlinois at Urbana-
Champaign. Faculty Working Paper 91-0109, 1991.

[19] M. Tan, Multi-agent reinforcement learning: Independent
versus cooperative agents, in: Proc. {0th Internat. Conf. on
Machine Learning (1993) 330-337.

142

G. Weifi/ Robotics and Autonomous Systems 15 (1995) 135-142

[20] G. Weill, Learning the goal relevance of actions in

classifier systems, Proc. of 10th European Conf. on Artificial
Intelligence (Wiley, Chichester, UK, 1992) 430-434.

G. WeiBl, Learning to coordinate actions in multi-agent
systems, in: Proc. 13th Internat. Joint Conf. on Artificial
Inteltigence (Morgan Kaufmann, San Mateo, CA, 1993)
311-316.

G. Weil, Action selection and learning in multi-agent

environments, in: Proc. 2nd Internar. Conf. on Simulation of

Adaptive Behavior (MIT Press, Cambridge, 1993) 502-510.
G. Weib, Distributed Machine Learning (infix Verlag, Sankt
Augustin, 1995).

Gerhard Weils received his doctoral de-
gree in computer science from the Tech-
nische Universitit Miinchen in 1994. He
is currently with the Al/Cognition re-
search group at the computer science de-
partment at TUM. His work focuses on
learning and adaptation processes in par-
allel and distributed systems, with an em-
phasis on neural networks, evolutionary
systems, rule-based systems (especially
classifier systems), and multi-agent sys-
tems. He is particularly interested in in-
telligent systems that combine the tra-

dlllonal knowlcdgc -oriented and the novel behavior-oriented Al

