
Multiagent systems (MAS) are distributed systems of
independent actors, called agents, that cooperate or
compete to achieve a certain objective. These agents

may be computer programs, robots, or even humans. Many
technological challenges of today’s society involve complex
dynamics and high degrees of uncertainty and are characterized
by the fact that they are situated in the real physical world and
consequently have an inherently distributed nature. Examples
include automated driving, distributed traffic light control,
robot soccer, and coordination of large swarms of robots.
Because of their complexity it becomes impossible to engineer
optimal solutions by hand, that is, defining beforehand which
behavior is optimal in which situation. Moreover, agents need
to take into account not only changing circumstances but pos-
sibly also the interactions with and behavior of other agents
present in the system. Consequently, agents should be able to
learn to behave optimally from experience, the environment,
and interaction with other agents. Multiagent learning (MAL) is
the field that integrates machine-learning techniques in MAS
and studies the design of algorithms to create such adaptive
agents.

The most commonly studied technique for MAL is reinforce-
ment learning (RL). Single-agent RL is usually described within
the framework of Markov decision processes (MDPs). Some
standalone RL algorithms (for example, Q-learning) are guaran-
teed to converge to the optimal strategy, as long as the envi-
ronment the agent is experiencing is Markovian and the agent is
allowed to try out sufficient actions. Although MDPs provide a
solid mathematical framework for single-agent learning, they
do not offer the same theoretical grounding for MAL. When
multiple adaptive agents interact with each other, the reward an
agent receives may depend on the actions taken by those other
agents, rendering the Markov property invalid since the envi-
ronment is no longer stationary. Each agent is therefore faced
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n Multiagent systems (MAS) are widely accept-
ed as an important method for solving problems
of a distributed nature. A key to the success of
MAS is efficient and effective multiagent learn-
ing (MAL). The past 25 years have seen a great
interest and tremendous progress in the field of
MAL. This article introduces and overviews this
field by presenting its fundamentals, sketching
its historical development, and describing some
key algorithms for MAL. Moreover, main chal-
lenges that the field is facing today are identi-
fied.



with a moving-target problem: what needs to be
learned by an agent depends on and changes with
what has been learned by the respective other
agents. Therefore extensions of the MDP frame-
work have been considered such as Markov games
and joint action learners (Littman 1994, Claus and
Boutilier 1998). In these approaches learning hap-
pens in the product space of the set of states and
action sets of the different agents. Such approach-
es experience difficulties with large state-action
spaces when the number of agents, states, and
actions increase. Furthermore, a shared joint
action space approach is not always applicable; for
instance, in situations with incomplete informa-
tion it is not necessarily possible to observe what
actions the other agents take. Today, tackling com-
plex real-world problems is the holy grail of MAL
research, that is, how to efficiently handle many
states, many agents, and continuous strategy
spaces. For this purpose multiagent learning
should rely on a scalable theory, that is, a founda-
tional framework within which MAL algorithms
can be designed for both small and large-scale
agent systems.

This article reviews the current state of affairs in
the field of MAL and is intended to offer a bird’s-
eye perspective on the field by reflecting on the
nature and the foundations of MAL. Rather than
surveying, the purpose of this article is to intro-
duce the basics of MAL, to identify the main chal-
lenges the MAL field needs to tackle, to stimulate
discussion of the foundations of MAL, and to iden-
tify promising future research directions in which
we believe the field needs to develop. For the sake
of completeness, there are several recent articles
available that do an excellent job on surveying
MAL; see, for example, Busoniu, Babuska, and De
Schutter (2008); Panait and Luke (2005); Yang and
Gu (2009). Good sources for tracking the field are
the conferences on autonomous agents and multi-
agent systems (AAMAS), machine-learning confer-
ences (the International Conference on Machine
Learning — ICML, the European Conference on
Machine Learning — ECML) and corresponding
journals (Journal of Autonomous Agents and Multi-
Agent Systems, Journal of Machine Learning Research,
Machine Learning). There are also contributions to
conferences like the International Joint Confer-
ence on Artificial Intelligence (IJCAI), the AAAI
Artificial Intelligence Conference (AAAI), the Euro-
pean Coordinating Committee for Artificial Intel-
ligence Conference (ECCAI), the Genetic and Evo-
lutionary Computation Conference (GECCO), and
Artificial Life.

In this article, we begin by taking a closer look at
the fundamentals of MAL. More specifically, we
first describe the basic setup and then delve deep-
er into the nature of MAL. We continue by describ-
ing some of the milestones of the field by sketch-

ing a historical perspective on MAL and discussing
some of its landmark algorithms. Then we investi-
gate what the current active topics are and how
these could be extended using influences from oth-
er domains. Finally, we conclude.

Fundamentals of 
Multiagent Learning

In this section we introduce the basic formal set-
ting of multiagent learning, necessary to under-
stand the remainder of the article. Specifically, we
briefly sketch stochastic or Markov games the most
commonly used framework to describe the multia-
gent learning setting. After discussing the standard
MAL setting we delve deeper into the nature of
multiagent learning, investigate its complexity,
and look into classifications and characterizations
of MAL research.

The Basic Setup
Reinforcement learning finds its roots in animal
learning. It is well known that we can teach a dog
to respond in a desired way by rewarding and pun-
ishing it appropriately. For example we can train it
to search for victims of criminal acts or of natural
disasters such as earthquakes. Dogs can be trained
for this by stimulating them to search for hidden
dummy items with a specific scent and rewarding
them each time they locate the object. Based on
this reward or external feedback signal the dog
adapts to the desired behavior and gradually learns
to search for items or victims on command. Rein-
forcement learning is based on the observation
that rewarding desirable behavior and punishing
undesirable behavior leads to behavioral change.
More generally, the objective of a reinforcement
learner is to discover a policy, that is, a mapping
from situations to actions, so as to maximize the
reinforcement it receives. The reinforcement is a
scalar value that is usually negative to express a
punishment and positive to indicate a reward.

Markov Decision Processes
Most single-agent RL research is based on the
framework of Markov decision processes (MDPs)
(Puterman 1994). MDPs are sequential decision-
making problems for fully observable worlds.
MDPs are defined by a tuple (S, A, T, R), where S is
a finite set of states and A is a finite set of actions
available to an agent. An MDP has the Markov prop-
erty: the future dynamics, transitions, and rewards
fully depend on the current state, that is, an action
a in state s ∈ S results in state s� based on a transi-
tion function T : S × A × S → [0, 1]. The probabili-
ty for ending up in state s� after doing action a in
state s is denoted as T (s, a, s�). The reward function
R : S → �, returns the reward R(s, a) after taking
action a from state s.

The transition function T and reward function R
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together are referred to as the model of the envi-
ronment. The learning task in an MDP is to find a
policy π : S → A for selecting actions with maximal
expected (discounted) future reward. The quality
of a policy is indicated by a value function Vπ. The
value Vπ(s) specifies the total amount of reward
that an agent may expect to accumulate over the
future, starting from state s and then following the
policy π. In a discounted infinite horizon MDP, the
expected cumulative reward (that is, the value
function) is denoted as:

(1)

A discount factor � ∈ [0, 1) is introduced to ensure
that the rewards returned are bounded (finite) val-
ues. The variable � determines the relevance of
future rewards in the update.

The value for a given policy π, expressed by
equation 1, can iteratively be computed by the
Bellman Equation (Bellman 1957). One typically
starts with arbitrary chosen value functions, and at
each iteration for each state s ∈ S, the value func-
tions are updated based on the immediate reward
and the current estimates of Vπ:

(2)

The goal of an MDP is to find the optimal poli-
cy, that is, the policy that receives the most reward.
The optimal policy π*(s) is such that Vπ* (s) ≥ Vπ(s)
for all s ∈ S and all policies π.

When the model of the environment is
unknown (as is usual), reinforcement learning can
be used to directly map states to actions. Q-learn-
ing (Watkins 1989) is the most famous example of
model-free temporal difference learning algo-
rithms. The updating of the Q-values of the state
action pairs is given by:

(3)

where � is the learning rate, and � the discount-
rate.

Crucial for the entire learning process is how
actions are selected, typically referred to as the
exploration-exploitation dilemma. Given estimates
of the values of each action, the question becomes
how to select future actions. Through exploration
the reinforcement learner discovers new actions
and their potential value and uses this to improve
its policy. Through exploitation the agent selects
the best action available at that time instance, and
as such maximizes the reward the agent receives.
An important question then is how to balance
exploration and exploitation.

One way to proceed is to behave greedily most of
the time but once in a while select a random action
to make sure the better actions are not missed in
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the long term. This approach is called the �-greedy
exploration method, in which the greedy option is
chosen with high probability 1 – �, and with a
small probability � a random action is played.

Another alternative is to use a “softmax”
approach, or Boltzmann exploration, where the
good actions have an exponentially higher proba-
bility of being selected and the degree of explo-
ration is based on a temperature parameter �. An
action aj is chosen with probability:

(4)

The selection of the temperature parameter is used
to balance exploration and exploitation.

Markov Games
Once multiple agents are interacting through their
learning processes, the basic MDP model is no
longer sufficient. Markov or stochastic games gen-
eralize both repeated games and MDPs to the more
general case of multiple states (repeated games are
stateless) and multiple agents (basic MDPs consid-
er only one agent). In each stage, the game is in a
specific state featuring a particular payoff function
and an admissible action set for each player. Play-
ers take actions simultaneously and hereafter
receive an immediate payoff depending on their
joint action. A transition function maps the joint
action space to a probability distribution over all
states, which in turn determines the probabilistic
state change. Thus, similar to a Markov decision
process, actions influence the state transitions. A
formal definition of Markov games goes as follows
(with some details omitted). A Markov game is a
tuple (P, S, A, R, T) where

P is a set of n players;
S is a set of k states;

A is the set of joint actions, that is, A = A1 × A2 … ×
An with Ai being the finite set of actions available to
player i;
R : S × A � �n is a payoff function, that is, a func-
tion that maps each joint action carried out by the
agents in some state to an immediate real-valued
payoff for each player (R is called payoff function);
and

T : S × A × S � [0, 1] is a transition probability func-
tion, that is, a function that gives the probability of
transitioning from state s to state s� under the play-
ers’ joint action a.

Markov games were first used as a framework for
multiagent learning in Littman (1994). There exist
other (more extensive) formal frameworks for mul-
tiagent learning such as for instance decentralized
MDPs (dec-MDPs), and decentralized POMDPs
(dec-POMDPs), in which it is no longer assumed
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that agents have perfect knowledge of the system
state (Bernstein, Zilberstein, and Immerman 2000).

The Nature of MAL
In order to get insight into what multiagent learn-
ing is about, it is crucial to understand the true
nature of MAL. The multiagent learning problem is
the problem of an agent, situated in a stochastic
game (or similar framework as the one described
above), that needs to learn to behave optimally in
the presence of other (learning) agents, facing the
complexities of incomplete information, large
state spaces, credit assignment, cooperative or
competitive settings, and reward shaping (Wolpert
and Tumer 2001; Tumer, Agogino, and Wolpert
2002; Agogino and Tumer 2008). Behaving opti-
mally is usually defined in terms of game-theoret-
ic solution concepts such as Nash equilibrium,
Pareto optimality, and evolutionarily stable strate-
gies. For an elaborate discussion on these concepts
we refer to Busoniu, Babuska, and De Schutter
(2008); Tuyls and Nowe (2005); Weibull (1996);
and Vega-Redondo (2003). Informally, a Nash
equilibrium can be described as follows: If there is
a set of strategies for a game with the property that
no player can increase the payoff by changing its
strategy while the other players keep their strate-
gies unchanged, then that set of strategies and the
corresponding payoffs constitute a Nash equilibri-
um. While we define the multiagent learning prob-
lem here as a learning problem with a number of
complexity factors, not so often researchers tackle
the multiagent learning problem in a situation
combining all of these factors. There have been
many attempts to characterize and refine the goals
and purposes of MAL, resulting in various tax-
onomies and classifications of MAL techniques
(see for example, Busoniu, Babuska, and De Schut-
ter [2008] and ’t Hoen et al. [2006] for broader
overviews and references to representative tech-
niques). In what follows we overview the most
common classifications.

Available classifications usually differ in the cri-
teria they apply to characterize MAL. An example
of such a criterion is the type of task, which leads to
the prominent distinction between cooperative
learning and competitive learning. In the case of
cooperative learning, the agents have a joint task
and their common learning goal is to improve or
optimize task execution in terms of (for example)
task completion time and quality. In other words,
the agents have the same reward function and the
agents’ learning goal is to maximize their utility as
a group. In the case of competitive learning, the
agents have conflicting tasks (so that not all of
them can be completed, for example, due to
resource limitations or because the agents’ goals
are in direct opposition) and each agent’s learning
goal is to ensure the best possible execution of its

own task. In competitive learning scenarios the
agents have individual reward functions and each
of them is selfish in that it aims at maximizing its
own utility even if this is only possible at the cost
of the other agents and their individual utilities. As
noted by Busoniu, Babuska, and De Schutter
(2008) and ’t Hoen et al. (2006), the cooperative-
competitive distinction is not sharp with regard to
the behavior of agents: a cooperative agent may
encounter a situation in which it has to behave
temporarily in a selfish way (while all involved
agents have the same goal and are willing to coop-
erate, they may want to achieve their common
goal in different ways); and a competitive agent
may encounter a situation in which a temporary
coalition with its opponent is the best way to
achieve its own goal. Several refinements of the
type-of-task criterion have been proposed. For
instance, in Panait and Luke (2005) cooperative
learning has been further differentiated into team
learning (also called coordination-free learning)
and concurrent learning (also called coordination-
based learning): the former assumes that a single
agent identifies a set of appropriate behaviors for a
team of agents, and the latter assumes that agents
run multiple learning processes concurrently
where each process concerns the improvement of
an individual agent’s behavior or a (relatively inde-
pendent) subtask of the agents’ joint task.

Another standard classification criterion for
MAL is a learning agent’s degree of awareness of the
other agents and their learning processes, resulting
in characterizations that range from “fully
unaware” to “fully aware.” As noted by Busoniu,
Babuska, and De Schutter (2008), this criterion is
strongly related to the agents’ learning goals: while
some learning goals (for example, overall stability)
may be achievable with no or little awareness of
the other agents’ behavior, others (for example,
behavioral adaptation to other agents) may only
be achievable with high or full awareness. Other
classification criteria include the degree of homo-
geneity of the agents’ learning algorithms, the
homogeneity of the agents themselves, and the pri-
or knowledge a learning agent has about the task,
the environment and the other agents (for exam-
ple, Busoniu, Babuška, and De Schutter [2008] and
’t Hoen et al. [2006]). Related to the criterion of pri-
or knowledge is the criterion of usage of models of
(for example) the task or the other agents’ strate-
gies, which leads to the distinction of model-based
and model-free MAL techniques, that is, having or
learning a model of the environment dynamics
and/or an opponent model predicting the behav-
ior of other agents. For further considerations on
model-based and model-free learning approaches
see, for example, Shoham, Powers, and Grenager
(2007) and Yang and Gu (2009) .

A different characterization of MAL, based on an
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examination of available MAL literature and for-
mulated in terms of proposed research agendas,
was introduced in Shoham, Powers, and Grenager
(2007). In that article five possible goals of MAL
research (and thus, indirectly, of five types of MAL
techniques) are identified that are claimed to pro-
vide clear motivations and success criteria for MAL:
computational; descriptive; normative; prescrip-
tive, cooperative; or prescriptive, noncooperative.

In computational MAL techniques, learning algo-
rithms are viewed as an iterative way to compute
properties of a game. In descriptive MAL techniques,
learning algorithms are used as a means to formal-
ly investigate learning by natural entities (humans,
animals, organizations). In normative MAL tech-
niques, learning algorithms give a means to deter-
mine which sets of learning rules are in equilibri-
um with one another.

In prescriptive, cooperative MAL techniques, learn-
ing algorithms describe how agents should learn in
order to achieve distributed control of dynamic
systems. In prescriptive, noncooperative MAL tech-
niques, learning algorithms describe how agents
should act to obtain high rewards. This classifica-
tion is useful in that it offers a novel perspective
on MAL that is complementary to the perspectives
of the other classifications. Critical reflections of
this classification can be for instance found in
Stone (2007) and Tuyls and Parsons (2007).

Milestones
This section sketches main research developments
in MAL over the past 20 to 25 years and elaborates
on a number of algorithms that have been impor-
tant and trend setting for the field. The intention
behind this section is to give a useful overall pic-
ture of MAL, including its history and its state of
the art, rather than being comprehensive.

A Historical Perspective
The development of the MAL field can roughly be
divided into two periods, which we call the “start-
up” and “consolidation” periods. Both periods are
discussed in more detail below.

The Startup Period
The startup period, from the late 1980s until about
2000, was characterized by a broad exploration of
the concept of MAL and its possible realizations.
The end of the 1980s were dominated by the first
investigations of what was then called adaptive
parallel computation inspired by nature. Tech-
niques explored in these first multiagent learning
contexts were early ant systems and flocking or
herding behavior (Manderick and Moyson 1988;
Colorni, Dorigo, and Maniezzo 1992; Banerjee
1992), evolutionary computation (Manderick and
Spiessens 1989; Steels 1987, 1988; Paredis 1995),
social learning (Boyd and Richerson 1985; Laland,

Richerson, and Boyd 1993), neural networks
(Pfeifer et al. 1989), and interactive and imitation
learning (Galef 1988, Steels 1996). Many of these
early results and techniques developed further
within what is now known as the artificial life
field. At that time the first artificial life conferences
(such as A-life, PPSN — parallel problem solving
from nature, and so on) were organized. Many
techniques investigated within artificial life are
still highly relevant for MAL but are currently not
so often explored for this purpose. Moreover,
recent results show there exist formal links
between these techniques and popular MAL tech-
niques such as reinforcement learning. A prime
example is the formal link between coevolutionary
algorithms and multiagent Q-learning established
through the replicator equations from evolution-
ary game theory (EGT) (Panait, Tuyls, and Luke
2008), but also relations between swarm intelli-
gence and reinforcement learning are being dis-
covered (Lemmens and Tuyls 2009).

The first multiagent reinforcement learning efforts
appeared soon with the work of Whitehead, Tan,
and Littman (Whitehead 1991, Tan 1993, Littman
1994). Shortly after these publications the first
dedicated workshops on MAL were organized and
journal special issues appeared (for example,
Huhns and Weiss volume 33(2–3) [1998]; Sen
[1996]; Weiss [1996, 1997, 1998]; Weiss and Sen
[1996]). At the end of this startup phase the first
general understanding of the role of learning in
multiagent settings emerged, for example, Stone
and Veloso (2000) and the first textbooklike treat-
ment of MAL became available (Sen and Weiss
1999). The insights and results gained in those
years were the input for the second period, from
about 2000 until today.

The Consolidation Period
While research during the first period was more
like a breadth-first paradigmatic exploration,
research conducted in the second phase was more
like a depth-first exploration characterized by a
focus on certain multiagent learning techniques
(especially reinforcement learning in a game-theo-
retic context) and on theoretical foundations of
MAL. Articles that give a good overview of MAL
methods and techniques developed during this
second phase are, for example, Busoniu, Babuška,
and De Schutter (2008); ’t Hoen et al. (2006), and
Shoham, Powers, and Grenager (2007).

Next we describe a number of algorithms that
we find exemplary state-of-the-art algorithms of
both the startup and the consolidation period. As
we cannot discuss all of them and be comprehen-
sive in this article, we have chosen to describe one
algorithm of the startup period (JAL) and two algo-
rithms from the consolidation period in more
detail. More precisely we describe Nash-Q, a direct
follow-up algorithm of the startup period, and dis-
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cuss the gradient ascent family of algorithms
developed in the consolidation period. We cer-
tainly do not wish to give the impression that
these algorithms are the only landmark algo-
rithms.

State of the Art Algorithms of Both Periods
Joint action learning has been introduced in the con-
text of cooperative repeated games; see Claus and
Boutilier (1998). A joint action learner (JAL) is an
agent that learns Q-values for joint actions in a
cooperative repeated game, in contrast to inde-
pendent learners that learn Q-values only for indi-
vidual actions. This entails that such an agent
stores and adapts Q-values for joint actions a with
a a vector �a1, ..., an�∈ Ai× ... × An composed of the
individual actions ai ∈ Ai of agent i. This implies
that each agent can observe the actions of other
agents.

Instead of carrying out Q-learning in the indi-
vidual action space the JAL agent now learns in the
joint action space. Since we consider stateless
repeated games the update rule of Q-learning can
be simplified to

(5)

In this stateless setting, we assume a Q-value,
that is Q(a), providing an estimate of the value of
taking action a. At each time step a JAL agent i
takes an action ai belonging to joint action a. The
sample �a, r� is the “experience” obtained by the
agent: joint action a was performed resulting in
reward r; for instance when the agents involved in
the game illustrated in figure 1 play joint action �a0
, b0� they will receive reward r1

. � is the typical
learning rate to control step sizes of the learning
process. It is important to realize that a JAL agent
is now learning values for all joint actions and no
longer individual actions. For instance in the two-
player two-action game example of figure 1 the
joint action learner will learn Q-values for the
tuples �ai , bj� with i, j ∈ {0, 1} instead of for its indi-
vidual actions ai as an independent learner does.

Suppose that agent 1 (or the row player) has Q-
values for all four joint actions, then the reward
the agent can expect to accumulate will depend on
the strategy adopted by the second (or column)
player. Therefore a JAL agent will keep a model of
the strategies of other agents i participating in the
game such that he or she can compute the expect-

Q(a)=Q(a)+!(r"Q(a))

ed value of joint actions in order to select good
subsequent actions balancing exploration and
exploitation. A JAL then assumes that the other
players i will choose actions in accordance with the
model he keeps on the strategies of the other play-
ers. Such a model can be simply implemented
through a fictitious play approach, in which one
estimates the probability with which an agent will
play a specific action based on the frequencies of
the agent’s past plays. In such a way expected val-
ues can be computed for the actions of a JAL based
on the joint actions. For instance in the example
we would have the following expected value EV for
the first player’s actions:

(6)

with Pr1
bj the probability with which player 1

believes the other player will choose actions bj
implemented through a fictitious play approach.
Using these EV values player 1 can now imple-
ment, for example, a Boltzmann exploration strat-
egy for action selection.

Nash-Q Learning
Nash-Q, an algorithm introduced by Hu and Well-
man (2000, 2003), aims to converge to a Nash
equilibrium in general-sum stochastic games. In
essence the algorithm extends the independent Q-
learning algorithm to the multiagent case using
the Markov game framework. The optimal Q-val-
ues in this algorithm are the values that constitute
a policy or strategy for the different agents that are
in Nash equilibrium. The Nash equilibrium serves
as the solution concept the agents aim to reach by
learning iteratively. To achieve this each Nash Q-
learning agent maintains a model of other agents’
Q-values and uses that information to update its
own Q-values.

The Nash-Q learning algorithm also considers
joint actions (such as JAL) but now in the context
of stochastic games (containing multiple states). In
an n-agent system, the Q-function for an agent
becomes Q(s, a1, ..., an), rather than the single-
agent Q-function, Q(s, a). Given these assumptions
Hu and Wellman define a Nash Q-value as the
expected sum of discounted rewards when all
agents follow specified Nash equilibrium strategies
from the next period on. The algorithm uses the
Q-values of the next state to update those of the
current state. More precisely, the algorithm makes
updates with future Nash equilibrium payoffs,
whereas single-agent Q-learning updates are based
on the agent’s own maximum payoff. To be able to
learn these Nash equilibrium payoffs, the agent
must observe not only its own reward but also
those of others (as was the case in the JAL algo-
rithm).

The algorithm proceeds as follows. The learning
agent, indexed by i, learns its Q-values by starting

EV(ai )= Q
bj!b0 ,b1

" (bj # {ai })Prbj
1
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with arbitrary values at time 0. An option is to let
Qi

0(s, a1, ..., an ) = 0 for all s ∈ S, a1 ∈ A1, ..., an ∈ An.
At each time t, agent i observes the current state,
and takes its action. After that, it observes its own
reward, actions taken by all other agents, rewards
of others, and the new state s�. Having this infor-
mation it then computes a Nash equilibrium π1

(s�), ..., πn(s�) for the stage game (Q1
t(s�), ..., Qn

t(s�)),
and updates its Q-values according to:

where NashQi
t(s�) = π1(s�) … πn(s�). Qi

t(s�)
NashQi

t(s�) is agent i’s payoff in state s� for the
selected equilibrium. In order to calculate the Nash
equilibrium(π1 (s�), ..., πn (s�)), agent i needs to
know Q1

t(s�), ..., Qn
t(s�). Since this information

about other agents’ Q-values is not available, this
has to be learned as well. Since i can observe other
agents’ immediate rewards and previous actions it
can use that information to learn the other agents’
Q-functions as well.

The algorithm is guaranteed to converge to Nash
equilibrium, given certain technical conditions
hold. Littman tackled these restrictive conditions
of Nash-Q and introduced Friend or Foe Q-learning
(Littman 2001), which converges to Nash equilib-
rium with fewer restrictions than Nash-Q. For
more details on Nash-Q we refer to Hu and Well-
man (2003).

Gradient Ascent Algorithms
Infinitesimal gradient ascent (IGA) (Singh, Kearns,
and Mansour 2000) is a policy gradient learning
algorithm based on the limit of infinitesimal learn-
ing rates. It is shown that the average payoff of IGA
converges to the pure Nash equilibrium payoff in
two-agent, two-action matrix games, although
policies may cycle in games with mixed equilibria.
Each agent i participating in a game updates its
policy πi such that it follows the gradient of expect-
ed payoffs. The IGA algorithm has been general-
ized into the generalized infinitesimal gradient
ascent (GIGA) algorithm beyond two actions using
the regret measure by Zinkevich (2003). Regret
measures how much worse an algorithm performs
compared to the best static strategy, with the goal
to guarantee at least zero average regret, that is no
regret, in the limit. Since GIGA reduces to IGA in
two-player, two-action games, it does not achieve
convergence in all types of games. As a response to
the fact that the IGA algorithm does not converge
in all two-player two-action games, IGA-WoLF
(win or learn fast) was introduced by Bowling
(Bowling and Veloso 2002) in order to improve the
convergence properties of IGA. The policies of
Infinitesimal Gradient Ascent with WoLF learning
rates are proven to converge to the Nash equilibri-
um policies in two-agent, two-action games (Bowl-

Qt+1
i (s,a1,...,an )=

(1!"t )Qt
i(s,a1,...,an )+"t[rt

i +#NashQt
i( $s )]

ing and Veloso 2002). The learning rate is made
large if WoLF is losing. Otherwise, the learning rate
is kept small as a good strategy has been found. In
contrast to other reinforcement learning algo-
rithms, IGA-WoLF assumes that the agents possess
a lot of information about the payoff structure. In
particular, sometimes agents are not able to com-
pute the gradient of the reward function that is
necessary for this algorithm because that informa-
tion is not available. Another well known gradient-
ascent type algorithm is the policy hill climber
(PHC) explained in Bowling and Veloso (2002).
PHC is a simple adaptive strategy, based on an
agent’s own actions and rewards, which performs
hill climbing in the space of mixed policies. It
maintains a Q-table of values for each of its base
actions, and at every time step it adjusts its mixed
strategy by a small step toward the greedy policy of
its current Q-function. Also the PHC-WoLF algo-
rithm needs prior information about the structure
of the game. Related algorithms to infinitesimal
gradient ascent have been devised to tackle this
issue, such as for instance the weighted policy
learner (WPL) algorithm of Abdallah and Lesser
(2008). The GIGA-WoLF algorithm extended the
GIGA algorithm with the WoLF principle (Bowling
2004), improving on its convergence properties.
The algorithm basically keeps track of two policies,
one of which is used for action selection and the
other for approximating the Nash equilibrium.

Challenges in Multiagent Learning
In this section we discuss three main challenges we
believe the field is currently facing and needs to
tackle to continue its successful previous develop-
ment.

Classification Limitations
The field of MAL is, so to say, still seeking for its
identity (which is not surprising for such a young
field). This search is important because significant
and continuing progress in a research field can
only be expected if it is clear what the research
should be about. In response to this, several classi-
fications of MAL have been proposed (see the pre-
vious Nature of MAL subsection). We believe that
these characterizations fail fully to capture the
essence and potential range of MAL: they all focus
on the characterization of existing MAL approach-
es (and are very useful in this respect) and thus on
“what is available,” but say nothing about “what
could (or should) be available.” In this way, they are
not appropriate for identifying important facets
and forms of MAL that so far are not covered (or
have been largely ignored) in the MAL field. To
make this more concrete, we hark back to a classi-
fication scheme initially proposed in Weiss and
Dillenbourg (1999) with the intention to work out
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key differences among single-agent and multiagent
learning. This scheme distinguishes three types of
MAL: multiplied learning, divided learning, and
interactive learning.

In multiplied learning, there are several agents
that learn independently of one another; they may
interact but their interactions do not change the
way the individual agents learn. An agent learns
“as if it were alone” and thus acts as a “generalist”
capable of carrying out all activities that as a whole
constitute a learning process.

In divided learning a single-agent learning task or
algorithm is divided a priori (that is, before any
learning process starts) among multiple agents
according to functional aspects of the algorithm or
characteristics of the data to be processed (for
example, their geographical distribution). The
agents have a shared overall learning goal (which
is not the case in multiplied learning). Interaction
is required for putting the individual learning
results together, but (as in the case of multiplied
learning) this interaction only concerns the input
and output of the agents’ individual learning
processes. An agent acts as a “specialist,” being
responsible for a specific part of an overall learning
process.

In interactive learning, the agents are engaged in
a single learning process that becomes possible
through a shared understanding of the learning
task and goal. The shared understanding is not
necessarily available at the beginning of the learn-
ing process, but may emerge during the learning
process as a result of knowledge-intensive interac-
tion (for example, in the form of consensus build-
ing, argumentation, and mutual explanation, on
the basis of an advanced communication lan-
guage). The intrinsic purpose of interaction is
jointly to construct, in a flexible and dynamic way,
a successful learning path and thus a solution to
the learning task. In the case of multiplied and
divided learning the primary purpose of interac-
tion is to provide input (data and information) to
separate, encapsulated learning processes of indi-
vidual agents. An agent involved in interactive
learning does not so much act as a generalist or a
specialist but as a regulator who influences the
path of a joint learning process and as an integra-
tor who synthesizes possibly conflictive perspec-
tives of the different agents involved in this learn-
ing process.

Examples of MAL approaches from which this
classification was derived are Haynes, Lau, and Sen
(1996); Vidal and Durfee (1996) (multiplied learn-
ing), Sen, Sekaran, and Hale (1994) and Weiss
(1993) (divided learning), and Bui, Kieronska, and
Venkatesh (1996) and Nagendra Prasad, Lesser, and
Lander (1996) (interactive learning). Although the
field of MAL started up with research on all three
learning types, it quickly focused on multiplied

and divided learning and today nearly all available
MAL approaches are variants of these two learning
types. Representative examples of current research
on multiplied and divided learning are Meng and
Han (2009) and Chakraborty and Stone (2010),
respectively. In contrast, interactive learning has
largely been neglected and plays only a marginal
role in current MAL research. As an effect, in recent
years only very few MAL approaches have been
proposed that fall into the “interactive learning”
class (an example is Ontañón and Plaza [2010]). In
a sense interactive learning is the most sophisti-
cated form of multiagent learning and the field
needs to make the effort to delve into it. Perhaps
the field was not mature enough for this effort in
the past, but today it is. A useful starting point for
this effort and a valuable source of inspiration is
the vast amount of literature on collaborative
learning in groups of humans that is available in
disciplines such as social and educational psychol-
ogy (for example, see Smith and Gregor [1992]),
because interactive learning is conceptually very
close to this type of human-human learning. In
Weiss and Dillenbourg (1999) three key processes
are identified — dialogue-based conflict resolution,
mutual regulation, and explanation — which are
fundamental to collaborative learning but were
not realized by MAL approaches available at the
time that article was written. Interestingly, these
processes still do not play a noticeable part in MAL.

Extending the Scope
Today the MAL field is dominated by work on rein-
forcement learning and, specifically, by research
conducted at the intersection of reinforcement
learning and game theory. Approximately 90 per-
cent of the multiagent learning research presented
at the last three AAMAS conferences (2009, 2010,
and 2011) is situated at this intersection (counting
the number of papers explicitly situated at this
intersection in the multiagent learning sessions). A
positive effect of this dominant interest is that
tremendous progress has been achieved, and a
remarkable theoretical understanding of multia-
gent reinforcement learning has been developed in
this area in the previous 10 years or so, for exam-
ple, Busoniu, Babuska, and De Schutter (2008);
Yang and Gu (2009); Tuyls, ’t Hoen, and Van-
schoenwinkel (2006). Maybe a less positive effect is
that the field, so to say, entangled itself in a “rein-
forcement learning and game theory” perspective
on MAL that is probably too narrow in its concep-
tual and formal scope to embrace multiagent learn-
ing. We agree with Stone’s (2007) remark: “How-
ever, from the AI perspective, the term ‘multiagent
learning’ applies more broadly than can be useful-
ly framed in game theoretic terms.”

To broaden its current scope, the MAL field
needs to open up again to a wider range of learn-
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ing paradigms, as was the case in the early days (see
previous subsection on historical perspective),
building on the experience of the past 25 years and
drawing explicit connections between the different
paradigms to tackle more complex problems. Two
paradigms that we consider as particularly appro-
priate in this respect are transfer learning (for exam-
ple, Taylor and Stone [2009, 2011]) and swarm
intelligence (Dorigo and Gambardella 1997, Dorigo
and Stützle 2004). Transfer learning is, roughly
speaking, the field that studies the transfer of
knowledge learned in one task domain to another,
related one. What makes transfer learning very
interesting from the MAL perspective is that this
transfer can take place between distinct learning
entities, be it agents (software or robots) or
humans. Thereby three transfer directions can be
distinguished — from an agent to another agent,
from an agent to a human, and from a human to
an agent. By opening up to transfer learning, a
fruitful linkage would be established between the
MAL field on the one hand and psychology (where
transfer learning has been a subject of study for
more than a hundred years) and areas such as
human computer interaction. Moreover, this
would also establish a linkage to learning tech-
niques that are closely related to transfer learning
such as imitation learning (for example, Price and
Boutilier [2003]), learning from demonstration (for
example, Breazeal et al. [2006]) and multitask
learning (for example, Ando and Zhang [2005]).
Currently very little multiagent transfer learning
work is available (for example, Ammar and Taylor
[2011], Proper and Tadepalli [2009], Wilson et al.
[2008], Wilson, Fern, and Tadepalli [2010]).

Swarm intelligence is a bioinspired machine-
learning technique (He et al. 2007; Colorni, Dori-
go, and Maniezzo 1992), largely based on the
behavior of social insects (for example, ants and
honeybees), that is concerned with developing
self-organized and decentralized adaptive algo-
rithms. The type and form of learning in swarm
intelligence is characterized by a large population
of cognition limited agents that locally interact.
Rather than developing complex behaviors for sin-
gle individuals, as is done in reinforcement learn-
ing, swarm intelligence investigates the emerging
(intelligent) behavior of a group of simple individ-
uals that achieve complex behavior through their
interactions with one another. Consequently,
swarm intelligence can be considered as a cooper-
ative multiagent learning approach in that the
behavior of the full set of agents is determined by
the actions of and interactions among the individ-
uals. Swarm intelligence and reinforcement learn-
ing are closely related, as both techniques use iter-
ative learning algorithms based on trial and error
and a “reinforcement signal” to find optimal solu-
tions. The key difference though is how the rein-

forcement signal is used to modify an individual’s
behavior. Currently the most well-known swarm
intelligence algorithms are pheromone-based (stig-
mergic), such as Ant Colony Optimization. For an
overview, we refer to Bonabeau, Dorigo, and Ther-
aulaz (1999) and Dorigo and Stützle (2004).
Recently, interest has grown in nonpheromone-
based approaches, mainly inspired by the foraging
behavior of honeybees (Lemmens and Tuyls 2009,
Alers et al. 2011).

In addition to transfer learning and swarm intel-
ligence, we see several other learning paradigms
that are inherently related to the concept of MAL
and thus should attain much more attention in the
MAL field than they have received so far. These
paradigms are coevolutionary learning (Paredis 1995,
Ficici and Pollack 1998), that is the field that inves-
tigates and develops learning algorithms inspired
by natural evolution, using operators like selec-
tion, mutation, crossover, and others; multiview
learning (Christoudias, Urtasun, and Darrell 2008),
that is machine-learning methods that use redun-
dant views of the same input data; multistrategy
learning (Michalski and Tecuci 1995), that is, an
approach in which two or more learning strategies
are combined into one learning system; and paral-
lel inductive learning, that is, the domain that stud-
ies how to exploit the parallelism present in many
learning algorithms in order to scale to more com-
plex problems (Provost and Kolluri 1999).

These paradigms have been the subject of
research in the field of (single-agent) machine
learning for years, and opening up to them would
not only broaden the scope of the MAL field but
also further strengthen the ties between single-
agent and multiagent learning research.

Multiagent Learning in Complex Systems
The field of MAL has often dealt with rather simple
applications, usually in toy-world scenarios or
drawn from game theory and mostly with only a
few (typically two) learning agents involved. We
think this simplification makes sense and is helpful
for getting a better understanding of principle pos-
sibilities, limitations, and challenges of MAL in
general and of specific MAL techniques in particu-
lar. But it is not sufficient. In addition, the MAL
field needs to focus more than it currently does on
complex and more realistic applications (and is
mature enough for doing so) for two main reasons.
First, eventually this is the only way to find out
whether and to what extent MAL can fulfill the
expectations in its benefits; and second, this is the
best way to stimulate new ideas and MAL research
directions that otherwise would not be explored.
There is a broad range of potential real-life applica-
tion domains for MAL such as ground and air traf-
fic control, distributed surveillance, electronic mar-
kets, robotic rescue and robotic soccer, electric
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power networks, and so on. Some work
has already successfully explored the
integration of learning in these real-
world domains and has shown promis-
ing results that justify a stronger focus
by the community on complex sys-
tems; for example, see Richter,
Aberdeen, and Yu (2006); Kalyanakrish-
nan, Liu, and Stone (2006); Abbeel et al.
(2007); Agogino and Tumer (2012).
Stone (2007) stated that it is still
unclear whether complex multiagent
learning problems can be handled at
all. We prefer to formulate it in this
way: it is unclear whether this is possi-
ble on the basis of the current perspec-
tive on MAL. In fact, currently there is
no compelling evidence that multia-
gent learning in complex systems is not
possible. To take a broader and more
interdisciplinary approach to MAL, as
proposed in this article, is an important
step toward efficient multiagent learn-
ing in complex applications.

Conclusions
Multiagent learning is a young and
exciting field that has already pro-
duced many research results and has
seen a number of important develop-
ments in a relatively short period of
time. In this article we have reviewed
the field starting by sketching its histo-
ry and most important developments
since the end of the 1980s. This article
continues by introducing the basics of
the field and delving deeper into the
nature of multiagent learning, answer-
ing the question what MAL is really
about. We described some of the mile-
stones of the field and looked into the
current and future challenges. Over the
past years MAL has seen great progress
at the intersection of game theory and
reinforcement learning due to its
strong focus on this intersection. How-
ever, in order to overcome some of the
current issues, as identified in this arti-
cle, we are convinced the field should
also take a broader and more interdis-
ciplinary approach to MAL, which is an
important step toward efficient multia-
gent learning in complex applications.
As an example we have discussed the
potential value of transfer learning and
swarm intelligence for MAL. Moreover,
extending the scope needs to be done
by building on the experience of the

past 25 years and by drawing explicit
connections between the different par-
adigms in order to tackle more com-
plex problems. We believe MAL is also
in need of shifting some of its focus to
more complex and more realistic appli-
cations for two main reasons. First,
eventually this is the only way to find
out whether and to what extent MAL
can fulfill the expectations in its bene-
fits of creating such applications; and
second, this is the best way to stimulate
new ideas and MAL research directions
that otherwise might not be explored.
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