
Chapter 1
Using transfer learning to model unknown
opponents in automated negotiations

Siqi Chen, Shuang Zhou, Gerhard Weiss and Karl Tuyls

Abstract Modeling unknown opponents is known as a key factor for the efficiency
of automated negotiations. The learning processes are however challenging because
of (1) the indirect way the target function can be observed, and (2) the limited
amount of experience available to learn from an unknown opponent at a single ses-
sion. To address these difficulties we propose to adopt two approaches from transfer
learning. Both approaches transfer knowledge from previous tasks to the current ne-
gotiation of an agent to aid learn the latent behavior model of an opposing agent.
The first approach achieves knowledge transfer by weighting the encounter offers
of previous tasks and the ongoing task, while the second one by weighting the mod-
els learnt from the previous negotiation tasks and the model learnt from the current
negotiation session. Extensive experimental results show the applicability and effec-
tiveness of both approaches. Moreover, the robustness of the proposed approaches
is evaluated using empirical game theoretic analysis.

1.1 Introduction

In automated negotiations, two or more autonomous agents try to come to a joint
agreement in a consumer-provider or buyer-seller set-up [17]. The biggest driving
force behind research into automated negotiation is arguably the broad spectrum of
potential applications. Negotiation theory typically differentiates negotiation classes
through their negotiation settings, for example, the number of participants on the

Siqi Chen, Shuang Zhou and Gerhard Weiss
Department of Knowledge Engineering, Maastricht University, P.O. Box 616, 6200 MD
Maastricht, The Netherlands, e-mail: {siqi.chen,shuang.zhou,gerhard.weiss}@
maastrichtuniversity.nl

Karl Tuyls
University of Liverpool, Ashton Street, Liverpool L69 3BX, United Kingdom, e-mail: k.tuyls@
liverpool.ac.uk

1



2 S. Chen et al.

negotiation table (e.g., bilateral or multilateral), or the number of issues being nego-
tiated upon (e.g. whether a single or multiple issues are the subject of each placed
bid). Although the contributions from our work are also applicable to multilateral
negotiations, the paper concentrates on bilateral, multi-issue negotiation, simply be-
cause this makes the proposed techniques easier to explain. The interaction frame-
work enforced in automated negotiations lends itself to the use of machine learning
techniques for opponent modeling. The driving force of an (opposing) agent is gov-
erned by its hidden utility function as well as its also hidden bidding strategy. Given
the opponent behavior model1, an agent can reach better final (or cumulative) agree-
ment terms by exploiting this private knowledge. But learning an opposing agent’s
behavior model is not trivial due to the following reasons [4]:

1. the behavior model can only be observed indirectly through offers refused and
counter offers made by the opposing agent;

2. the amount of encounter offers available to learn from in a single negotiation
session is limited.

Transfer learning (TL) techniques are therefore adopted to alleviate the learning
problems. TL is a branch of machine learning that enables the use of knowledge
learned in a previous task (so called source task) to aid learning in a different, re-
lated new task (target task) [20]. In its most basic form, there exists a source and
a target task where learning in the source task was already accomplished and the
knowledge acquired (in whatever form) is available for use in the target task, with
the underlying assumption that the source and target task can be found similar in
some sense ( [11,20,25]). One of the primary goals of TL is to reach better per-
formance in a new task (with few target data being available) by re-using gained
knowledge from source task, which is ideally suited for learning settings like that
of automated negotiation. More specifically, the learning of an opponent model in
an ongoing negotiation (target task) could be benefit from transferring knowledge
from previous negotiations (source tasks). Aiming at applying transfer learning to
automated negotiation, this work contributes by:

1. proposing a generic strategy framework for agent-based negotiation;
2. modifying an instance-based transfer algorithm TrAdaBoost [11] for multi-issue

negotiation problems, and
3. modifying a model-based transfer algorithm — ExpBoost [22] for multi-issue

negotiation problems.

The first algorithm transfers knowledge between tasks based on data instances.
This approach is intuitively appealing – although the whole data from source task
may not be reused directly, certain parts of the data can still be reused together with
a few labeled data in the target task [20]. One of the most widely used instance
transfer learning algorithm is TrAdaBoost, which was proposed to transfer instances
between a source and a target task for classification. In the automated negotiation

1 Because both an agent’s utility function and bidding strategy are hidden, we will often use the
term behavior model to encompass both as the force governing the agents negotiating behavior.
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scenario, encountered offers from previous negotiation session are transferred to
improve the learning agent’s offer proposition scheme in the ongoing negotiation
session. In contrast, the second algorithm is based on the model transfer learning.
Model transfer approach, by means of discovering the relation between source and
target models, transfers knowledge across source and target tasks. Therefore, such
kind of approaches aim at retaining and applying the models learned in a single or
multiple source tasks to efficiently develop an effective model for the target task,
after seeing only a relatively small number of sample situations. In the automated
negotiation scenario, instead of directly transfer the encountered offers from previ-
ous sessions, the learned models on historical negotiation sessions are transferred
to approximate the model of the current session. It can automatically balance an
ensemble of models with each trained on one known opponent.

Experiments performed on various challenging negotiation tasks show that trans-
fer can aid target agents in improving their behaviors once encountering new op-
ponents varying in their preference profiles and/or bidding strategies. The contri-
butions, moreover, includes the discussion of performance improvement resulting
from transfer, which opens up a few new directions of research.

The remainder of this paper is structured as follows. Section 1.2 underlines the
problem of our research. Section 1.3 proposes the generic strategy framework for
automated negotiation and the two transfer learning schemes. Section 1.4 offers ex-
tensive experimental results and a game-theoretical analysis of the proposed learn-
ing approaches. Section 1.5 provides related work. Section 1.6 identifies some im-
portant research lines outlined by our paper and concludes the work.

1.2 Bilateral Negotiation Problem

The automated negotiation framework adopted in this work is a basic bilateral multi-
issue negotiation model as it is widely used in the agents field (e.g., [5,7–10]). The
negotiation protocol is based on a variant of the alternating offers protocol proposed
in [23], where the negotiation process is limited by a certain number of rounds.

Let I = {a,b} be a pair of negotiating agents, where i (i ∈ I) is used to represent
any of the two agents. The goal of a and b is to establish a contract for a product or
service, where a contract consists of a vector of issue values. Inherent to the negoti-
ation process is that agents a and b act in conflictive roles. To make this precise, let
J be the set of issues under negotiation where j ( j ∈ {1, ...,n}) is used to represent
a particular issue. Contracts are tuples O = (O1, . . . ,On) that assign a value O j to
each issue j. A contract is said to be established if both agents agree on it. Follow-
ing Rubinstein’s alternating bargaining model, each agent makes, in turn, an offer
in form of a contract proposal.

Each agent i decides to accept or reject a contract based on a weight vector
wi = (wi

1, . . . ,w
i
n) (also called importance vector or preference vector) that repre-

sents the relative importance of each issue j ∈ {1, ...,n}. These weights are usually
normalized (i.e., ∑n

j=1(w
i
j) = 1 for each agent i).
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The utility of an offer for agent i is obtained by the utility function, defined as:

U i(O) =
n

∑
j=1

(wi
j ·V i

j(O j)) (1.1)

where wi
j and O are as defined above and V i

j is the evaluation function for i, mapping
every possible value of issue j (i.e., O j) to a real number. The two parties continue
exchanging offers till an agreement is reached or negotiation time runs out.

1.3 Transfer between Negotiation Tasks

This section details the context and the proposed algorithms for automatically trans-
ferring between two or multiple negotiation tasks within the same domain. Next, a
generic framework of negotiation strategy is first given, which support both transfer
and non-transfer modes. The details of the learning in each of the source and the
target tasks are then presented.

1.3.1 The Generic Framework of Agent-based Negotiation Strategy

In the present subsection, we detail the generic strategy framework. When the source
task data is available, the strategy operates in the transfer learning mode to reuse
knowledge from other negotiations tasks; in the other case, it works in the plain
mode and decides its negotiation moves solely on the newly learnt model of the
target task.

Upon receiving a counter-offer from the opponent at the time tc, the agent records
the time stamp tc and the utility U(Oopp) of this counter-offer according to its own
utility function. A small change in utility of the opponent can result in a large utility
variation for the agent leading to a fatal misinterpretation of the opponent’s behavior
in the case of multi-issue negotiations. Therefore and in order to reduce that nega-
tive impact, the whole negotiation is divided into a fixed number (denoted as ζ ) of
equal intervals. The maximum utilities at each interval with the corresponding time
stamps, are then provided as inputs to the learner SPGPs (for more details, see [24]).
This also significantly scales down the computation complexity of modeling oppo-
nent so that the response speed is improved.

Then, dependent on whether the source task data is available, the agent learns
the opponent differently as explained in Section 1.3.2 and 1.3.3, respectively. With
the approximated opponent model, the agent adopts a linear concession strategy to
avoid further computation load. More specifically, the optimal expected utility û
(i.e., the expected maximum opponent concession) provided by the opponent model
is used to set the target utility to offer at the current time tc as follows:
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u′ = û+(umax − û)(t̂ − tc)α (1.2)

where umax is the maximum utility allowed in the negotiation task, t̂ is the time
when û will be reached, α the concession factor determining the way how the agent
concedes, e.g., Boulware (α < 1), Conceder (α > 1) or Linear (α = 1).

After the target utility u′ has been chosen, the agent has to decide how to respond
to the opponent’s current counter-offer (this corresponds to line 14 in Algorithm 1).
The agent first checks whether any of the following two conditions is fulfilled: 1) the
utility of the latest counter-offer U(Oopp) is not smaller than u′; 2) the counter-offer
has been proposed by the agent itself to its opponent at some earlier point during
the ongoing negotiation process.

The agent settles the deal and the negotiation ends (line 12) if any of these two
conditions is satisfied. Otherwise, the agent checks whether u′ falls below the best
counter-offer received so far. If this holds, then, for the consideration of efficiency,
this counter-offer is proposed to the opponent. Proposing such an offer is reasonable
because it tends to satisfy the expectation of the opponent. If not, the agent then con-
structs a new offer following a ε-greedy strategy as used in [3]. According to this
strategy, a greedy offer is chosen with probability 1-ε in order to further explore
the opponent behavior, and with probability ε a random offer is made (where 0 ≤
ε ≤ 1). The greedy offer is chosen as follows. For a rational opponent, it is reason-
able to assume that the sequence of its counter-offers is in line with its decreasing
satisfaction. Thus, the more frequent and earlier a value of an issue j appears in
counter-offers, the more likely it is that this issue contributes significantly to the
opponent’s overall utility. Formally, let F(·) be the frequency function defined by:

Fn(v jk) = Fn−1(v jk)+(1− t)ψ ·g(v jk) (1.3)

where the superscript of F(·) indicates the number of negotiation rounds, ψ is the
parameter reflecting the time-discounting effect, and g(·) is a two-valued function
whose output is 1 if the specific issue value (i.e., v jk) appears in the counter-offer
and 0 otherwise. The new offer to be proposed is the one whose issue values have
the maximal sum of frequencies according to the frequency function and whose
utility is not worse than the current target utility. In the case of a random offer, an
offer whose utility is within a narrow range around u′ is randomly generated and
proposed.

1.3.2 Learning in the Source Task

When no source tasks are at hand, the agent simply learns the current task using the
plain mode of the proposed strategy. The source negotiation task starts by any side
of the two parties presenting an offer describing values for the different negotiation
issues. If an offer is accepted the negotiation session ends. On the other hand, if the
offer is rejected the agent proposes a new offer to the other party. Then, the opponent
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Algorithm 1 The generic framework of negotiation strategy is described. Depend-
ing on whether source data are available, it operates in two different modes, namely,
the plain and transfer mode. The idea of knowledge transfer is to re-weight in-
stances/models from the source task such that it helps the target task agent in learn-
ing the target opponent’s behaviour model Θ.
1: Require: different distribution (i.e., source task) labelled data sets TD (if available), same

distribution data set Ts, the base learning algorithm Ξ, the maximum number of iterations N,
maximum time allowed tmax, and t(k) is the current time index.

2: while t(k) < tmax do
3: Collect time stamp and utility and add to TS
4: Set n=size(TS)
5: if no source data available then
6: Θ ⇐ SPGPs(TS)
7: else
8:

Θ ⇐

{
TrAdaBoost.Nego(TD, TS, N) instance transfer
ExpBoost.Nego(H, TS, m, N) model transfer

9: end if
10: u′ ⇐ setTargetU(Θ,n)
11: if Acceptable then
12: an agreement reached
13: else
14: proposes a new offer
15: end if
16: Increment time index
17: end while
18: Terminate the negotiation session

can decide, according to her own behavior model, whether to accept or reject this
new offer.

While the opponent’s behavior model is unknown, it can be learned over time.
The opponent model is indirectly observed from the utilities of the opponent’s
counter-offers: every time the opponent proposes a counter-offer, the utility of this
offer is computed and added to the data set TS = {t(i),u(i)}tmax

i=1 , with t(i) representing
the source task time steps running to a maximum of tmax. The data set grows dynam-
ically as the negotiation session continues. Every time a new instance is obtained,
the model — in this case SPGPs — is trained anew to discover a new latent function
best describing the new data set. The updated model is then used to propose a new
offer to the opponent. This is achieved through the prediction probability distribu-
tion of the trained SPGPs. Formally, the predicted utility u⋆ at a new time step t⋆ is
calculated according to the following:
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p(u⋆|t⋆,D , X̄) =
∫

p(u⋆|t⋆, X̄, f̄)p(f̄|D , X̄)d f̄ = N (u⋆|µ⋆,σ2
∗ ), (1.4)

where

µ⋆ = kT
⋆ Q−1

M (Λ+σ2I)−1u

σ2
⋆ = K⋆⋆−kT

⋆ (K
−1
M −Q−1

M )k⋆+σ2

QM = KM +KMN(Λ+σ2I)−1KNM

The negotiation session ends when either an agreement is reached or the avail-
able time steps are exhausted. Finally, the opponent’s utility model described by the
hyper parameters of the SPGPs is returned for later use.

1.3.3 Knowledge Transfer and Target Task Learning

1.3.3.1 Instance-based Transfer Approach

TrAdaBoost is originally designed for instance-based transfer learning, however
it overlooks difference among source tasks. In order to make it well suited for
the described negotiation setting, an extension of the standard TrAdaBoost algo-
rithm is proposed to transfer instances between multiple negotiation tasks. This
extended version is achieved by combining the principles of TrAdaBoost with the
ideas of dealing with multi-task scenarios discussed in [27] and those of modify-
ing a boosting-based classification approach for regression in [12], which together
successfully results in the new regression algorithm TrAdaBoost.Nego. This new
approach is specified in Algorithm 2.

TrAdaBoost.Nego requires two data sets as input. The first is TD which represents
the different distribution data set from one (or more) previous task(s) TDk , where
TDk ⊆ TD. Since the source and the target opponent’s attain their utilities from
different distributions, then the different distribution data is that of the source data.
Namely, TDk = {t(i)k ,up(i)

k }
|TDk |
i=1 , where up(i)

k is the predicted source task’s utility
determined according to Equation 1.4.

The second data set required by the transfer algorithm is the same distribution
data set TS. The same distribution data set is the one from the target task having time
steps as inputs and received utilities as outputs. The instances of TS are attained
automatically from the initial negotiation steps in the target task, where the offer
proposition step depends only on the source task’s knowledge. In the present case,
the behavior of the opponent is monitored similar to the learning in the source task
and the utilities of the counter-offers are computed and added to TS. Please note,
that the number of instances from the same distribution data set, TS, need not be
large. In fact, it suffices for to be much less than the number of instances in TD for
the algorithm to perform well.

Having the above data sets, the weights of each of instances are fitted according
to line 12 of Algorithm 2. The principles of weight-updating mechanism remain the
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Algorithm 2 TrAdaBoost.Nego (TD, TS, N)
1: Require: source task data sets TD = {TD1 , . . . ,TDk}, the target task TS, the base learning

algorithm Ξ, and the maximum number of iterations N.
2: T = TD1

∪
. . .

∪
TDk

∪
TS

3: w = (wTD1
, . . . ,wTDk

,wTS )

4: Initialize: the weight vector w(1)(xi) =
1
|T | , for (xi,c(x(i))) ∈ T . (Alternatively, the initial

weights could be set with the user’s knowledge.)
5: for t = 1 to N do
6: Set p(t) = w(t)/Z(t) (Z(t) is a normalizing constant)
7: Learn a hypothesis h(t)j : X →Y by calling Ξ with the distribution p(t) over the combined

data set TDn

∪
TS.

8: Compute the adjusted weighted prediction error of h(t)i on each instance of TS using:
let D(t) = maxk

j=1 max|TS |
i=1 |h(t)j (x(i))− c(x(i))|

e(t)j,i =
|h(t)j (x(i))−c(x(i))|

D(t) , where (xi,c(x(i))) ∈ TS

ε(t)j = ∑|TS |
i=1

w(t)
TS

(i)e(t)j,i

∑
|TS |
q=1 w(t)

TS
(q)

9: Choose the best hypothesis h̄(t) such that the weighted error is minimal.
10: Set β (t) = 1

2 ln 1−ε(t)
ε(t)

and β j =
1
2 ln(1+

√
2ln(|TD j |/N)), where TD j ⊆ TD

11: Store h̄(t) and β (t).
12: Update the weight vector according to:

w(t+1) ⇐

w(t)
TD j

(i)e−β je
(t)
j,i for xi ∈ TD j

w(t)
TS
(i)eβ (t)e(t)j,i for xi ∈ TS

13: end for
14: Output: h( f )(x) = ∑N

t=1 β (t)h̄(t)(x).

same as the original TrAdaboost. The proposed approach, however, no longer trains
hypotheses by considering all source instances coming from the different distribu-
tion. Instead it generates a hypothesis for each of the source tasks, and then selects
the one that appears to be the most closely related to the target. Specifically, at every
iteration the i-th source task TDi , independently from others, proposes a candidate
hypothesis using a combined data set consisting of its own instances and those of
the target task. The best hypothesis is then chosen such that the weighted error on
TS can be minimized. In this way, the impact of negative transfer caused by the im-
position to transfer knowledge from a loosely related source task can be alleviated.
In addition, the proposed extension adopts the way used in [12] to express each error
in relation to the largest error at every iteration such that each adjusted error is still
in the range [0, 1]. Although a number of loss functions are optional, our implemen-
tation employs the linear loss function as shown in line 8 because it is reported to
work consistently well ( [21]).

Once the extended version of TrAdaBoost algorithm fully fits the weights, the
agent proposes an offer according to the predicted output of the target task func-
tion approximator in line 14 of Algorithm 2. After receiving a counter-offer, the
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utility of this offer is calculated and added to TS so to be used in the next run of
TrAdaBoost.Nego.

1.3.3.2 Model-based Transfer Approach

ExpBoost is one of widely used approaches for model-based transfer learning. Dif-
ferent from the instance-based transfer method, ExpBoost makes use of prior knowl-
edge through a group of models Θ1, Θ2, . . . , ΘB, trained on each source data sets
separately. At every iteration, it trains a new hypothesis on the weighted instances of
the target task, and then combines different models in order to improve performance
even if the target opponent is mostly unknown. In contrast with the instance transfer
approach, only the weights of target instances are re-calculated at each run of the
algorithm, and the updating rule is according to the performance of the resulting
combination of hypotheses. More precisely, target instances are given more impor-
tance when they are not correctly predicted. This is because they are believed to be
more informative for the next iteration and help the learning algorithm to get bet-
ter estimators. In the end, the approach returns the target opponent behavior model
represented by the weighted median combination of the hypotheses.

When applying the model transfer algorithm ExpBoost to automated negotiations
introduced in this work, two issues stand out. The first one has been discussed in
[21], that is, at each boosting iteration, ExpBoost must select between either the
newly learned hypothesis on the weighted target instances or a single expert from
one of the source tasks, which potentially imposes restrictions on its learning ability.
The second issue relates to the one we have already discussed before – how to
modify the algorithm for regression. To solve the first issue, we consider to relax
the hypothesis selection constraint by allowing a linear combination of the learnt
hypotheses from source tasks and the additional hypothesis trained for the target
task, to minimize the error at each iteration using least squares regression. To solve
the second issue, the ideas of Adaboost.R2 [12] to deal with the way of computing
the adjusted error are then incorporated into the modified version of ExpBoost. The
modified algorithm is referred to as ExpBoost.Nego and present it as Algorithm 3.

1.4 Experimental Results and Analysis

The performance evaluation was done with GENIUS (General Environment for Ne-
gotiation with Intelligent multi-purpose Usage Simulation [15]). Known as a famous
simulation environment, GENIUS is also adapted by the international Automated
Negotiating Agents Competition (ANAC) as the official competition platform. In
this simulation environment an agent can negotiate with other opposing agents rep-
resenting different strategies in a specified negotiation domain, where the utility
function is defined by the preference of each negotiating party. The performance of
an agent can be evaluated via its utility/score achievements.
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Algorithm 3 ExpBoost.Nego (H, TS, m, N)
1: Require: the target task data sets TS with size m, the pool of learnt model of previous tasks H

= {Θ1,Θ2, . . . , ΘB}, the base learning algorithm Ξ, and the maximum number of iterations
N.

2: Initialize the weight vector w(1) with each item equally being 1
m .

3: for t = 1 to N do
4: Learn a hypothesis h(t)B+1 : X → Y by calling Ξ with the distribution w(t).

5: Ht = H
∪

h(t)B+1

6: Find the linear combination ¯h(t) of the hypotheses from Ht , which minimizes squared error
on instances of TS.

7: Compute the adjusted prediction error e(t) of ¯h(t):

e(t)i = |h̄t (x(i))−c(x(i))|
D(t) , where D(t) = maxm

i=1|h̄t(x(i))− c(x(i))|
8: Calculate ε(t) = Σ m

i=1w(t)
i e(t)i

9: If ε(t) ≤ 0 or ε(t) ≥ 0.5, then stop.
10: Let α(t) = ε(t)

1−ε(t)

11: Update the weight vector w(t+1)
i =

wt
i(α

t )1−e(t)i

Z(t) , where Z(t) is a normalizing constant.
12: end for
13: Output: the weighted median of ¯h(t)(x) for ⌈N/2⌉ ≤ t ≤ N, using the weight of ln(1/α(t)).

Table 1.1 Overview of test negotiation domains.

Domain Number of Number of values Size of the
name issues for each issue outcome space

Energy 8 5 390,625
Travel 7 4-8 188,160

SuperMarket 6 4-9 98,784
Wholesaler 7 3-7 56,700

Kitchen 6 5 15,625
SmartPhone 6 4-6 12,000

Six domains with the largest outcome space5 are chosen from the pool of test
domains created for the ANAC competitions. For negotiations in large domains,
finding an offer that is acceptable to both parties becomes more of a challenge than
in a small domain in the sense it is much feasible in small domains to propose a large
or even the whole proportion of the possible proposals during the negotiation. These
domains are therefore more complicated and computational expensive to explore,
placing a big demand on the efficacy of the proposed learning schemes. The main
characteristics of these domains are over viewed in Table 1.1 (with a descending
order of the size of outcome space).

Next, we first select those source tasks that are similar to the target task for the
agent to operate the proposed methods. In so doing, the difference between the be-
havior models in the source and target tasks is made small such that transfer can be
smoothly done. Then, we run tournaments composed of a range of the state-of-the-

5 Outcome space of a domain refers to the number of possible agreements that could be agreed
upon between participants.
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Fig. 1.1 Performance of the transferring and non-transferring agents in four domains when source
and target tasks are similar. The average score refers to the mean score of all negotiating agents.

art agents. Moreover, the order of our agents encountering other opposing agents
is random, in other words, there is no any guarantee about the similarity between
source and target tasks in this setting. Such tournaments are able to provide a mea-
sure of effectiveness of negotiation strategies from a realistic perspective. Finally,
the empirical game theory (EGT) analysis [18] is applied to the tournaments re-
sults. Through this analysis, the strategy robustness can be well examined, which
enables us to have a clear view whether the transfer learning schemes also improve
the robustness of the plain strategy, or not.

1.4.1 Similar Source and Target Negotiation Tasks

In this set of experiments, we evaluate the performance of the proposed methods
given the transferred tasks are closely related to the target task. Toward this end,
we manually choose those ANAC agents as the opposing agents in source tasks,
which behave in a similar way with the opponent in the target task. To illustrate
the difference of the two proposed learning schemes, we implement each algorithm
described in Section 1.3.3 with a distinct agent, under name of ITAgent (for instance
transfer) and MTAgent (for model transfer). The plain strategy (for the case of no
transfer) is implemented by PNAgent.

The results are shown in Figure 1.1. Both the instance-transfer agent and model-
transfer agents successfully achieved better performance than the agent using the
plain strategy in the four domains. Moreover, the instance-transfer agent seemed to
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Table 1.2 Overall tournament performance across all domains in descending order. The letter in
bold of each strategy is taken as its identifier for the later EGT analysis.

Agent Normalized score 95% confidence interval
Lower Bound Upper Bound

ITAgent 0.711 0.694 0.728
MTAgent 0.704 0.687 0.721
AgentLG 0.697 0.679 0.716

CUHKAgent 0.684 0.664 0.704
OMACagent 0.677 0.661 0.694

PNAgent 0.674 0.651 0.698
HardHeaded 0.639 0.623 0.655

IAMhaggLer2011 0.588 0.581 0.595
Gahboninho 0.572 0.558 0.584

have a stronger negotiation power than the model-transfer agent. Another interesting
observation is that the mean performance of all participants lagged far behind that
of our agents. We suspect that is caused by the transfer effect since the improvement
made by the transfer is at the cost of (more) benefit loss of the other party, especially
when the test domains are fairly competitive.

1.4.2 Negotiation Tournaments

The first set of experiments, while successful, did not tell anything about how the
developed strategies perform when the similarity between source and target tasks
is not significant. In order to address this issue in a reasonable way, we carried out
negotiation tournaments to observe agents’ performance in a more realistic setting.
In the tournament, each agent competes against all other agents in a random order.
For each of the domains, we run a tournament consisting of the nine agents (e.g., the
top three agents from respective ANAC 2012 and 2011 plus ITAgent, MTAgent and
PNAgent) ten times to get results with high statistical confidence. For convenience
of comparing performance across domains, normalization is adopted and done in the
standard way, using the maximum and minimum raw score obtained by all agents
in each domain.

According to the results given in Table 1.2, ITAgent and MTAgent, benefiting
from the novel transfer learning schemes, took the first and second place, respec-
tively. Both of them achieved a better score compared to the plain strategy (PNA-
gent), with each obtaining an improvement of 5.5% and 4.5%. Although ITAgent
performed better than the other transferring agent, the difference was small (less
than 1%). The three best agents of ANAC 2012 followed the two transferring agents,
thus finishing third to fifth. The worst performers were those from ANAC 2011,
whose performance was clearly below the two top agents, namely, 18% on average.
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Fig. 1.2 The deviation analysis for the tournament results. Each node shows a strategy profile and
the strategy with the highest scoring is highlighted by a background color. An arrow indicates
statistically significant deviation from a different strategy profile. The stable states are those nodes
with thinker border.

1.4.3 Empirical Game Theoretic Analysis

Till now, the performance of strategies was studied only from the traditional mean-
scoring perspective. This, however, did not reveal information about the robustness
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of these strategies, for example, how would the results change if the players are
free to switch their strategies to another one which could bring in a better individ-
ual payoff? To address robustness appropriately, the technique of empirical game
theoretic (EGT) analysis [18] is applied to the tournaments results. The aim of us-
ing EGT is to search for pure Nash equilibria in which no agent has an incentive
to deviate from its current strategy, or best reply cycle where there exist a set of
profiles (e.g., the combination of strategies chosen by players) for which a path of
deviations exists that connect them, with no deviation leading to a profile outside
of the set. For brevity, the profiles in both Nash equilibria and best reply cycle are
called stable states afterwards. Moreover, we consider deviations as those in [7] (the
best single-agent deviation). In such a deviation one agent unilaterally changes the
strategy in order to statistically improve its own profit, knowing the configuration
of opponent strategies. The abbreviation for each strategy is indicated by the bold
letter in Table 1.2. A profile (node) in the resulting EGT graph is defined by the
mixture of strategies used by the players in a tournament. The first row of each node
lists the three strategies, and the second row shows how many players use each strat-
egy. The initial state of a tournament is the case where each player selects a distinct
strategy. In spite of the fact that we cannot directly quantify the strategy robustness,
we could rank the robustness by means of the relative sequence of a strategy being
involved in stable states. Precisely, we initialize the EGT analysis with the whole
set of strategies considered in our experiments. If there exist any stable state(s), the
strategy attached (used) by most players is chosen as the most robust one of the
current round. In the next round, we remove that winning strategy and restart the
analysis to the remaining set of strategies. This process continues till all strategies
are ranked or no stable state could be found in a certain round.

We visualize the results of the first three rounds under this EGT analysis in Fig-
ure 1.2. As can be seen, there is a best cycle in the first round, which consists of nine
stable states. AgentLG represents the most popular strategy, which is used by a total
number of 52 players in all stable states of the cycle. Thus, it is the robust strategy of
the first round, and also the most robust one among all candidates. Then, we proceed
to the second round as indicated by the bold dotted line on the top of the figure. The
only difference between the first and second round is that the robust strategy of the
prior round has been excluded. The case of the second round is simpler since there
exists an unique Nash equilibrium where all players attach to MTAgent. In the third
round of the analysis, we again find a best cycle consisting of four states. OMACa-
gent is voted by a number of 10 players, ITAgent attracts six players, and the other
two strategies have equal less votes. As a result, OMACagent is the robust strategy
selected for the third round.

The final ranking of strategy robustness is illustrated in Table 1.3. Surprisingly,
the most stable strategy is AgentLG, even though it failed to reach the highest score
achievement in the tournaments. This is because this strategy manages to demon-
strate more comprehensive negotiation ability in the sense it is capable of winning
more negotiations (even with a relatively smaller advantage). By contrast, ITAgent
is merely in the fifth place despite being the best performer of the previous tour-
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Table 1.3 The relative robustness ranking.

Agent Ranking Round Attracted Players
AgentLG 1 1 52
MTAgent 2 2 8

OMACagent 3 3 10
PNAgent 4 4 4
ITAgent 5 5 5

CUHKAgent 6 6 4
IAMhaggler2011 7 7 3

HardHeaded 8 8 2
Gahboninho 9 9 1

naments. MTAgent is more robust than the other transferring agent and the plain
strategy, finishing in the second place.

The EGT analysis suggests that the proposed model-transfer learning method is
robust, and seemingly has the potential of being applied in a wider range of scenarios
than the instance-transfer learning method.

1.5 Related Work

Opponent modeling is assumed to be of key importance to performing well in au-
tomated negotiations [23]. Learning in the negotiation setting is however hampered
by the limited information that can be gained about an opponent during a single
negotiation session. To enable learning in this setting, various simplifying assump-
tions are made. For example, Lin et al. [19] introduce a reasoning model based on
a decision making and beliefs updating mechanism which allows the identification
of the opponent profile from a set of publicly available profiles. Another work [1]
investigates online prediction of future counter-offers by using differentials, thereby
assuming that the opponent strategy is defined using a combination of time- and
behavior-dependent tactics [13]. Hou [16] employs non-linear regression to learn
the opponent’s decision function in a single-issue negotiation setting with the as-
sumption that the opponent uses a tactic from the three tactic families introduced
in [13]. [2] use a three-layer artificial neural network to predict future counter-offers
in a specific domain, but the training process requires a large amount of previous
encounters, which is time-consuming as well as computationally expensive.

Recent work has started to focus on learning opponent’s strategy in a more prac-
tical situation (i.e., without those simplifying assumptions). Some good examples
are [3,6,26]. Williams et al. [26] apply Gaussian processes regression model to op-
timize an agent’s own concession rate by predicting the maximal concession that
the opponent is expected to make in the future. This approach, known as IAMhag-
gler2011, made the third place in ANAC 2011. Another successful GPs-based ap-
proach is described in [3], where the authors model opponents by means of sparse
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pseudo-input Gaussian processes to alleviate the computational complexity of oppo-
nent modeling. Hao and Leung [14] propose the winning strategy of ANAC 2012.
This strategy attempts to avoid concession as much as possible by adjusting the
so-called non-exploitation time point. Moreover, it employs reinforcement-learning
to increase the acceptance probability of its own proposals. Chen and Weiss [6]
develop a negotiating agent, under name of OMAC, which aims at learning an op-
ponent’s strategy by analyzing its behavior through discrete wavelet transforma-
tion and cubic smoothing spline. OMAC also adapts its concession behavior in re-
sponse to uncertainties in the environment. OMAC performed better than the five
best agents of ANAC 2011 and was awarded the third place in ANAC 2012. Al-
though these methods are proven useful in certain scenarios, they all suffer from
insufficient training data when facing an unknown opponent in a new encounter,
which results in a more or less inefficient learning process.

1.6 Conclusions and Future Work

This paper proposes the first robust and efficient transfer learning algorithms in
negotiation tasks. The transfer technique makes use of adaptation of TrAdaBoost
and ExpBoost — two well known supervised transfer algorithms — to aid learning
against a new negotiating opponent. Two strategy variants were proposed. In the first
the target task agent makes decisions based on weighting the instances of source and
target tasks, while in the second, the agent decides its moves depending on a weight-
ing of the source and the target models. Experimental results show the applicability
of both approaches. More specifically, the results show that the proposed agents both
outperform state-of-the-art negotiating agents in various negotiation domains with
a considerable margin. They further demonstrate that the model transfer learning is
not only a boost to the strategy performance, but also results in an improved strategy
robustness.

There are several promising future directions of this work. First, the quantifica-
tion of negative transfer is an essential next research step. Furthermore, a thorough
analysis of the relationships between the agents’ preferences and strategies in order
to get a better understanding of transferring behavior among negotiating opponents.
This understanding is also of relevance with respect to maximizing transfer stability.
Last but not least, the extension of the proposed framework and strategies toward
concurrent negotiations is an important issue of practical relevance that needs to
be explored. In such settings, an agent is negotiating against multiple opponents
simultaneously. Transfer between these tasks can serve as a potential solution for
optimizing the performance in each of the negotiation sessions.
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