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ABSTRACT
Complex negotiations among rational autonomous agents is gain-
ing a mass of attention due to the diversity of its possible appli-
cations. This paper deals with a prominent type of complex ne-
gotiations, namely, multi-issue negotiation that runs under real-
time constraints and in which the negotiating agents have no prior
knowledge about their opponents’ preferences and strategies. We
propose a novel negotiation strategy called Dragon which employs
sparse pseudo-input Gaussian processes (SPGPs) to model efficiently
the behavior of the negotiating opponents. Specifically, with SPGPs
Dragon is capable of: (1) efficiently modeling unknown opponents
by means of a non-parametric functional prior; (2) significantly re-
ducing the computational complexity of this functional prior; and
(3) effectively and adaptively making decisions during negotiation.
The experimental results provided in this paper show, both from the
standard mean-score perspective and the perspective of empirical
game theory, that Dragon outperforms the state-of-the-art negotia-
tion agents from the 2012 and 2011 Automated Negotiating Agents
Competition (ANAC) in a variety of negotiation domains.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distribute Artificial Intelligence—
Intelligent agents, Multiagent systems

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-agent systems; Automated Multi-issue Negotiation; Oppo-
nent Modeling; Sparse Gaussian Process; Empirical game theory

1. INTRODUCTION
Because of the broad spectrum of potential applications in indus-

trial and commercial domains, automated negotiation is achieving
steadily growing attention as a fundamental and powerful mecha-
nism for managing interaction among computational agents, which
are in a consumer-provider or buyer-seller relationship and thus
typically have different interests over possible joint agreements on
some matter.Various forms of negotiation can be distinguished [15].
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Research described in this paper deals with bilateral multi-issue ne-
gotiation, which is widely used. In this setting, two agents nego-
tiate with the goal to agree on a profitable contract for a product
or service, where the contract consists of multiple issues which are
of conflictive importance to the negotiators, such as price, delivery
time, quantity, and quality.

To have a more realistic setting, the work described here studies
the scenarios in which the agents have no prior information about
their opponents – neither about their preferences (e.g., their pref-
erence over issues or issue value ordering) nor about their negotia-
tion strategies. Moreover, this paper focuses on negotiation settings
with deadline and discount and in which the negotiating agents do
not know the remaining number of the negotiation rounds. With
that, the negotiators have to take into account (1) the remaining ne-
gotiation time and (2) the fact that the achievable profit through an
agreement decreases over time (i.e., is discounting). Furthermore,
we assume that each agent has a private reservation value below
which an offered contract is not accepted, and we adopt the com-
mon view that an agent obtains the reservation value even if no
agreement is reached during negotiation. Despite being complex,
this overall setting is of relevance to a wide range of practical ap-
plications, and is also common to many human-human negotiation
scenarios.

A major factor to a successful negotiation is modeling the oppo-
nent’s behavior, however it is indeed challenging because negotia-
tors generally are not open about their true preferences and strate-
gies to avoid exploitation [6, 16]. Although there exist methods for
solving this problem, two issues still stand out. The first one relates
to the simplifying assumptions made about the opponent’s model.
Typically, simplifying assumptions about the structure of the mod-
eled function, and/or the rate of change in the function are made.
These allow using simpler approximation methods. The problem is
that these assumptions are usually overly simplified and thus under-
estimate the opponent’s model. Others tried to avoid these simpli-
fications by adopting more sophisticated approximators, which re-
late to the second issue: computational complexity or the availabil-
ity of computational resources in the negotiation setting. Specif-
ically, these sophisticated approximation techniques perform well
in capturing the structure of the underlying latent model, but face
problems dealing with higher dimensions and/or larger data sets,
prohibiting their applications in more complex scenarios.

We tackle these problems and make a number of contributions.
The primary contribution is the proposition of a novel negotiation
strategy called Dragon. This strategy makes use of SPGPs to: (1)
relax the modeling assumptions of other approaches by employ-
ing a non-parametric functional prior, making it capable of model-
ing highly complex opponent models, and (2) reduce the computa-
tion complexity of learning in such a non-parametric setting. The



second contribution is the proposition of a new adaptive decision-
making strategy. The main advantages of this new decision-making
method are: (1) allowing the agent to determine the optimal con-
cession degree of the opponent, and (2) avoid the problems related
to “irrational concession”, see Section 4.2.

The presented experiments, performed in negotiating against state-
of-the-art opponents clearly demonstrate the effectiveness of the
proposed strategy. More precisely, Dragon outperforms the top-
ranked negotiation agents of the 2012 and 2011 ANAC from the
mean score perspective. Further studies conducted using empiri-
cal game theory show that Dragon not only outperforms the other
agents, but is also robust when the mix of opposing strategies was
different.

The remainder of this paper is structured as follows. Section 2,
overviews important related work and pin-points their major defi-
ciencies. Section 3, provides the reader with background knowl-
edge needed to understand the remainder of the paper. Then, the
technicalities of Dragon are explained in Section 4. A careful ex-
perimental analysis of the approach is given in Section 5. Finally,
Section 6, concludes and identifies interesting future research di-
rections.

2. RELATED WORK
Approximating the opponent’s model in negotiations has been of

growing interest in the agents community, see [10] for an overview.
However, most of the proposed approaches are either restrictive
in their assumptions, or computationally expensive. For instance,
Coehoorn and Jennings [6] use Kernel Density Estimation to ap-
proximate the opponent’s preferences. Faratin et al. [8], design
a trade-off strategy to increase the offer acceptance rate. Though
successful, the effectiveness of these methods highly depend on the
availability of extra information, such as the negotiation history, the
opponent’s strategy, or other domain knowledge. Other research ef-
forts adopt a Bayesian setting to aid learning in automated negotia-
tions. In [14], for instance, a reasoning model is introduced to learn
the likelihood of an opponent profile. Hendrikx and Tykhonov [12]
present a more generic framework for opponent modeling to learn
opponent preferences. The main problem behind these approaches
is the computational effort needed to learn in problems of high
dimensionality, where the computational complexity of Bayesian
learning increases exponentially with the increase in the problem’s
dimensionality.

Furthermore, Saha et al. [19] applies Chebychev Polynomials to
estimate the offer acceptance probability in repeated single-issue
negotiations. Brzostowski et al. [3] makes use of differentials to
perform online prediction of future counter-offers based on the pre-
vious negotiation history, with the assumption that the opponent
strategy is only based on a combination of two basic negotiation
tactics introduced in [7]. In [4] an artificial neural network (ANN)
was constructed to predict future counter-offers, which places de-
mands on a large amount of previous encounters and computational
resources to complete the training. Although this existing work
advances the field of automated negotiations, it still suffers from
several limitations. These could be summarized as: (1) restrictive
structural assumption, or (2) high computational efforts.

Recent research aiming at solving the assumption problem in-
cludes William et al. [21]. In this work the authors applied Gaus-
sian processes to predict the opponent’s future concession. The
resulting model was then used by the agent to adjust its own con-
cession strategy. Towards the same end, Hao et al. [9] introduced
a negotiation strategy named ABiNes1 to deal with negotiations
1Its implementation is called CUHKAgent, which achieved the
champion of ANAC 2012.

in complex environments. To successfully perform negotiations,
ABiNeS adjusts the time to stop exploiting the negotiating partner
and also employs a reinforcement-learning approach to improve the
acceptance probability of its proposals. Another noteworthy work
is [5], where Chen and Weiss proposed the negotiation approach
”OMAC" that learns the opponent’s strategy to predict utilities of
future counter-offers through discrete wavelet decomposition and
cubic smoothing splines. A detailed comparison to the above meth-
ods is performed in Section 5, where the proposed strategy outper-
forms the aforementioned strategies.

3. BACKGROUND
In this section we provide the reader with the background knowl-

edge needed to understand the remainder of the paper. Firstly, the
negotiation model in which the agents operate is explained. Sec-
ondly, the regression framework including both Gaussian Processes
and Sparse Pseudo-Input Gaussian Processes is detailed.

3.1 Negotiation Model
A basic bilateral multi-issue negotiation setting which is widely

used in the agents field (e.g., [7, 8]) is adopted. The negotiation
protocol is based on the standard alternating offers formalized in
[18]. Let i be a specific agent, j be a particular issue and k rep-
resent the choice of the jth issue. We define the value of issue
j as vjk. Each agent has a lowest expectation for the negotiation
outcome called the reservation value (θ). Further, wij denotes the
weighting preference which agent i assigns to issue j. The weights
of a specific agent i over the issues are normalized summing to one
(i.e.,

∑n
j=1(w

i
j) = 1). During negotiation the two agents act in

conflictive roles specified by their preferences. An offer, O, is a
vector of values vjk for each of the issues j. The utility of an offer
for agent i is defined as:

U i(O) =
n∑
j=1

(wij · V ij (vjk)) (1)

where, V ij is the evaluation function of agent i, mapping the value
of an issue j to a real number. .

Each agent makes, in turn, an offer in form of a contract pro-
posal. The negotiation continues until one party accepts a counter-
offer or an agent breaks off during the process. If no agreement is
reached at the end, the disagreement solution specified by the sce-
nario is then adopted. This is also applied for the case in which an
agent withdraws from the negotiation in advance.

Discounted domains are also considered. We define a discount-
ing factor δ (δ ∈ [0, 1]) which is used to calculate the discounted
utility as follows:

Dδ(U, t) = U · δt (2)

where U is the (original) utility and t is the standardized time (i.e.,
t ∈ [0, 1]). From the above equation it is clear that the longer it
takes for agents to come to an agreement the lower the utility they
can achieve.

3.2 Gaussian Processes
In the field of machine learning, Gaussian Processes (GPs) are

one of the well-known, non-linear, non-parametric regression tech-
niques. These models have been successfully applied in negotia-
tion settings by [21]. Although GPs are a powerful form of func-
tion approximators, they suffer from computational problems once
dealing with large data sets. GPs present a good candidate for op-
ponent modeling as long as the computational complexity is re-
duced. To address this accuracy-computation dilemma, Dragon



proposes a novel strategy based on Sparse Pseudo-inputs Gaussian
Processes (SPGPs). These models detailed in Section 3.2.2, are
able to achieve similar modeling accuracy to GPs but with much
less computational effort.

3.2.1 Gaussian Processes
Gaussian Processes (GPs) are a form of non-parametric regres-

sion techniques. Following the notation of [17], given a data set
D = {x(i), y(i)}ni=1 where x ∈ Rd is the input vector, y ∈ R
the output vector and m is the number of available data points
when a function is sampled according to a GP, we write, f(x) ∼
GP(m(x), k(x, x′)), wherem(x) is the mean function and k(x, x′)
the covariance function, fully specifying a GP. Learning in a GP
setting involves maximizing the marginal likelihood of Equation 3.

log p(y|X) = −1

2
yT

(
K + σ2

nI
)−1 y−1

2
log |K+σ2

nI|−n
2
log 2π,

(3)
where y ∈ Rm×1 is the vector of all collected outputs, X ∈ Rm×d

is the matrix of the data set inputs, and K ∈ Rm×m is the covari-
ance matrix with |.| representing the determinant. Due to space
constraints we refer the interested reader to [17] for a thorough
discussion of the topic. To fit the hyperparameters that best suit
the available data set we need to maximize the marginal likelihood
function of Equation 3 with respect to Θ the vector of all hyperpa-
rameters. Typically, this maximization requires the computation of
the derivatives of Equation 3 with respect to Θ. These derivatives
are then used in a gradient-based algorithm to perform the updates.
Namely, the update is performed using the following equations,

∂

∂θj
log p(y|X,Θ) =

1

2
yTK−1 ∂K

∂θj
K−1y − 1

2
tr
(

K−1 ∂K
∂θj

)
=

1

2
tr
(
(ααT − K−1)

∂K
∂θj

)
with α = K−1y

(4)

The problem with GPs is that maximizing Equation 3 is compu-
tationally expensive due to the inversion of the covariance matrix
K ∈ Rn×n where n is the number of data points. The update in
each step of the gradient-based optimization algorithm incurs the
inversion cost of O(n3). Since the covariance matrix is parame-
terized by the hyperparameters Θ, this inversion needs to be com-
puted at each step of the gradient-based algorithm as the values of
Θ are updated.

It is for this specific reason that we employ a fast and more ef-
ficient learning technique (i.e., Sparse Pseudo-input Gaussian Pro-
cesses (SPGPs)). The most interesting feature of SPGPs is that
these approximators are capable of attaining very close accuracy
in both learning and prediction to normal GPs with only a fraction
of the computation cost. The main reason is that learning is pa-
rameterized by a small number of pseudo-inputs that are automati-
cally fitted depending on the variation of the sought function. This
property makes them extremely suitable to the negotiation domain
where a complex and low cost function approximation framework
is highly demanded. The technicalities of SPGPs are described
next.

3.2.2 Sparse Pseudo-input Gaussian Processes
As mentioned previously, GPs are computationally expensive to

learn especially in an online setting. SPGPs aim at reducing the
complexity of GPs in both learning and prediction. The idea is to
parametrize the regression model with the so-called pseudo-inputs.
The location of these inputs is iteratively fitted by maximizing a
new kind of marginal likelihood. Interestingly, using only a small
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(a) Illustration of the predictive power of SPGPs on a toy exper-
iment.
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(b) Illustration of the predictive power of GPs

Figure 1: The blue curves represent the mean of the approxi-
mated function while the red lines represent the variance. The
black crosses in Figure 1(a) show the locations of the pseudo-
inputs and the vertical dash-dot lines in both figures denote the
interval at which the prediction is taking place.

amount of pseudo-inputs, SPGPs are capable of attaining very sim-
ilar fitting and prediction results to normal GPs. To clarify, the
idea is to parametrize the model by M << n pseudo-input points,
while still preserving the full Bayesian framework. This leads to
the parametrization of the covariance function by the location of
M <<< n pseudo-inputs. These are then fitted in addition to the
hyperparameters in order to maximize the following new marginal
likelihood:

p(y|X, X̄,Θ) =

∫
p(y|X, X̄, f̄)p(̄f|X̄)d̄f

= N (y|0,KNMK−1
M KMN +Λ+ σ2I), (5)

where, X̄ is the matrix formed by the pseudo-inputs with X̄ =
{x̄}Mm=1. KNM is the covariance matrix formed by the pseudo and
the real inputs as KMN = k(x̄m, xn) with k(., .) being the covari-
ance kernel. K−1

M is the inverse of the covariance matrix formed
among the pseudo inputs with KM = k(x̄m, x̄m). Λ is a diagonal
matrix having the diagonal entries of λn = knn − kTnK−1

M kn. The
noise variance and the identity matrix are represented by σ and I,
respectively.

Results in [20] show a complexity reduction in the training cost
(i.e., the cost of finding the parameters of the covariance matrix) to
O(M2N) and in the prediction cost (i.e., prediction on a new set of



Algorithm 1 The Dragon approach. Let tc be the current time, δ the time
discounting factor, and tmax the deadline of negotiation. Oopp is the latest
offer of the opponent and Oown is a new offer to be proposed by Dragon.
χ is the time series including the maximum utilities over intervals. ϱ is
the lead time for prediction, Eδ denotes the discounted expected utility of
incoming counter-offers. Elow is the lowest expectation to negotiation, ρ
is the compromise point, and R is the dynamic conservative expectation
function. u′ is the target utility at time tc.

1: Require: R, δ, ξ, tmax

2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: recordOffers(tc, Oopp);
5: if TimeToUpdate(tc) then
6: χ⇐ preprocessData(tc)
7: Eδ ⇐ Predict(χ, ξ);
8: (Elow, ρ) ⇐ updateParas(tc);
9: R⇐ (Elow, ρ);

10: end if
11: u′ = getTargetUtility(tc, Eδ, δ, R);
12: if isAcceptable(u′, Oopp, tc, δ) then
13: accept(Oopp);
14: else
15: checkTermination();
16: Oown ⇐ constructOffer(u’) ;
17: proposeNewBid(Oown);
18: end if
19: end while

inputs) to O(M2). The results further demonstrate that SPGPs can
fully match normal GPs with small M (i.e., few pseudo-inputs),
successfully producing very sparse solutions. A full mathematical
treatment may be found elsewhere [20].

In order to show the usefulness and powerfulness of SPGPs we
conducted an experiment on artificially generated data. With only
M = 20, SPGPs where able to attain very similar results to nor-
mal GPs as shown in Figure 1. It is clear that both learned function
follow a very similar increasing trend. Predictions made at 50 ne-
gotiation intervals also show similar predicted values in both cases.
The black crosses in Figure 1(a) represent the location of the fit-
ted pseudo-inputs. It is clear that these pseudo-inputs were mostly
located in critical ranges of the function.

4. PROPOSED METHOD
The overall Dragon strategy is shown in Algorithm 1. Dragon

consists of three functional components, which are essential and
vital for the agent to operate successfully. Firstly, the opponent-
modeling component is described. It adopts a non-parametric and
computationally efficient regression technique in order to approx-
imate the opponent’s model. This allows the agent to have more
accurate estimates that are used to predict the future behavior of the
opponent. After having learned the opponent’s model, the concession-
making component determines the optimal concession behavior us-
ing a novel adaptive decision-making strategy that automatically
avoids the problem of “irrational concession”. Finally, the third and
last stage of Dragon (i.e., the responding component) responds to
the offers of the opponent and determines the time at which the ne-
gotiation session terminates. Next, each of the above components
is detailed.

4.1 Opponent-modeling component
Modeling the opponent’s behavior is done by the first compo-

nent of Dragon. It adopts the SPGPs, detailed in Section 3.2.2,
in order to accurately and efficiently learn the opponent’s model.

This process of opponent modeling corresponds to the lines 2 to 7
in Algorithm 1. Namely, upon receiving a new proposal from the
opponent at the time tc, the agent records the time stamp tc and
the utility U(Oopp) that this bid offers according to our agent’s own
utility function. However, in the setting of multi-issue negotiations,
a small change in utility of the opponent can result in a large util-
ity variation for our agent leading to a fatal misinterpretation of the
opponent’s behavior. Therefore and in order to reduce that nega-
tive impact, the whole negotiation is divided into a fixed number
(denoted as ζ) of equal intervals. The maximum utilities at each
interval with the corresponding time stamps, are then provided as
inputs to the SPGPs. As SPGPs are more computationally efficient
compared to normal GPs, the number of intervals here can be much
more (by factors of hundreds) than those used in [21]. This auto-
matically leads our agent to have more accurate predictions of the
future opponent’s behavior compared to [21].

After learning a suitable model, SPGPs forecast the future be-
havior of the opponent as shown in line 7 of Algorithm 1. Dragon
keeps track of the expected discounted utility based on the predic-
tive distribution at a new input t⋆, which is given by:

p(u∗|t⋆,D, X̄) =

∫
p(u⋆|t⋆, X̄, f̄)p(̄f|D, X̄)d̄f = N (u⋆|µ⋆, σ2

∗),

(6)

where

µ⋆ = kT⋆ Q−1
M (Λ+ σ2I)−1u

σ2
⋆ = K⋆⋆ − kT⋆ (K

−1
M − Q−1

M )k⋆ + σ2

QM = KM + KMN (Λ+ σ2I)−1KNM

With the given probability distribution over future utilities and
the effect of the discounting factor, the expected utility Eδ(t⋆) is
then formulated by

Eδ(t⋆) =
1

C

∫ +∞

−∞
Dδ(u · p(u;µ⋆, σ⋆), t⋆)du (7)

where µ⋆ and σ⋆ are the mean and standard deviation at time t⋆, δ
is the discounting factor.

On the contrary to the work of [21] we adopt a mathematically
valid approach to preserve a probability distribution by introducing,
C, the normalizing constant rather than truncating the probability
distribution between [0, 1]. The latter way doesn’t generate a valid
probability density function anymore while ours guarantees that.

4.2 Concession-making component
Using the approximated model, the concession-making compo-

nent aims are setting the optimal concession degree. Two factors
are taken into account to determine the optimal concession degree.
The first, is based on the prediction of the opponent’s future com-
promise, while the second builds on the agent’s own reservation
function.

Though successful, the results are sometimes rather over-pessi-
mistic due to “boulware" [7] behavior of the opponent. To clarify,
“sophisticated and tough" negotiation opponents are likely to es-
cape concession in bargaining. Thus, in this case the prediction
results could lead to a misleading, and very low expectation about
the utility offered by the opponent resulting in an adverse conces-
sion behavior. To solve “irrational concession”, Dragon therefore
employs a dynamic conservative expectation function R(t). Infor-
mally, it is a “dynamic conservative expectation function that care-
fully suggests utilities". The main idea behind R(t) is to lower the
utility expectation with time. Since smaller values of the discount
factor, δ, force rational agents to reach agreements earlier, R(t) is



inversely proportional to δ. R(t) further takes the lowest expecta-
tion as its minimum value. To define R(t) we introduce two new
variables, the compromise point – ρ and the lowest expectation –
Elow. In what follows, we motivate the need for these two variable
and detail the formal technicalities for defining R(t).

The main objective of the strategy is to achieve as high profit
as possible. It is therefore highly demanded to exploit the oppo-
nent. However, a trade-off between exploitation and compromise,
is also of major importance. To clarify, if the agent never makes
any concession, probably no agreement will be reached, or the op-
ponent might even break-off somewhere within the negotiation pro-
cess. Thus ρ is used to adaptively specify the time at which Dragon
should stop exploiting the opponent and rather start to compromise.

The value of ρ should further increase with the increasing ratio
between the number of new solutions to the total solutions pro-
posed by the other party. Thus, we introduce γt to represent the
ratio of new to all counter-offers over the past ten intervals up to
t. The observation of new counter-offers cannot guarantee the con-
cession by the other party (e.g., these new offers could just be the
offers with high utility for the opponent while low utility for our
agent). Therefore, the effect of γt is influenced by the maximum
concession λt, leading to the following:

ρ = 1− (1− γ
α(1−λt)
t )tεδ

2

(8)

where α is the parameter determining the impact of δ over time and
ε controls the influence of λt.

The other variable needed to define R(t) is Elow, which repre-
sents the lowest expectation to a negotiation session. Formally,
Elow is defined as:

Elow =

{
θ if θ ≥ maxU(Eδ(0, tl))
maxU(Eδ(0, tl)) otherwise

(9)

where θ is the reservation value specified by the preference, maxU
returns the maximal utility from counter-offers, tl is the last time
the update was carried out.

Based on the above definitions, R(t) is now defined as:

R(t) = Elow+

(
1− t

1

(1−ρ)β

)
(uPmax−Elow) cos

(
1− δ

ω

)
(10)

where β is the concession factor affecting the concession rate, uPmax
is the maximum utility of the given preference P in a domain, and
ω is the weight which reflects the impact of the discounting factor
to the concession degree.

If the future expectation obtained from Eδ(t) is optimistic (i.e.,
there exists an interval {T |T ̸= ∅, T ⊆ [tc, ts]}), that is:

Eδ(t) ≥ Dδ(R(t), t), t ∈ T (11)

with ts being the end point of the prediction and ts ≤ tmax, then
the time t̂ at which the maximum expectation û is reached is set
according to:

t̂ = argmaxt∈TEδ(t) . (12)

where, û is defined as:

û = Eδ(t̂) . (13)

Conversely, in the pessimistic case where the estimated opponent
concession is below the agent’s expectations, we define the proba-
bility of accepting the best possible utility, φ, to be inversely pro-
portional to the minimum difference between Eδ(t), Dδ(R(t), t)
and the discounting factor, as follows:

φ = 1− Dδ(R(tν), tν)− Eδ(tν)

ξ ·
√
1− δDδ(uPmax, tν)

, tν ∈ [tc, ts] (14)

where ξ indicates the acceptance tolerance for the pessimistic fore-
cast (i.e. a larger value enables our agent to bear with worse expec-
tation) and tν is given by

tν = argmint∈[tc,ts]
(|Eδ(t)−Dδ(R, t)|) . (15)

According to the probability φ, the best possible outcome in the
“pessimistic" scenario is chosen as the target utility. The rationale
here is that if the agent rejects the “locally optimal" counter-offer,
it may lose the opportunity to reach a fairly good agreement earlier.

In the acceptance case, û and t̂ are defined as Eδ(tν) and tν ,
respectively. Otherwise, û is defined as −1, meaning it does not
have an effect, and R(tc) is used for the target utility u′. When
the agent expects to achieve a better outcome (see Equation 11),
the optimal expected utility û is chosen as its target utility (see
Equations 12 and 13).

Obviously, it is not rational to concede immediately to û when
ul ≥ û, where ul is the utility of last bid before Dragon performs
predictions at time tl. It is also not appropriate for an agent to
shift to û without delay if ul < û (especially because the predi-
cation may be not completely accurate). To deal with this, Dragon
simply concedes linearly. More precisely, the concession rate is
dynamically adjusted in order to be able to “grasp” every chance to
maximize profit. Overall, the process to set u′ is shown in line 11,
which is calculated as follows :

u′ =

{
R(tc) if û = −1

û+ (ul − û) tc−t̂
tl−t̂

otherwise
(16)

4.3 Responding component
This is the last component of the Dragon strategy and corre-

sponds to lines 12 − 18 of Algorithm 1. After the expected util-
ity u′ has been determined, the agent needs to examine one of two
conditions in response to the opponent. In the first the agent has to
validate whether the utility of the counter-offer U(Oopp) is better
than u′, while in the second the agent has to determine whether the
opponent had already proposed this offer earlier in the negotiation
process. If either one of these two conditions is satisfied, the agent
accepts it and terminates the session as shown in line 12.

On the other hand, if none of them are met, the agent proposes a
new offer depending on an ϵ-greedy strategy. That is to select either
a greedy action (i.e., exploit) with 1-ϵ probability or to select a ran-
dom action with an ϵ probability, where 0 ≤ ϵ≤ 1. The greedy ac-
tion is determined based on a frequency analysis. Although simple,
such a method has been successfully applied by some state-of-the-
art negotiating agents, like Hardheaded and CUHKagent (refer to
[2, 9]). In this work, Dragon considers that the opponent is rational.
More precisely, Dragon assumes that the sequence of counter-offers
is in line with a decreasing order of satisfaction. Thus, for a value
of an issue j, the more frequent and earlier it is proposed by the ne-
gotiation partner, the more contribution it makes to the opponent’s
overall utility.

Formally, let F (·) be the frequency function defined as:

Fn(vjk) = Fn−1(vjk) + (1− t)ψ · g(vjk) (17)

where the superscript of F (·) indicates the number of negotiation
rounds, ψ is the parameter reflecting the discounting effect of time,
and g(·) the two-valued function, whose return is 1 if the specific
issue value (i.e., vjk) appears in the counter-offer and 0 otherwise.

With a probability 1 − ϵ, Dragon then picks the offer whose is-
sue values have the maximal sum of frequencies according to the
frequency function. In the case of the random action, Dragon con-
structs a new offer which has an utility within some range around



u′. The main motivation behind this choice is twofold: (1) it is pos-
sible, in multi-issue negotiations, to generate a number of offers
whose utilities are the same or very similar to the offering agent,
with granting the opposing negotiator different utilities, and (2) it
is sometimes not possible to make an offer whose utility is exactly
equivalent to u′. Thus it is reasonable that an agent selects an offer
whose utility is in the narrow range [(1-0.005)u′,(1+0.005)u′]. If
no such solution can be found, the agent repeats the latest bid again
in the next round.

One additional step is needed to cope with terminating the ne-
gotiation in advance when θ > 0 and δ ̸= 1. Here, the respond-
ing component investigates whether the maximum expectation ob-
tained from SPGPs is larger than θ. If this is the case, the agent
expects to gain a better outcome than what the disagreement so-
lution generates. Therefore, it would continue the bargaining. On
the other hand, if the previous condition is not met, Dragon sets η
as the probability of terminating the negotiation session which is
calculated according to:

η = θδ (18)

Given this probability, Dragon decides whether to leave the cur-
rent negotiation session or not. Moreover, when the breaking-off
decision is made and to be on the safe side, the agent waits a silence
period, where none of counter-offers of the most recent 3 intervals
are better than the previous best counter-offer. Dragon then quits
the negotiation process (i.e., before the deadline).

5. EMPIRICAL EVALUATIONS
The performance evaluation of Dragon is done with the GENIUS

simulation environment [11]. GENIUS allows to compare differ-
ent agents across a variety of application domains under real-time
constraints. The preference profiles of two negotiating parties are
specified in correspondence to the individual domains. The assess-
ment quality under which we evaluate the performance of the pro-
posed strategy is the mean score in the context of tournaments. The
competition results are reported in Section 5.2. Moreover, an em-
pirical game theoretic evaluation is used to study the robustness of
the strategy. The details of the latter evaluation are described, as
needed, in Section 5.3.

The experimental technicalities including the implementation de-
tails of Dragon referred to as Dragon-agent are described next.

5.1 Experiment setup
In order to evaluate Dragon in a highly competitive setting, we

run its implementation (Dragon-agent) against the top four agents
of the ANAC-2012 competition and the top three of the ANAC-
2011 competition. Moreover, the negotiations are conducted in the
same six domains as in [21]. Additionally, in order to have an even
more comprehensive evaluation scheme, three domains of the 2012
ANAC final round are also considered, namely, IS BT Acquisition,
Fitness, and Fifty fifty. They are chosen to serve as the respec-
tive representatives of easy, medium, and hard domains of the 2012
competition (classfied according to the mean score of all partici-
pants achieved in a domain, see [1] for more details). To evaluate
the agent’s performance under no and high time pressure, both a
non-discounting and discounting version of the domains are con-
sidered.

For convenience, we refer to the non-discounting domain Travel
asU1, England vs Zimbabwe asU2, Itex vs Cypress asU3, IS BT Ac-
quisition as U4, Fitness as U5, Fifty fifty as U6. Their correspond-
ing discounting domains are labeled as D1 . . . D6. All discounting
domains are equipped with the identical discounting factor of 0.5.
Please note that similar results for other values of discounting fac-
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Figure 2: Average raw scores of all agents in the twelve do-
mains. The vertical axis represents utility and horizontal axis
represents domain.

tor are observed. For the results to be statistically significant, we
ran the GENIUS tournament mode 20 times for each domain.

Dragon-agent simply sets ζ to be 180 which is equal to the num-
ber of seconds. The lead time ϱ is limited to 25 intervals, and the
two parameters α and ε for compromise point are set to 0.5 and 10,
respectively. The parameters for the expectation function R are set
to β = 2 and ω = 1.2. Finally ξ = 0.95. It is worth noting, that
the agent shows robust behavior to different parametric settings.

5.2 Simulation results
The results achieved by every agent in terms of raw score in

non-discounting domains and discounting domains are shown in
Figure 2(a) and Figure 2(b), respectively.

As depicted in the figures, Dragon-agent demonstrates excellent
performance against a variety of opponents in various scenarios.
Clearly the Dragon-agent is ranked as number one in nine domains.
For the remaining three where it does not take the first place, the
performance of Dragon-agent is only marginally (around 3.8% on
average) below the best performer. More precisely, Dragon-agent
achieves the first place with 33.9% higher performance than the
mean normalized score2 of opponents in non-discounting domains.
In contrast, the second ranked agent – TheNegotiator Reloaded,
only obtains 85% score of ours. For discounting-domains, Dragon-
agent also finishes first and has an advantage of 11.2% over the

2For convenience of comparing performance across domains, nor-
malization is adopted and done in the standard way, using the max-
imum and minimum raw score obtained by all agents.



Table 1: Performance in non-discounting and discounting do-
mains.

Agent Discounting Non-discounting
mean mean

Dragon-agent 0.776 0.835
TheNegotiator Reloaded 0.698 0.712

CUHKAgent 0.695 0.662
OMACagent 0.686 0.693

AgentLG 0.681 0.663
Gahboninho 0.669 0.593
HardHeaded 0.668 0.624

IAMhaggler2011 0.667 0.416

Table 2: Overall Performance over domains. The bounds are
based on the 95% confidence interval.

Agent Normalized Score
Mean Lower Bound Upper Bound

Dragon-agent 0.806 0.781 0.830
TheNegotiator Reloaded 0.706 0.690 0.721

OMACagent 0.690 0.674 0.706
CUHKAgent 0.678 0.653 0.703

AgentLG 0.672 0.648 0.696
HardHeaded 0.646 0.611 0.652
Gahboninho 0.631 0.611 0.651

IAMhaggler2011 0.542 0.524 0.560

second best agent. More details can be found in the Table 1, which
illustrates the mean normalized score of all agents in terms of nor-
malized results averaged over the discounting domains and non-
discounting domains, respectively.

According to the overall performance shown in Table 2, Dragon
is the best strategy. With the average normalized score of 0.806, it
leads a margin of 23.5 over the mean score of opponents across all
domains. OMACagent, CUHKagent and AgentLG come in subse-
quent places, followed by the best agents of the 2011 ANAC. Inter-
estingly, Dragon-agent leads by 17.5% over the mean score of the
group consisting of the four best agents from the 2012 ANAC. This
margin is even larger for the best agent group of the 2011 ANAC,
which exceeds 30%. It is worth noting that this ranking is differ-
ent from the final results of the 2012 ANAC. We speculate that the
reason relates to the advantages gained by Dragon once competing
with these opponents. To summarize, Dragon significantly outper-
forms with a high margin the state-of-the-art automated negotiators
in a variety of application scenarios.

Another interesting observation to be made is the noticeable gap
between Dragon-agent and IAMhaggler2011. In more details, this
agent on average achieves less than half the performance of ours.
Unlike Dragon, IAMhaggler: (1) applies Gaussian process as a pre-
diction tool and (2) adapts its concession rate fully on the basis of
global predictions. The experimental studies suggest that a reason
for this performance gap lies in the global prediction view. Namely,
this view seems to be vulnerable to “irrational concession making"
induced by pessimistic predictions. Dragon already avoided such a
behavior as explained in Section 4.2. The phenomenon of irrational
concession becomes increasingly apparent when IAMhaggler2011
bargains with opponents in non-discounting domains where other
players have no pressure to make concession earlier.

5.3 Empirical game theoretical analysis
In the previous subsection, we investigated the strategy perfor-

mance from the usual mean-score perspective. This, however, does
not reveal information about the robustness of these strategies. To
address robustness appropriately, empirical game theory (EGT) anal-

ysis [13] is applied to the competition results. Here, we consider
the best single-agent deviations as in [21], where there is an in-
centive for one agent to unilaterally change the strategy in order
to statistically improve its own profit. The aim of using EGT is to
search for pure Nash equilibria, in which no agent has an incentive
to deviate from its strategy by choosing another one.

We applied the EGT technique to the scenarios where exactly
two players are involved (which corresponds to the common format
of bilateral negotiation) and each agent is allowed to choose one
strategy from the eight strategies considered in our experiments.
For brevity, let the initial letter of each strategy be the identifier
(e.g., O means OMACagent) and S be the strategy set, that is, S =
{D, T, O, C, A, H, G, I}. A profile is defined as the two strategies
used by players in the game. Furthermore, the score of a specific
strategy in a specific profile is calculated as its averaged payoff
achieved when playing against the other strategy in all domains.
The results are depicted in Figure 3. Under this EGT analysis, there
exists only one pure Nash equilibrium, namely, the strategy profile
(D⋆ v.s. T), i.e., Dragon versus TheNegotiator Reloaded. This ob-
servation is of great interest, as it indicates that this strategy profile
is the most stable profile among all possible profiles. For any non-
Nash equilibrium strategy profile there exist a path of statistically
significant deviations (strategy changes) that leads to this equilib-
rium. When compared with the other strategy in the equilibrium,
Dragon is always preferred unless the current profile already con-
tains it, which creates for a player an incentive to deviate for 80%
of the state transitions. Moreover, the equilibrium profile consti-
tutes a negotiation solution with the highest social welfare (i.e., the
largest sum of scores achieved by two strategies). This is desirable
because, as a measure of the negotiation benefit for all participants
rather than the benefit for an individual agent, higher social welfare
results in a better overall value of a negotiation.

6. CONCLUSIONS
This work introduced an effective strategy called Dragon for au-

tomated negotiation in complex bilateral multi-issue, no prior knowl-
edge, time-constrained, low computational load, influence of reser-
vation value scenarios. This strategy, based on Sparse Pseudo-
Inputs Gaussian processes and an adaptive decision-making scheme,
outperformed the best agents of the most recent International Au-
tomated Negotiation Agents Competition (ANAC). It is clear that
the Dragon-agent is more efficient than the others. Experiments
show that Dragon generates a higher mean scoring compared to the
state-of-the-art negotiation agents. The main competitor to the new
strategy (i.e., IAMHaggler2011) is ranked last. We speculate that
the main reason for this performance difference relates to the “irra-
tional concession” problem that Dragon automatically avoids. Fur-
ther analysis based on empirical game theory clearly manifest the
robustness of the proposed strategy. The exceptional results jus-
tify to invest further research efforts into this approach. In the fu-
ture, we plan on comparing the opponent modeling scheme with the
other available approachers and further, extend this framework to
other negotiation settings, such as concurrent negotiation or multi-
lateral negotiation.
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Figure 3: Deviation analysis for two-player negotiation. Each node shows a strategy profile and the scores of two involved strategies
with the higher scoring one marked by a star. The arrow indicates the statistically significant deviation between strategy profiles.
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