
Maastricht University
Department of Knowledge Engineering

Technical Report
No.: 101.2013.05.02

An Experimental Framework for
Exploiting Vision in Swarm Robotics

Sjriek Alers, Bijan Ranjbar-Sahraei, Stefan May, Karl Tuyls, Gerhard Weiss

You can cite this report via following reference:

Sjriek Alers, Bijan Ranjbar-Sahraei, Stefan May, Karl Tuyls, and Gerhard Weiss (2013).
An Experimental Framework for Exploiting Vision in Swarm Robotics

In Proceedings of ADAPTIVE 2013. 6 pages.

Department of Knowledge Engineering
Maastricht University
Bouillonstraat 8-10, 6211 LH, Maastricht
The Netherlands
URL: http://www.maastrichtuniversity.nl/web/Schools/DKE.htm

http://www.maastrichtuniversity.nl/web/Schools/DKE.htm


An Experimental Framework
for

Exploiting Vision in Swarm Robotics
Sjriek Alers, Bijan Ranjbar-Sahraei, Stefan May, Karl Tuyls, Gerhard Weiss

Department of Knowledge Engineering
Maastricht University

Email: {sjriek.alers,b.ranjbarsahraei}@maastrichtuniversity.nl,
stefan.may@student.maastrichtuniversity.nl, {k.tuyls, gerhard.weiss}@maastrichtuniversity.nl

Abstract—This paper studies the requirements of a successful
vision-based approach in swarm robotic settings. Required fea-
tures such as landmarks and different patterns are introduced,
and appropriate feature detection algorithms are described in
detail. The features are designed to be very simple, and providing
enough information, while the proposed detection algorithms
have considered the very limited resources (i.e. limited storage
memory, and limited computational power) of swarm robots.
In order to evaluate the performance of the proposed vision
approaches and the defined features for the environment, the
whole approach is verified by implementation on e-puck robots
in a real-world setting.

I. INTRODUCTION

Natural phenomena has always fascinated and inspired sci-
entists, not only the biologists but also others such as computer
scientists. One of the interesting phenomena in nature is the
behavior seen in colonies of social insects such as ants and
bees. These insects have evolved over a long period of time
and display a behavior that is highly suitable for addressing the
complex tasks that they face. Therefore, over the recent years
an increasing interest is seen among researchers for creating
artificial systems that mimic such behavior for accomplishing
the complex tasks that human face in their life [5, 6, 7].

The best known example for emergence of Swarm Intel-
ligence (SI) among social insects is the ant foraging behav-
ior. In ant foraging, ants deposit pheromones on their path
during traveling. Using this path they are able to navigate
between the nest and food [4]. A slightly different behavior
can be seen among Honeybees, in which instead of using
pheromones to navigate through an unknown environment,
they use a strategy called Path Integration, in combination with
landmark navigation [2]. The foraging task can be seen as an
abstract representation for many other advanced tasks, such
as patrolling and routing. Therefore, a successful embodied
implementation of distributed foraging can result in promising
applications in e.g. security patrolling, monitoring of envi-
ronments, exploration of hazardous environments, search and
rescue, and crisis management situations.

Getting motivation from the mentioned potential applica-
tions of distributed coordination and following the previous
work [2], in which we mainly relied on random exploration

methods and infrared sensor data for obstacle detection, this
paper is focusing on using vision for detecting the key environ-
mental features. These features then can be used as waypoints
to navigate in an unknown environment, locate other entities,
and detect modifications made in the environment.

For this purpose, we explored several visual features that can
be used for acquiring information from the environment by a
robot with limited computation abilities, and equipped with a
simple camera. For detecting key locations in the environment
(e.g. corners in a maze), we investigate the usage of specific
landmarks for these locations. Each landmark consists of an
upper ring with a solid color, so that it can be detected
from a far distance, and on the lower part a unique barcode
for keeping track of the landmark numbers. Furthermore we
explored the possibility to detect markers with an even higher
data density: QR-codes. The challenge in the detection of
these 2-dimensional codes, lies in analyzing and processing
the camera data with the limited processing and memory
resources that are available in a robotic platform. Finally,
the most common feature already available in every robotic
swarm setting is the robot itself. It’s always favorable to
detect the relative location and orientation of other robots in
respect of one’s position. Therefore, the available LEDs on
the robot provide a very good feature for robot detection from
a far distance. Moreover, we have designed specific gradient
patterns for robot detection from a closer distance, which can
conclude to a very accurate orientation detection.

Authors believe the proposed environmental features defined
in this paper, in combination with the detection algorithms
which are included as well, can provide an experimental
framework for any kind of swarm robotic experiment with
simple robots (e.g. [10, 2, 11, 12]) as illustrated in Fig. 1.

The remainder of the paper is structured as follows: The
physical setup and designed software are described in Section
II. The main features used in this paper are defined in
Section III, and the techniques for detection of each feature is
described in Section IV. A real-world demonstration of this
work is described in Section V and also can be found in
http://swarmlab.unimaas.nl/papers/adaptive-2013-demo/.
Finally, in Section VI we will give the concluding remarks.
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Fig. 1: Different swarm robotic applications which require
visual feature detection: (a) Flocking in multi-agent systems
[10]. (b) Bee-inspire foraging [2]. (c) Formation control in
multi-agent systems [11]. (d) StiCo: Stigmergic coverage in
complex environments [12]

.

II. PHYSICAL SETUP AND DESIGNED SOFTWARE

The e-puck robot is a small platform for educational and
research purposes, developed by the EPFL University [9]. This
robot is efficiently used in numerous projects in the domain
of swarm robotics and swarm intelligence (e.g. [2, 3, 9]).

The main features of e-puck robot include but are not
limited to, a robust design, flexibility for a large spectrum
of educational activities, compact size, and rich on-board
accessibilities (e.g. microphones, accelerometer, camera).

In this section, the hardware specifications of e-puck are
briefly introduced, and then the developed software which is
designed for monitoring the e-puck camera during its image
processing and feature detection tasks is described.

A. Hardware Specifications

The e-puck hardware consists of different sensor types
for detecting visible/IR light, sound, acceleration, etc. The
motors are the only actuators which are available in e-puck. A
microprocessor of PIC family with 8 KB RAM memory, assist
the robot to get data from it’s sensors, analyze it, and perform
actions. The main hardware elements, which are involved in
our experiments are listed in Table I.

As listed in the table, the on-board camera of the e-puck
has a resolution of 640 × 480 pixels. It is placed at the front
of e-puck, 2.7 cm above the ground. With this camera we can
detect objects on the floor at a minimum distance of 7.4 cm.
At this distance objects of 5.1 cm width can be fully seen.
The camera angle is approximately 40◦.

Remark 1: Although, we have a VGA camera, the on-board
processing and storage of the e-puck robot is not adequate for

TABLE I: E-puck technical specification

Element Technical information
Processor dsPIC30F6014A @ 60 MHz ( 15 MIPS),

16-bit microcontroller with DSP core

Memory RAM: 8KB Flash: 144 KB

Motors 2 stepper motors with a 50:1 reduction gear

Camera VGA color camera with resolution of 640x480

LEDs 8 red LEDs on the ring, green LEDs around the body,
1 high intensity red LED in the front

Wireless Bluetooth for robot-computer and
Communication robot-robot communications

Infrared for robot-robot communication

dealing with all of the camera data. A gray-scale image of size
640×480 needs at least 307.2 KB to store the image. However,
based on the technical details of Table I, e-puck robot has a
RAM of size 8 KB. Analysis, and storage of sub-parts of the
image helps to overcome this limitation. In following sections
of this paper, we address the issue of how to split an image
into informative sub-parts.

B. Software

In order to monitor the e-puck in real-time and for debug-
ging the image processing algorithms, a Java-based software
application is developed. This software, shown in Fig. 2,
communicates with the e-puck via Bluetooth. It receives text
messages from the e-puck which are reports of immediate
status of the e-puck (e.g. ”found something”, ”driving to the
landmark”, ”code read”, ”searching”). At the same time, it
also receives the captured image from the robot. Logging all
of the data, storing the text messages and captured images, as
well as the filtered and segmented images, makes both real-
time and offline debugging very easy. Finally, it should be
mentioned that time stamps are always attached both to the
captured images, and stored text messages.

Fig. 2: Developed software for monitoring e-puck: (1) The
required controls to establish the connection with e-puck. (2)
The real-time captured image. (3) Log statements (4) The last
20 captured pictures are archived.



III. FEATURE DEFINITION

Due to the limited resources of a simple robot, defining a
collection of detectable features is an important task, which
is a part of the main scope in this paper. Different objects
in the environment (e.g. pieces of wood, balls, walls, floor,
and robots) and many available patterns (e.g. different colors,
checkerboard and barcodes) can be considered as environmen-
tal features, however their detection via a robot with limited
capabilities might be computationally complex, and or not
adequately robust to environmental disturbances (e.g. light
variations and distance variations).

Generally, we define required environmental features into
two main categories: far features, and close features. For the
far features bright lights (e.g. from a red LED) or specific
relative large areas with solid colors, should be considered.
Moreover, these features should be recognizable from different
directions, which makes cylindrical shapes more favorable.
However, for close features, the patterns which can store
higher amount of information are required (e.g. a QR-code
which can store digital codes). By considering the mentioned
constraints, a collection of the most appropriate environmental
features will be introduced in this section.

A. Landmark

Most important features for an environment are the land-
marks. Robot can use landmarks in many various missions,
like localization, mapping, exploration, etc cetera. These fea-
tures should be recognizable from different directions, and also
from a distance. Landmarks should provide useful information
to the robots (e.g. their exact location), therefore, we introduce
a cylindrical tube which is a combination of a colored ring and
an barcode, as shown in Fig. 3.

At the top of the cylinder a colored ring is denoted which
is easily detectable form a distance. For our setup purple is
chosen for coloring this ring, which does not exist in any other
objects in our environment. To differentiate the landmarks,
an EAN-8 (European Article Number) barcode was selected,
containing an ID consisting of 8 digits, including a control
number. The EAN-8 barcode is printed vertically below the
purple block, surrounding the whole cylinder.

Fig. 3: Example for a landmark

B. QR-Code

Although, landmarks are very useful in terms of being
detectable from a distance, we need a smaller pattern which
can be mounted on walls, and also directly on robots for

providing more information (e.g. specific ID of a robot, wall
orders). Therefore, we use a 2-dimensional Quick Response
code (QR) which is developed as a universal data storage
standard. These QR-codes can store a higher data density, then
the EAN-8 barcode.

The only disadvantage of the QR-code is the complexity
of its pattern. In general, the pattern is comprised of several
parts: At the top left, the top right and the lower left corner
an orientation pattern is placed. It is a square of size 9 × 9
modules. The fourth corner does not contain this pattern,
which makes detection of QR-code angle easier. In most
swarm robotic applications, the orientation of the QR-code
can be fixed, so the orientation check can be ignored during
image-processing, decreasing the computational complexity
drastically.

Different versions of QR-codes have different sizes. The
smallest size is Version 1, which has a size of 21×21 modules.
For each version, the size is increased by 4 modules in each
direction. Between the three orientation patterns there are
timing pattern lines with strict changing modules of black and
white at row 6 and column 6. Every QR-code from Version
2 and higher, contain position adjustment patterns at specific
points. In Fig. 4 the structure for QR-code Version 3 is given,
in which the black and white parts are fixed.

Fig. 4: Structure of a QR-code Version 3, displaying orienta-
tion and timing patterns

C. Robot Detection

A very important feature which will be available in the
environment of any swarm robotic application, is the robot
itself. Inherently, robots contain various information like their
position, orientation, and their ID which can be very useful
for the other individuals to know. Therefore, detection of other
robot relative orientation and location is very convenient for
implementation of many complex swarm algorithms (e.g. [2]).

In practice, the best way for detecting the robots with a
camera, is using light sources (e.g. on-board LEDs). As such
a light source has a good contrast to the other parts of the
environment, it can be detected from a far distance even on
low resolution captured images.

To determine the orientation of the robots, based on it’s
own visual features (e.g. the wheels and body of the robots)
is a really complex task. Therefore, we propose a black-white
pattern comprised of two slopes as shown in Fig. 5. Computing
the exact orientation of a robot by using this pattern is easily
implementable.



Fig. 5: Body pattern of e-puck for orientation detection

Based on the standard size of an e-puck robot, the pattern
should have a total height of 33 mm and consists of two black
bars separated by a white bar on top. All the bars are 3 mm
in height. A sloped pattern, in the form of a black triangle is
added to the bottom of the pattern.

Finally it should be mentioned that, in addition to orien-
tation measurement, the distance measurement also becomes
possible by using this specific pattern.

IV. FEATURE DETECTION

In the previous section, we introduced four main features:
landmark, QR-code, Robot LED, and Robot body pattern. The
main approach for detection of these features is to first use
basic filters for highlighting the required information (e.g.
purple color or edges in the image) and then zooming into the
informative part of the image for reading it in more details. The
most important factor in designing each detection algorithm,
is to use the least possible memory and computation power.
In the following subsections, these techniques for detection of
each feature will be described.

Remark 2: It should be mentioned that all of the required
thresholds which will be used in following subsections are
computed based on practical experiments and with real-time
calibrations. However, describing these experiments in detail
is beyond the scope of this paper.

A. Landmark

The landmark contains a purple ring and an EAN-8 code.
The landmarks are designed to be taller than robots. Therefore,
finding the purple ring of each landmark, limits the scanning
area of the image to the upper half of the camera view.

Detection of an area with a specific color is a basic task. In
the first step a color filter with the specific color is applied
on the image. Resulting in a grayscale image with bright
values for the colors which match the color the best. To avoid
errors where single pixels fit to the color, the image is blurred
with a Gaussian algorithm [8]. Afterward the image is split
into a binary black/white image with a fixed threshold. This
procedure is illustrated in Fig. 6.

After this pre-processing phase, a group-finding algorithm
[8] is applied on the image, and the largest group, is considered
as the purple ring.

Consequently, the exact position of purple ring in the image
can help to estimate its distance to the robot. The higher
the purple ring is, the further the distance should be. This
estimated distance is basically used to find the appropriate
distance to start reading the barcode. As soon as the required
distance, in which the barcode is readable is reached, the
required scanning area is already determined (i.e. the area
under the purple ring).

Fig. 6: The required pre-processing procedure for detection of
a specific color (e.g. purple).

Barcodes are 1-dimensional, this simplifies the scanning
process and makes the whole procedure faster. Therefore,
addressing the issue described in Remark 1, the robot prepares
a grayscale image with low resolution in width but high
resolution in height (i.e. zooming into an area of 4 pixels in
width and 80 pixels in height).

The pre-processing for the EAN-8 barcode is done by using
a halftone filter [8] with a threshold calculated by an average
of the pixels intensity. Afterward, all patterns of form black-
white-black, as shown in Fig. 7 are located. Based on the
EAN-8 standards, at least three occurrences should be detected
for the start, center and end of barcode.

Fig. 7: Structure of EAN-8 barcode, with the black-white-
black pattern in the beginning, middle, and end.

After this validation check, the part of the image containing
the code is transformed into the 67 bits representing the
barcode. Each bit is defined by the average of the pixels it
represented. For each seven bits the best corresponding match
to a data character is determined. As the last step, the control-
character is calculated out of the seven data-characters.

B. QR-Code

Detection of QR-codes is more complex than detection of
one-dimensional barcodes. We assume that the QR-code is
fully visible in the camera frame, as a partial QR-code cannot
be decoded. As the QR-code needs a resolution as high as
possible, first a black-white image is filtered out of the initial
captured image. For finding the three orientation markers of
the QR-code, a pattern finding algorithm is used, which looks
for a black-white-3×black-white-black on each column.The
detectable pattern looks like the center line in Fig. 8a. As
soon as the pattern is found, the same pattern is located in the
rows. The results should be similar to Fig. 8b. The orientation
marker validation is passed, if both found regions have nearly
the same size and center.
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Fig. 8: Detection of QR-code orientation markers: (a) pattern
detected in vertical alignment. (b) pattern detected in horizon-
tal alignment.

A QR-code is comprised of a collection of modules, each
black or white. In order to determine the number of pixels
which construct a single module, the size of orientation
modules, and their distance to each other can be used. For
example, the pattern shown in Fig. 8 consists of 7 modules,
so we can divide the number of pixels in this pattern by 7 to
compute the size of a single module. Moreover, to improve the
estimation of the module size, the distance between each two
patterns can also be used. Each version has a size of 21+n ·4
modules, where n is the version of QR-code. Therefore we
can calculate the version and get a more exact value for the
module size. The decoding process of the QR-code after its
structure has been extracted is described in [1].

The most challenging problem with QR-code image has to
be stored in a high enough resolution at once for being de-
codable. However, addressing the issue mentioned in Remark
1, the memory on the e-puck is limited to 4 KB for which
each bit can store one pixel, and to have some error tolerance,
there should be at least four pixels describing one module.
Therefore, we can find the biggest detectable size for QR-code
with following equation:

4000 × 8 = modules2 + (4 · modules)2 (1)

in which the left side shows number of available bits, and on
the right side, the first and second terms show the number of
required bits for storing the QR-code and image itself. This
equation concludes to the fact that width and height of the
QR-code should not exceed 43 × 43 modules. The QR-code
version which fits into 43 × 43 modules is Version 6, which
is 41× 41. In practice we also need memory for the detection
algorithms and internal calculations, so the QR-code Version
5 which contains 37×37 modules, is used in our experiments.

C. Robot Detection

An other robot is generally detected in two different steps.
First, the detection from far distance is done by searching for
the red LEDS, and second the body pattern (Fig. 5), which
consists of two black ramps around the robot, is scanned for
measuring the exact orientation of robot.

1) LED Detection: The LEDs are mounted above the
camera on the e-puck. Therefore only the upper half of the
image has to be scanned, which results in a higher resolution

of the relevant parts of 20 × 80 gray-scale pixels. First, a
black-white filter with a fixed threshold is used. The threshold
is chosen to be higher that ambient light, and less that the
brightness of an LED.The next filter is a Gaussian blur filter,
which is used to combine light groups which are very close to
each other, and dismisses the single pixels which were falsely
recognized. Afterwards, a black-filter is used, this time with
an average threshold. All LEDs are now highlighted.

As with this simple detection technique it is not possible
to really determine between a red LED from other color LED
sources some improvements should be applied to this tech-
nique. Therefore, after finding the light sources, the camera
zooms in on each group center (zooming is a built-in feature
of e-puck camera). The size of the zoom depends on how many
pixels belong to each group. In Fig. 9 an image of a zoomed in
LED is shown. There is a bright center visible with red at the
left and the right, but not at top or bottom. This is a result of
the surrounding border of the e-puck. To verify that the LED
is a red one or another color, both sides of the detected light
source starting from the center are searched for red color. The
color is checked by converting it into the HSL color space and
only comparing the Hue value, as the lightness and saturation
are very unstable. We consider a light source as an LED, if
more than 50% of the height of the bright center contains a
red surrounding.

(a) (b) (c) (d) (e) (f)

Fig. 9: Different steps of pre-processing for LED detection.

2) Body Pattern Detection: If the robot is located close
enough to the camera, the body pattern detection can be
activated. To get the highest probability to detect the e-puck,
the image should have a high resolution, but still work fast.
The maximum image size which fits into memory and leaves
enough space for the other required operations, is 80 × 40
pixels in gray-scale. As pre-processing step, a black-white
filter with average threshold is applied on the image.

Subsequently, for each column of the image a pattern with
one white, and one black module is located. For all found
locations where the pattern fits it is checked if the repetitive
white and black modules have approximately a size of 5. If this
holds, the column is stored as a part of pattern. Fig. 10a shows
a captured image from an epuck, and Fig. 10b highlights the
parts of image which are extracted as body pattern according
to this technique.

For rejecting the wrong detections, only modules with at
least three detected neighboring results are accepted. After-
ward, the center of the e-puck is determined by searching
the location where most left and right results are found and
dividing their x-coordinates by 2. The orientation of robot can
be easily measured by computing the length of middle white
module, and comparing this size, with the size of the whole
pattern.
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Fig. 10: Body patter detection (a) Initial image. (b) the detected
pattern is highlighted.

V. REAL WORLD DEMONSTRATION

To examine the proposed approach in a real scenario, an
environment as shown in Fig. 11 is set up: A white floor of
40×40 cm2 is surrounded with white walls. Three landmarks
are placed in three corners, and in the fourth corner a QR-
Code is attached to the wall. Two e-pucks are placed in this
environment. One is stationary, with all of the red LEDs on,
and a body pattern around it. The second robot uses the vision-
based detection algorithms for detecting the features of the
environment.

Fig. 11: Designed scenario for validation of proposed approach

In this scenario, the robot has to first located landmark #1,
continue to #2 and then drive to #3 in the correct order. For
each landmark it has to approach it, read the barcode and after
validating the number find the other robot. By using the other
robot orientation, it should move in the environment till both
robots are facing each other from the front. Finally, the QR-
code mounted on the wall is detected, and the code will be
extracted.

A video of this performed experiment can be found
in http://swarmlab.unimaas.nl/papers/adaptive-2013-demo/, in-
cluding the prepossessed image data sent from the robot.

VI. CONCLUSIONS

In this paper we proposed a feature detection approach
based on robot vision which can be useful for swarm robotic
experiments. The e-puck robot was chosen as the main plat-
form for doing experiments. The e-puck is equipped with

a VGA camera, but has limited resources for storing data,
and also in performing computations. Different possible envi-
ronmental features were introduced, and described accurately.
Afterward, required image processing techniques for detection
of each feature was described in detail. Finally, a general
demonstration was set up to show the applicability of proposed
approach in real-world robotic experiments.
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