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Abstract Negotiations among autonomous agents has been gained a mass of at-
tention from a variety of communities in the past decade. This paper deals with a
prominent type of automated negotiations, namely, multilateral multi-issue negoti-
ation that runs under real-time constraints and in which the negotiating agents have
no prior knowledge about their opponents’ preferences over the space of negotiation
outcomes. We propose a novel negotiation approach which enables an agent to reach
an efficient agreement with multiple opponents. The proposed approach achieves
that goal by, 1) employing sparse pseudo-input Gaussian processes to model the
behavior of opponents, 2) learning fuzzy opponent preferences to increase the satis-
faction of other parties, and 3) adopting an adaptive decision-making mechanism to
handle uncertainty in negotiation.

1 Introduction

Negotiation is ubiquitous in our daily life and serves as an important approach to
facilitate conflict-resolving and reaching agreements between different parties. De-
velopment of automated negotiation techniques enables software agents to perform
negotiations on behalf of human negotiators. This can not only significantly alleviate
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the efforts of human negotiators, but also aid human in reaching better negotiation
outcomes by compensating for the limited computational abilities of humans when
they deal with complex negotiations.

During negotiations, a negotiating agent usually keeps its negotiation strategy
and its preference as its private information to avoid being exploited. Thus one ma-
jor research challenge is to effectively estimate the negotiation partner’s preference
profile [2, 3, 4, 5] and predicate its decision function [6, 7]. On one hand, through
getting a better understanding of the negotiation partners’ preferences, it would in-
crease the chances of reaching mutually beneficial negotiation outcomes. On the
other hand, effective strategy prediction techniques enable the negotiating agents
to maximally exploit their negotiating partners and thus receive as much benefit as
possible from negotiation [8]. Until now, a lot of research efforts have been devoted
to developing automated negotiation strategies and mechanisms in different negoti-
ation scenarios [3, 7, 9, 10, 11, 12, 13]. Especially recent years have witnessed the e-
mergence of a number of advanced negotiation strategies participated in the last few
years’ automated negotiating agents competition (ANAC) [8]. The ANAC compe-
tition provides a general and uniform negotiation platform which enables different
negotiation agents to be evaluated against a wide range of opponents within var-
ious realistic negotiation environments. However, most research efforts have been
devoted to bilateral negotiation scenarios, which only models the strategic negoti-
ation among two parties. However, in real life the more common and general way
of negotiations usually involve multiple parties. It is in common agreement from
the automated negotiation research community that more attention should be giv-
en to multilateral negotiations and investigate effective negotiation techniques for
multilateral negotiation scenarios.

In this paper, we propose a novel negotiation approach for automated agents to
negotiate in multilateral multi-issue real-time negotiation environments. During ne-
gotiation, the agents’ negotiation strategies and preference profiles are their private
information, and the available information about the negotiating partner is its past
negotiation moves. Due to the huge strategy space that a negotiating partner can
consider, it is usually very difficult (or impossible) to predict which specific strate-
gy the negotiating partner is using based on this limited amount of information. To
this end, instead of predicting the exact negotiation strategies of the opponents, we
adaptively adjust the non-exploitation point λ to determine the perfect timing that
we should stop further exploits the opponents, and then determine the aspiration
level (or the target utility) for proposing offers to opponents before and after the
non-exploitation point following different rules. The value of λ is determined as the
timing when the estimated expected future utility we can obtain over all opponents
is maximized. The future utility that each opponent offers can be efficiently predict-
ed using the Sparse Pesudo-inputs Gaussian Process (SPGP) technique by dividing
the negotiation history into a number of atomic intervals.

Given the aspiration level for offering proposals, another important question is
how should we select an optimal proposal to reach efficient agreements with other
parties, which can also improve the possibility of accepting this offer by the nego-
tiating partners. In this work, we measure the efficient degree of an outcome from
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a practical perspective – the social welfare of participants. We propose modeling
the preferences of each opponent using the least square error regression technique
based on the negotiation history. After that, the offer with the highest social wel-
fare is selected as the offer to be proposed with certain exploration. We evaluate
the performance of our strategy from two different perspectives: efficiency in terms
of the average payoff obtained under a particular negotiation tournament and ro-
bustness in terms of how likely the agents have the incentive to adopt our strategy
rather than other strategies. First, simulation results show that our strategy is more
efficient against a variety of state-of-the-art negotiation strategies in both discount-
ing and non-discounting domains with various domain sizes. Second, we evaluate
the robustness of our strategy using empirical game-theoretic analysis. Experimen-
tal results show that our strategy is the most robust one compared with the existing
state-of-the-art strategies. Moreover, a light-weight implementation of the proposed
negotiation approach finished second in the category of Nash product in the ANAC
2015.

The remainder of the paper is organized as follows. Section 2 introduces the
multilateral negotiation model we adopt. In Section 3, our negotiation approach is
introduced in details. And conclusion and future work are given in Section 4.

2 Multilateral Negotiation Model

To govern the complex process of a multilateral negotiation, we adopt an exten-
sion of a basic bilateral negotiation protocol [14] which is widely used in the agents
field [10, 11, 8, 15, 16]. The participating agents try to establish a contract for a
product (service) or reach consensus on certain matter on behalf of their parties.
Precisely, let A = {a1,a2, ...,ai, ....,am} be the set of negotiating agents, J be the set
of issues under negotiation with j a particular issue ( j ∈ {1, ...,n} where m is the
number of issues). Following the alternating bargaining model of [14], each agent,
in turn, has a chance to express its opinion about the ongoing negotiation. The opin-
ion can be communicated in a form of a contract proposal (e.g., a new offer), or an
acceptance of the latest offer on the table (note that previous offers would not be
accepted once there exists a new proposal), or terminating the negotiation accord-
ing to its interpretation of the current negotiation situation. A simple illustration of
the multilateral negotiation process is shown in Figure 1. Due to space constraints
we refer the interested reader to the website of ANAC for more details about the
protocol.

An offer is a vector of values, with one value for each issue. The utility of an
offer for agent i is calculated by the utility function defined as follows:

U i(O) =
n

∑
j=1

(wi
j ·V i

j(O j,k)) (1)
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Agent A

Agent CAgent B

Offer n

Fig. 1: Multilateral negotiation protocol.

where wi
j and O are as defined above and V i

j is the evaluation function of agent i
for issue j, mapping every possible value of issue j (i.e., O j,k) to a real number.
The weight vector w denotes the weighting preference of an agent, in which wi

j
represents its preference for issue j. The issue weights of an agent are normalized
(i.e., ∑n

j=1 wi
j = 1 for each agent i). In addition an agent has a lowest expectation for

the outcome of a negotiation – the reservation value ϑ .
In this work we consider negotiation being conducted in a real-time way instead

of being restricted by a fixed number of exchanged offers; specifically, each nego-
tiator has a hard deadline by when it must have completed or withdraw the negoti-
ation. The negotiation deadline of agents is denoted by tmax. In negotiations under
real-time constraints, the number of remaining rounds are not fixed and the outcome
of a negotiation depends crucially on the time sensitivity of the agents’ negotiation
strategies. For domains where the value of agreements is discounted over time, the
discounting factor δ (δ ∈ [0,1]) is defined to calculate the discounted utility as fol-
lows:

D(U, t) =U ·δ t (2)

where U is the (original) utility and t is the standardized time. As an effect, the
longer it takes for agents to come to an agreement the lower is the utility they can
obtain.

3 Negotiation approach

Our proposed approach consists of three core components: deciding aspiration level,
generating new offers and responding mechanism, all of which are described in de-
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Algorithm 1 The overview of the proposed negotiation approach. Let tc be the current time
point, δ the time discounting factor, and tmax the deadline of negotiation. Oopp is the latest opponent
offer, Ωi the previous offers of opponent i and Oown a new offer to be proposed by our agent. χ
is the time series including the average utilities over intervals. E denotes the expected utility of
incoming counter-offers. λ is the non-exploitation time point and u′ the target utility. W denotes
the set of learnt opponent weight vectors.

1: Require: ϑ ,δ , tmax
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: Ωi ⇐ recordOfferSet(tc,Oopp, i);
5: if myTurn(tc) then
6: if updateModel(tc) then
7: χ ⇐ preprocessData(tc)
8: E ⇐ Predict(χ ,Ω);
9: (λ ,Umin)⇐ updateParas(tc);

10: W = updatePrefreenceModels();
11: end if
12: end if
13: u′ = getTargetUtility(tc,E,λ );
14: Oown ⇐ constructOffer(u′, W) ;
15: if isAcceptable(u′c,Oopp, tc,δ ) then
16: accept(Oopp);
17: else
18: checkTermination();
19: proposeNewBid(Oown);
20: end if
21: end while

tail in this section. We first give an overview of our approach shown in Algorithm 1.
Following that, the individual steps of Algorithm 1 are explained in details.

3.1 Deciding Aspiration Level

Aspiration level indicates the target utility of an agent in the negotiation process.
In order to respond to uncertainty in a negotiation where opponents’ private infor-
mation is unknown, the aspiration level is updated due to the environment (e.g.,
available negotiation time and discounting effect) and opponent behaviors. The a-
gent can therefore predict opponent future moves to assist its decision by analyzing
past moves of the opponent. The prediction technique we use here is a computation-
ally efficient variant of standard Gaussian Processes (GPs) – Sparse Pseudo-inputs
Gaussian Processes (SPGPs), which proves effective in negotiation context [16].
Another advantage of SPGPs over other type of regression techniques is that it not
only provides accurate prediction but also the measure of confidence in the predic-
tion.

Following the notation of GPs in [17], given a data set D = {x(i),y(i)}n
i=1

where x ∈ Rd is the input vector, y ∈ R the output vector and m is the number
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of available data points when a function is sampled according to a GP, we write,
f (x)∼G P(m(x),k(x,x′)), where m(x) is the mean function and k(x,x′) the covari-
ance function, fully specifying a GP. Learning in a GP setting involves maximizing
the marginal likelihood of Equation 3.

log p(y|X) =−1
2

yT (K+σ2
n I
)−1 y− 1

2
log |K+σ2

n I|− n
2

log2π, (3)

where y ∈ Rm×1 is the vector of all collected outputs, X ∈ Rm×d is the matrix of
the data set inputs, and K ∈ Rm×m is the covariance matrix with |.| representing the
determinant.

To fit the hyperparameters that best suit the available data set we need to max-
imize the marginal likelihood function of Equation 3 with respect to Θ , the vector
of all hyperparameters. The problem with GPs is that maximizing Equation 3 is
computationally expensive due to the inversion of the covariance matrix K ∈ Rn×n

where n is the number of data points. We for this specific reason employ a fast and
more efficient learning technique – SPGPs. The most interesting feature of SPGP-
s is that these approximators are capable of attaining very close accuracy in both
learning and prediction to normal GPs with only a fraction of the computation cost.
This property makes them extremely suitable to the multilateral negotiation domain
where a complex and low cost function approximation framework is highly demand-
ed.

Using only a small amount of pseudo-inputs, SPGPs are capable of attaining
very similar fitting and prediction results to normal GPs. To clarify, the idea is to
parametrize the model by M << n pseudo-input points, while still preserving the full
Bayesian framework. This leads to the parametrization of the covariance function
by the location of M <<< n pseudo-inputs. These are then fitted in addition to the
hyperparameters in order to maximize the following new marginal likelihood:

p(y|X, X̄,Θ) =
∫

p(y|X, X̄, f̄)p(f̄|X̄)d f̄

= N (y|0,KNMK−1
M KMN + +σ2I), (4)

where X̄ is the matrix formed by the pseudo-inputs with X̄ = {x̄}M
m=1. KNM is the

covariance matrix formed by the pseudo and the real inputs as KMN = k(x̄m,xn)
with k(., .) being the covariance kernel. K−1

M is the inverse of the covariance matrix
formed among the pseudo inputs with KM = k(x̄m, x̄m). Λ is a diagonal matrix hav-
ing the diagonal entries of λn = knn −kT

n K−1
M kn. The noise variance and the identity

matrix are represented by σ and I, respectively.
When a counter-proposal from agent i arrives at time tc, our agent records the

time stamp tc and the utility U(Oi) that is evaluated in our agent’s utility space.
To reduce misinterpretation of the opponent’s behavior as much as possible that is
caused by the setting of multi-issue negotiations, the whole negotiation is divid-
ed into a fixed number (denoted as ζ ) of equal intervals. The average utilities at
each interval with the corresponding time stamps, are then provided as inputs to
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the SPGPs. Results in [18] show a complexity reduction in the training cost (i.e.,
the cost of finding the parameters of the covariance matrix) to O(M2N) and in the
prediction cost (i.e., prediction on a new set of inputs) to O(M2). The results fur-
ther demonstrate that SPGPs can fully match normal GPs with small M (i.e., few
pseudo-inputs), successfully producing very sparse solutions.

After learning a suitable model, SPGPs makes forecast about the future conces-
sion of the opponent as shown in line 7 of Algorithm 1. Our agent keeps track of
the expected discounted utility based on the predictive distribution at a new input t⋆,
which is given by:

p(u∗|t⋆,D , X̄) =
∫

p(u⋆|t⋆, X̄, f̄)p(f̄|D , X̄)d f̄ = N (u⋆|µ⋆,σ2
∗ ), (5)

where

µ⋆ = kT
⋆ Q−1

M (Λ +σ2I)−1u

σ2
⋆ = K⋆⋆−kT

⋆ (K
−1
M −Q−1

M )k⋆+σ2

QM = KM +KMN(Λ +σ2I)−1KNM

With the given probability distribution over future received utilities and the effect
of the discounting factor, the expected utility Et⋆ is then formulated by

Et =
1
C

∫ 1

0
D(u · p(u; µt ,σt), t)du (6)

where µ⋆ and σ⋆ are the mean and standard deviation at time t⋆, and the normalizing
constant C is introduced to preserve a valid probability distribution.

Our agent employs the target utility function as given in Equation 7 to determine
the aspiration level over time. The function adopts a tough manner (i.e., slowly
conceding) before the non-exploitation time point (λ ) for seeking higher expected
profits, then it quickly goes to the expected minimal utility such that negotiation
failure/disagreement could be avoided in the end. The non-exploitation time point is
adjusted according to the behavior of other negotiation participants. More precisely,
the higher the average opponent concession (measured in the our own utility space),
the later our agent begins to compromise.

u′ =

{
Umax −∆( tc

λ )
1+δ when tc ≤ λ ,

(Umax −∆)(1− tc−λ
tmax−λ )

1+δ otherwise
(7)

where Umax is the maximal utility, Umin is the minimal utility (Umin =max(ϑ ,γ) and
γ the received lowest opponent concession), constant ∆ is the maximal concession
amount (i.e., Umax −Umin), with

λ = argmax
t∈T

1
|A|−1 ∑

i∈A\o

1
Ci

∫ 1

0
Dδ (u · p(u; µt ,σt), t)du (8)

with o representing our agent and T ∈ [tc, tmax].
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3.2 Generating Offers

Given an aspiration utility level to achieve, our agent next needs to consider what
offer to send such that the likelihood of an offer being accepted could be max-
imized. Performing this task would require certain knowledge about opponents’
preferences. However, negotiation opponents unfortunately have no motivation to
reveal their true likings over proposals (or their utility functions) to avoid exploita-
tion. In order to address this problem, we model the opponent concession tactics as
time-dependent tactics (originated in [15]) shown in Equation 9, which are classic
tactic in the current literature.

ũ =Umax − (Umax −ϑ)(tc/tmax)
α (9)

where α is the concession factor controlling the style of concessive behavior (e.g.,
boulware (α < 1), conceder (α > 1) or linear (α = 1)). Time-dependent tactics
are widely used in automated negotiation community to decide concession toward
opponents since an negotiator needs to make more or less compromise over time so
as to resolve conflicts of the parties. In more detail, boulware tactic maintains the
target utility level until the late stage of a negotiation process, whereupon it concedes
to the reservation utility. By contrast, conceder tactic makes quick compromise to
other parties once a negotiation session starts. For linear tactic, it simply reduces the
target utility from the maximal utility to the reservation utility in a linear way.

Learning opponent preferences, while useful, is indeed challenging because in-
formation about opponent preferences over different issues (e.g., the weight vector
w) is severely lacking. To tackle this issue, researchers typically assume that oppo-
nent concession tactic is fully known or preferences follow a certain distribution. In
many real-world applications, it is however difficult or costly to acquire the exact in-
formation about opponent concession.2 Therefore we make a mild assumption that
we could enquire of domain experts about the approximate concession range of an
opponent. This fuzzy knowledge is provided in form of a pair of concession factors
that indicate the upper and lower concession an opponent makes at each time point.
This idea is illustrated in Figure 2. Thus, the agent can estimate opponent prefer-
ences with the aid of the fuzzy information about opponent concession. Specifically,
the preferences are learnt through minimizing the loss function L, which gives the
expected loss associated with estimating opponent concession based on a weight
vector. The loss function is constructed as in Equation 11. The loss is calculated by
the difference between the mean of concession and the utility of an offer based on
a weight vector w; moreover an additional penalty is imposed by φ when an ex-
pected utility for w excesses the upper and lower bounds of opponent concession.
When calculating the utility of an offer for opponent i, yet the valuation of each
issue choice is needed. We here simply assume that the importance order of issue
choices is known, and approximate the valuation like [3] as follow,

2 Note that the opponent concession is the amount of concession measured in the utility space of
the opponent instead of ours.
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Fig. 2: A toy example of opponent concession ranges given by the pairs of conces-
sion factors (0.5,2) at time 0.3, (0.5,4) at 0.5 and (2,0.25) 0.7, respectively.

V i
j,k(O j,k) =

2ri
j,k

K(K +1)
(10)

where K is the number of possible choices for issue j, while ri
j,k denotes the ranking

of the issue choice O j,k.
Let the opponent utility of an offer for a weight vector w be ûw. With the oppo-

nent concession tactic given in Equation 9 and the two concession factors (which
denote the approximate concession range suggested by experts), our agent can esti-
mate the weight vector of opponent i by means of linear least squares. This can be
achieved by minimizing the following loss function,

Li(w) =


| (u

i
upper+ui

lower)

2 − ûw|+φ(ui
lower, ûw), ûw ≤ ui

lower

| (u
i
upper+ui

lower)

2 − ûw|+φ(ûw,ui
upper), ui

upper ≤ ûw

| (u
i
upper+ui

lower)

2 − ûw|, otherwise

(11)

with ui
upper and ui

lower being the upper and lower bound of concession made by op-
ponent i at time t, and φ the penalty function as below,
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φ(x,y) = β |x− y|
1
2 (12)

where β denotes the confidence of the expert, and the lower the value, the more
confidence the expert has about the perdition (to limit further complexness, we let
β be 1).

After the estimation of weight vectors of other parties has been done, our agent
chooses an offer being capable of maximizing the social welfare (e.g., the sum of
the utility of all participants in the negotiation) given a aspiration level, shown as
below:

argmax
O

1
|A|−1 ∑

i∈A\o
(ûi

w(O)−ϑ)2

subject to
Uo(O)≥ u′

(13)

Although opponent preferences could be learnt on the basis of the provided con-
cession tactics, it sometimes may be ineffective due to the fuzzy nature of the infor-
mation; therefore our agent needs an alternative approach to choosing new offers.
Fortunately, a real-time negotiation typically allows agents to exchange a large num-
ber of offers, thereby giving them many opportunities to explore the outcome space.
Therefore, the proposed approach generates a new offer for next round following an
ε-greedy strategy. The strategy selects either a greedy action (i.e., exploit) with 1-ε
probability (ε ∈ [0,1]) or a random action with a probability of ε . It is worth noting
that random action means choosing one offer from the set whose utility is above
the given aspiration level by chance. The greedy action aims at choosing an offer
that are expected to satisfy other sides’ preferences most in order to improve their
utilities over the negotiation outcome and the chance of the offer being accepted
through fuzzy preference learning. With a probability 1−ε , the approach randomly
picks one of those offer whose utility is equal or larger than the given aspiration
level. In the latter case, the agent constructs a new offer which has an utility within
some range around u′. The reason is twofold: 1) it is possible, in multi-issue nego-
tiations, to generate a number of offers whose utilities are the same or very similar
to the offering agent, with granting the opposing negotiators different utilities, and
moreover 2) it is sometimes not possible to make an offer whose utility is exactly
equivalent to u′. Thus it is reasonable that an agent selects an offer whose utility is
in the narrow range [(1-0.005)u′,(1+0.005)u′]. If no such solution can be found, our
agent repeats the latest bid again in the next round.

3.3 Responding mechanism

This responding mechanism of the proposed approach corresponds to lines 15−20
of Algorithm 1. After receiving a counter-proposal, the agent should decide whether
to accept the proposal by checking two conditions. First the agent has to validate
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whether the utility of the latest counter-offer is better than u′, while in the second
the agent has to determine whether it had already proposed this offer (i.e., the op-
ponent’s counter-offer) earlier in the negotiation process. If either one of these two
conditions is satisfied, the agent then accepts the offer as shown in line 16 and the
negotiation will be completed if the proposal is also supported by the remaining
agents.

Moreover, when the negotiation situation becomes hard and might offer our agent
a utility even lower than the reservation utility, the agent should consider whether
to terminate/leave the negotiation to receive the corresponding reservation utility or
not. Here we treat the reservation value as an alternative offer from a negotiating
partner with a constant utility. Thus the agent needs to check if the aspiration utility
is smaller than the reservation utility. If positive, our agent is going to leave the
negotiation table in the next round. If our agent decides neither to accept the latest
counter-proposal nor to leave the negotiation, it proposes a new offer following the
steps of lines 19 of Algorithm 1.

4 Conclusion

This work introduced a novel approach for multilateral agent-based negotiation
in complex environments (multi-issue, time-constrained, and unknown opponents).
Our proposed strategy, based on the adaptive decision-making scheme and the ef-
fective preference learning method, outperformed the top agents of the recent Inter-
national Automated Negotiation Agents Competitions. Experiments show that our
agent ont only generates a higher mean individual utility but also leads to better
social welfare compared to the state-of-the-art negotiation agents. Further game-
theoretic analysis clearly manifests the robustness of the proposed approach. We
think the exceptional results justify to invest further research efforts into this ap-
proach. In the future work, we plan on comparing the opponent modeling scheme
with the other available approachers and further, extend this framework to other
negotiation settings like concurrent negotiation negotiation.
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