
October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

AUTONOMOUS SOFTWARE

MICHAEL ROVATSOS1∗ and GERHARD WEISS2

1Centre for Intelligent Systems and their Applications,

School of Informatics, The University of Edinburgh,

Edinburgh EH8 9LE, United Kingdom

E-mail: mrovatso@inf.ed.ac.uk

2Institut für Informatik, Technische Universität München

85748 Garching, Germany

E-Mail: weissg@in.tum.de

Industrial-strength software is reaching a level of inherent complexity which tends to
make an effective development, deployment and administration impossible. This has led
to a rapidly growing interest in the notion of autonomous software, that is, software which
takes over, and encapsulates, action choice and responsibility from its users and operators
so that it can handle its complexity on its own. A key condition for the broad acceptance

of autonomous software is the availability of a clear notion of autonomy as a software
property upon which precise specification schemes for autonomous software systems can

be build. There are diverse approaches available in computer science that are useful in
this respect. This chapter describes a generic autonomy specification framework which
gives an integrated view of these approaches and of the state of the art in specifying

autonomy as a software property.

Keywords: Agent-oriented modelling, agent-oriented software engineering, intelligent
agents and multiagent systems, autonomy-oriented computation

1. Introduction

Advances in information technology and growing expectations on the functionality

of computer-based information processing systems form the basis for a fundamental

change in the software landscape. Characteristic to this change is the rapidly in-

creasing importance of industrial, commercial and scientific software systems which

operate and are tightly embedded in open, distributed, networked, dynamic, and

hardly predictable socio-technical environments. Despite the impressive progress

achieved in software engineering during the past decades, this kind of software

systems tend to possess an extraordinarily high level of inherent complexity which

makes it practically impossible to develop, administrate and deploy them effectively

in terms of time and costs. This serious problem has led to the much-attended vision

of autonomous software, that is, software being able to handle its complexity on its

own. The spectrum of primary attributes associated with autonomous software is

∗corresponding author

1



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

2 M. Rovatsos & G. Weiss

broad and ranges from self-diagnosing and self-structuring over self-managing and

self-governing to self-repairing and self-adapting.a The key idea underlying these

attributes is to have software equipped with action and decision choice so that it can

fulfil its tasks even under critical and unexpected circumstances (e.g., changes in

the technological infrastructure or in the application-specific user demands) without

requiring human support, feedback or intervention.

Autonomy orientation may be viewed as a natural next step in the evolution

of generic software models [21]. In the course of this evolution, the basic build-

ing blocks of software – monolithic programs, modules, procedures, objects and

components – gained increasing degrees of localisation and encapsulation of data

processing and state control. What is common to all traditional building blocks

is that their invocation happens through external events, such as start directives

by users and call statements or messages by other software entities. Autonomous

software exceeds this limitation of “external-only invocation” by additionally en-

capsulating invocation control. In other words, autonomous software significantly

differs from traditional software in that it takes over responsibility for deciding (in

accordance with the demands of its users and administrators) when and under what

conditions to become active and to react on external events. Because of this differ-

ence, the step toward autonomous software is also a highly challenging one which

can not be realised casually by adding some lines of code, but one which deeply

impacts all phases of software development, from early requirements capturing over

implementation to integration with legacy systems.

Putting the vision of autonomous software into practice requires, first and fore-

most, a clear notion of software autonomy upon which precise schemes for auton-

omy specification can be built. In the computer science literature – especially in

the literature on autonomic computing (e.g., [34]), agent and multiagent technology

(e.g., [18, 40, 43]), and agent-oriented software engineering (e.g., [23, 41]) – diverse

approaches have been proposed which are useful in this respect.b This chapter

describes a generic, domain- and application-independent autonomy specification

framework which brings these approaches and their key concepts together in a co-

herent whole. This framework comprises two parts: an autonomy matrix which

aAmong these attributes, self-governing is most closely related to the original sense of the Greek

term “auto+nomos” (“self+law”). As noted in [2], in European languages the word autonomous
is commonly used to refer to something that is capable of self-government, while in American

English its usage is stronger associated with self-directedness and independence from outside.
bAutonomic computing is a technological effort initiated by IBM that aims at building autonomous

computing systems. There are related efforts by other IT leaders, such as Sun’s N1 initiative [39],
HP’s adaptive enterprise initiative [16] and Microsoft’s dynamic systems initiative [27]. In the area

of agent and multiagent technology autonomy is viewed as a key characteristic of computational

agents [44]. In fact, it is often through the aspect of autonomy (in the sense of self-governance with-

out external intervention) that agents can be best distinguished from other software or hardware

components, such as objects, modules, etc. Generally, in that area the term “agent” is commonly

used to refer to a computational entity capable of autonomous and flexible action and interaction,
and this notion of an agent is also essential to agent-oriented software engineering.



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 3

gives a static view of software autonomy; and an autonomy transformation loop

which captures the dynamic aspects of software autonomy. These two parts taken

together provide the vocabulary necessary for talking about autonomous software.

To our knowledge, they constitute the first comprehensive conceptual framework

that allows for an analysis of computational autonomy that is crucial for engineer-

ing autonomous systems.

It should be stressed that autonomous software is still a vision, at least as far

as the self-responsible carrying out of complex tasks without human intervention

or feedback is concerned. With this respect, the framework presented in this paper

should rather be understood as an “instruction manual” for dealing with autonomy

issues that will arise in the future rather than a representative description of aspects

of present-day software. Also, in many cases, full autonomy is not even desirable,

as human designers or users want to be able to control the system at any point in

time.

However, we will show that many aspects of autonomy already appear in existing

applications (even if we cannot speak of “full” autonomy yet), and that the class

of software applications in which autonomy plays a role is becoming increasingly

important.

The chapter structure is as follows. First, section 2 introduces an exemplary

system and application which is used to illustrate the various concepts relevant to

autonomy specification. Next, sections 3 and 4 describe the autonomy matrix and

the autonomy transformation loop, respectively. Finally, section 5 concludes with

considerations on urgent open issues raised by autonomous software.

2. An Illustrative Example

Before we embark on a description of the key characteristics of autonomous software,

it is useful to introduce an exemplary system that can be used to illustrate the

concepts we suggest. The Link Exchange Simulation System LIESON [35] is a fully

implemented system that is highly suitable for this purpose.

LIESON is a distributed, agent-based software simulator in which agents repre-

senting Web site owners manage the linkage (via hyperlinks) between their own

site and others’ on behalf of the Web site owners. These agents pursue two goals:

Firstly, they seek to maximise the traffic attracted to their own(er’s) site. Secondly,

they want those sites to be most popular that express similar opinions as they do

themselves, i.e. they aim at a link-based dissemination of their opinion. To further

these goals, the agents negotiate with each other over linkage actions (such as laying

a link, deleting it or labelling it with a positive/negative comment).

The system was primarily built as a simulation testbed for socially intelligent

agents that are able to use a set of pre-defined interaction patterns when commu-

nicating with others in a goal-oriented way [36]. Apart from this social reason-

ing functionality, of course, they also have a rational, goal-oriented reasoning and

decision-making apparatus that enables them to reason about the information they



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

4 M. Rovatsos & G. Weiss

obtain about the current linkage network, to project future states, to assess the

desirability of these states and to plan towards the achievement of these goals.

In the following sections, we will use LIESON as an example of a software system

that is complex enough to incorporate the different kinds of autonomy we describe.

More particularly, it is characterised by key features common among those software

applications in which autonomy can be seen to play a crucial role:

• Spatial distribution of data and control: The different Web site owners

who deploy agents are stakeholders with potentially incompatible motives.

Typically (i.e. unless a distributed system is deployed by a single stakeholder

for the purpose of distributing a complex task among “strictly cooperative”

units), different parts (here: agents) of the software follow their own design

objectives and are not necessarily concerned with meeting global coherence.

• Mutual observation: Since agents have no access to each other’s internal

design, there is a need for monitoring others’ behaviours and reacting ap-

propriately to it. As we shall see below, this is very important in terms of

the observer perspective that is assumed when modelling the autonomy of

a piece of software.

• Complex application environment: The Web linkage domain is an appli-

cation environment characterised by constant evolution and uncertainty

regarding the current status of the global network of hyperlinks due to

the impossibility of constantly monitoring all Web sites and their links.

Typically, such environments require that agents self-responsibly decide to

prioritise their “goals” and to reason about possible paths of computation.

Quite obviously, if this entails that program behaviour may deviate from

what was expected by its user or designer, then we are dealing with – at

least partial – autonomy of the software.

While LIESON is a very particular application, we shall show below that many of

these features are also present in other kinds of software. In particular, we will

argue that they do not only occur in agent-based software systems.

3. Software Autonomy – The Static View

3.1. Autonomy and Agency

In the above discussion of LIESON as a typical application in which autonomy analysis

makes sense, the concept of agents was used in accordance with common usage, to

refer to a software unit that is able to pursue its design objectives autonomously,

flexibly and in interaction with humans and other agents (e.g., [31]).

The design of LIESON heavily draws upon agent and multiagent technology (see

section 1). Therefore, it will sometimes be convenient in the following to refer to

the software artefacts that represent Web site owners as “agents” and, more gener-

ally, to speak of agents whenever we mean autonomous software components that

interact with each other and their environment. However, it should by no means



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 5

be inferred from this that our discussion of autonomy only applies to agent-based

approaches. Instead, we make use of the notion of agency as a design metaphor that

emphasises autonomy (but also a certain amount of sophistication with respect to

functionality, adaptiveness and the ability to operate in dynamic and/or uncertain

environments, etc.) rather than in the sense of a set of technologies adopted from

agent/multiagent system research (such as agent architectures, interaction proto-

cols, agent communication languages, coordination mechanisms, etc.)

Also, what matters for our analysis when we picture a piece of autonomous

software as an agent is the role of the observer perspective in autonomy modelling

and analysis: By looking at an agent “from the outside”, we put a great deal

of emphasis on the process of ascribing autonomy qualities to software, and the

agent notion supports this view (in contrast to concepts such as “unit”, “program”,

“module” or “component”).

Our analysis is based on the insight that this “ascribing” aspect of modelling

autonomy is relevant for a variety of “conventional” software applications that are

built without employing agent technology. As in the case of LIESON, this class of

applications is characterised by distribution of data and control, mutual observation,

and complexity of the application environment. The most suitable examples of such

systems are applications in which different software (and hardware) components

belong to different stakeholders and are not controlled by a central coordinating

instance, such as

• peer-to-peer systems for distributed management and exchange of informa-

tion,

• ad hoc networks for routing and communication between mobile devices,

• supply chain management systems which cater for flexible and loosely cou-

pled B2B interactions,

• electronic marketplaces, auctions and trading platforms

and many others of a similar flavour. For this kind of systems that encapsulate

components with a certain degree of autonomy – whether referred to as agents or

not – we will next lay out a basic typology of different autonomy types.

3.2. The Autonomy Matrix

The autonomy matrix provides the basic vocabulary for analysing and modelling

autonomy in terms of different autonomy types, and thus is foundational to our

understanding of autonomy, at least as far as the static view of autonomy is con-

cerned. This means that the autonomy matrix describes what kinds of autonomy a

piece of software may possess, while disregarding the dynamics that may alter this

autonomy status (these will be dealt with in section 4).

What this typology achieves is to break down the abstract notion of autonomy

into a set of concepts the existence of which can be more easily identified and

assessed in a concrete software system. This not only enables us to focus on the



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

6 M. Rovatsos & G. Weiss

autonomy perspective of a system, but it also constitutes an important step towards

dealing with the different kinds of autonomy that a system may exhibit.

The matrix itself is shown in table 1, and it distinguishes six types of autonomy

and thus allows for a fine-grained specification of the autonomy status a software

system might possess. The distinction made results from applying two different

dimensions of autonomy: the perspective of observation and the range (or scope)

of activity. In the following, first these two dimensions are explained, then the six

autonomy types are described, and finally a basic autonomy specification pattern

is presented.

perspective

range internal external

performative capability dependency

deliberative motivation control

normative commitment expectation

3.3. The Perspective of Observation

The perspective of observation specifies the viewpoint of the observer who is de-

scribing an autonomous software component. Two kinds of perspectives can be

distinguished, as they result in essentially different characterisations of the auton-

omy owned by a software system: the perspective of what can be called an internal

observer, and the perspective of what is called here an external observer. An inter-

nal observer is an observer who is able to cross the boundary between the software

and its environment and hence to obtain information about internal aspects of the

agent that is not readily available when observing interaction with the environment.

In particular, the autonomous software artefact itself is an internal observer of its

own autonomy. An external observer, on the other hand, can only use what he

perceives of the interaction of the software with its environment. Typical examples

of external observers are users of a computer system or of a piece of software (who

have not implemented the system themselves), market analysts who monitor the

external activities of a company but are not provided with internals, etc.

Note that for both kinds of observer perspectives, several additional factors come

into play that determine how the observer assesses the autonomy of the software

under analysis. These are, inter alia,

• the accuracy of information about the (internal and external) behaviour of

a component or system,

• the processability of this information (e.g. if its amount exceeds the capac-

ities of the observer), and

• the precision of the information (i.e. the level of detail that is provided).



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 7

Also, of course, mixed-perspective observation is possible (and very common in

practice). For example, software components with a social ability are usually ca-

pable of assuming the role of other components when observing themselves. Or, a

person who has implemented a software system has access to the internals on the

system, but is also externally observing its behaviour when testing it.

3.4. The Range of Activity

The range of activity that must be determined to gain a full understanding of

the autonomy of an software entity has to do with whether its actions make it

autonomous in behaving as an individual or in relation to its social context, and

also whether we are referring to autonomy in terms of actions or in terms of internal

state. With this respect, three categories can be distinguished.

The performative range of autonomy defines what actions a piece of software

can take in principle, i.e. how it can influence its environment and the standing of

others by taking action. In specifying performative autonomy, we typically identify

• the “primitives” of action the software disposes of (i.e. what changes it can

effect in its physical/computer/network environment),

• the reliability with which it can employ them (a program is not really

“capable” of performing some action if this action fails regularly),

• by the resources it can access (data, CPU time, network bandwidth, rea-

soning resources (representations, heuristics, algorithms, etc.) etc.),

• and by the complexity of “agendas” it can pursue while acting (e.g. how

long or conditionally branched the action sequences are that it can pursue

once it has decided on them).

If the autonomous software is ascribed mental qualities [26], (which is often the case,

for instance, in agent-based approaches), certain “mental” activities can be seen as

belonging to this class, but only in a low-level sense, e.g. adding and retracting facts

to and from one’s beliefs.

The deliberative range of activity has to do with the motivations that guide the

behaviour of a software component, it describes what it wants to do. Unlike the

performative range, this level is not concerned with the “what” of software activity,

but rather with the “why” that stands behind an observed behaviour. Deliberation

explains the goals and needs of an entity rather than its direct actions (by which the

environment is manipulated or it communicates with other agents), i.e. it provides

the reasons for a certain behaviour. The activities that deliberation is aimed at are,

quite naturally, only mental actions, such as generating and revising goals, adopting

intentions or commitments, [42] etc.

The normative range, finally, defines what the software is supposed to do. Of

course, this largely depends on who expects the software to do something: If it

has a model of e.g. its own anticipated behaviour, the agent itself might have such

normative expectations. More commonly, though, designer, the users, and other



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

8 M. Rovatsos & G. Weiss

autonomous components it interacts with have a picture of what the agent “should”

do. The difference to the performative view is that autonomy here is not framed by

ability, but by the reactions of some other entity – it does not constrain anything

the software artefact might do in principle. For example, a digital assistant who

purchases goods on behalf of its owner on the Internet may be expected to pay

for them at a normative level, while it may be at the same time able to commit

fraud at the performative level. The difference between normative and deliberative

autonomy, on the other hand, is that expectations have nothing to do with the

current motives. For example, an agent may commit itself to something it does not

want, and then it will certainly restrict his own autonomy by normative means of

influence exerted upon itself [10].

Obviously, it is not possible to identify the latter two ranges (deliberative and

normative) in just about any kind of software system, and it requires assuming

a knowledge-level [28] outlook on computational systems that allows for ascribing

mental qualities to them [26]. However, it will become clear from the description of

the suggested individual types of autonomy below that assuming such a perspective

is possible and reasonable in many situations.

Again, mixtures of these three different ranges are possible and do often occur

in practice. For example, all deliberative and normative activities must have a

physical counterpart since we are talking about physical software components, and

this physical counterpart is always a performative activity.

3.5. Different Types of Autonomy

We will now discuss the six types of autonomy in more detail.

Capability – internal performative autonomy Internal performative auton-

omy is defined by the capabilities of a software component, i.e. by the capacity it

has to influence its environment. It is an internal view, because the software can

only perform actions it knows of, and must choose from these actions. A strongly

related notion is that of resources, i.e. of cognitive or environmental aspects used to

effect changes on the environment. Key concepts that are related to this autonomy

category are skill, ability, competence, expertise, learning, and knowledgeability.

Example. In LIESON, agents’ capabilities are given by (i) the physical action options

they have depending on their knowledge and their environment, and, (ii) at a more

abstract level, by their reasoning resources.

At the level of physical actions they can freely modify the outgoing links of their

owner’s Web site, as long as they have the required knowledge to “think of” these

actions. For example, they can only lay a link to a site if they have found the site

on the Web before and if they have obtained feedback from their human owner as

to how much he likes the respective site. Also, they can execute special actions

to explore new regions of the Web and they can visit known sites to update their



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 9

knowledge about the outgoing links of that site.

Their autonomy is also restricted by reasoning resources, such as the number

of future linkage states they can anticipate in each iteration to consider as a goal,

by the number of goals they can schedule for future attainment, by they fact that

they can only entertain a single conversation at a time, and by the time they need

to wait for a response during a communicative encounter. In this respect, it is also

a significant limitation that they can never really “catch” up with changes to the

linkage network – assuming that each agent can execute a single action (visiting a

site or sending a message to another agent or modifying an outgoing link) in each

iteration, the global link configuration can change much faster than the agent can

perceive these changes by visiting sites.

Dependency – external performative autonomy From an external point of

view, not knowing what the internal capabilities of a component are, we can only

observe the dependencies between the software and its environment (this relational

aspect is emphasised in [7, 9]). The degree to which we ascribe autonomy to a piece

of software in this sense depends on how closely its behaviour is coupled to that of its

environment. For example, if an agent always performs an action after some specific

event in the environment, it is very probable that this agent somehow depends on

the effects of the environment (not necessarily in a physical sense, though; in the

case of two deliberative agents it may also be the case that the action of one agent

is spawned by the actions of the other through, e.g. a goal that arises from it).

Here, central concepts are influence, distribution of scarce resources, compatibil-

ity and complementarity of activities. The dependencies perspective of analysis is

often assumed in coordination science, which sees coordination itself as the process

of managing dependencies [25].

Example. LIESON agents mainly depend on each other by virtue of (i) the prescriptive

force of communication patterns and (ii) correlations between agent capabilities and

their utility functions.

As for (i), agents have to comply with the admissible message sequences pre-

scribed by existing protocols, so that the range of potential responses is limited

by communication patterns. This entails that any utterance will be followed by a

fixed set of possible responses. Note that, although in principle any communicative

message can be uttered in any situation the design of LIESON does not allow agents

to dispose of certain communicative options at the deliberative level in this case, so

that it is performative autonomy that is actually restricted here.

With (ii), the most basic autonomy constraint is that agents can only lay links

towards existing sites, i.e. appearance or deletion of a site affects their action ca-

pabilities. With respect to utility scores, agents depend on the links others lay

toward them, in the sense that they are not free to assign themselves any desired

utility. (At a more abstract level, of course, this is a dependency stemming from the

designer who defined the utility function and not from the actions of other agents.)



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

10 M. Rovatsos & G. Weiss

Motivation – internal deliberative autonomy Deliberative autonomy is

strongly related to “freedom of will”. Unlike capabilities who merely described what

the software can do, motivation explains what it wants to do. A highly autonomous

software component is self-motivated, and it is able to derive the justification for

his actions through inference from first principles at any point in time. Adopting

others’ instructions, “commands”, valuations or preferences, on the other hand,

severely restricts this kind of autonomy.

We shall not ponder more deeply on the issue of whether perfect motivational

autonomy is possible, since this is a fundamental philosophical problem that is not

of much relevance to practical software engineering (the reader may have noticed

that it sounds strange to speak of what the software “wants”). For the purposes

of our analysis, we will always assume that there are some underlying explicitly

implemented first principles that the software component follows and that set the

scene for its range of activity. We will speak of autonomy in terms of motivation

if, based on these principles, the autonomous software entity has the freedom to

prioritise goals, to decide on whether these are fulfilled or unachievable, and to

generate plans for achieving these goals.

Key issues that arise in this type of autonomy are related to questions of goal

selection and goal revision, intention, preference, and initiative. One area in which

these phenomena are studied is that of Belief-Desire-Intention agency [33], which

deals with rational (i.e. goal-oriented) practical reasoning models for computational

agents.

Example. The LIESON system allows agents to deliberate regarding linkage config-

urations they want to achieve. In each reasoning cycle, they randomly generate

possible future states of the link network, make utility predictions for these states

and schedule them according to these predictions in a rank-based “goal queue” (that

is bounded in size) for future achievement. Then, the top option from this queue

is selected as a current goal and de-queued, a plan is generated for its achievement

and this plan is subsequently executed. Thereby, goals that cannot be achieved any-

more or have been already achieved are simply skipped. The range of envisioned

future states depends on the agent’s knowledge of the linkage environment. Thus,

an agent who knows more about existing sites and links can generate more future

options and hence has a wider choice of possible goals.

If a plan that has to be executed to achieve a goal involves others’ actions, com-

munication processes are initiated to persuade the respective actions to contribute

to the plan. Likewise, the agent itself might be asked to participate in a joint plan,

and LIESON agents are implemented in a way that forces them to at least consider

cooperating with others. This limits motivational autonomy in a sense since it forces

agents to treat potential future states suggested by other agents the same way as

they would had they “thought” of these possible goals themselves. However, this

is not too severe a limitation, since agreement to adopt such a goal still ultimately

depends on whether it serves the private goals of the agents. But at least, he will



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 11

have to deal with the suggestion, which may delay other decision-making steps.

Control – external deliberative autonomy From an external point of view,

self-motivation is self-control, and loosing the autonomy of which goals to choose

is perceived (if it is perceived at all) in the form of external control. The crucial

difference to dependency is that dependency needs not be “realised”, it is just the

statement of a relationship between several entities. Control, on the other hand,

must be exerted to become visible. Of course, the two notions are connected,

though, since larger dependency can lead to higher controllability. Note, however,

that these two kinds of autonomy need not be unidirectional: from a dependency

point of view, a manager is often more dependent on his staff than the other way

round, if we measure dependence by “the number of people that have to support

you” (in a simplified world, the manager needs the support of the majority of the

staff, while each staff member needs only the manager’s support). On the other

hand, the staff exerts much less control on the manager than the other way round,

because they are (more or less) following his instructions (and the background of

company objectives/culture) in making decisions, while he is supposed to make

decisions himself.

The central concepts here are power [5], opponent modelling [4], and regulation

of behaviour.

Example. In LIESON, the utility function that agents use to project the expected

payoff of a possible future linkage situation is contingent on the current linkage situa-

tion (or, to be more precise, on agents’ incomplete and possibly incorrect knowledge

thereof). So if, for example, an agent with high popularity influences the utility

values of others to a great degree, he has implicit power in the agent society, since

his actions will entail a series of reactions on the side of “weaker” agents via changes

to their utility scores. Note that this kind of control is different from (performative)

dependencies, because the powerful agent affects the way in which agents select their

goals rather than their capabilities to perform actions: agents still have the same

action repertoire, but the set of actions that they consider relevant has changed.

From an external perspective, the autonomy restriction imposed on agents by

the obligation to process others’ requests is not observable. However, external ob-

servers can verify whether actions that have been requested of an agent are actually

performed by that agent. So (although this need not hold in LIESON in general) sit-

uations may occur in which agents obey others’ “commands” with such regularity

that a relationship of control manifests itself.

Commitment – internal normative autonomy For an autonomous entity to

exhibit a certain behaviour that is not arbitrary with respect to its capabilities, it

must commit itself to doing something particular. Thus, from the internal view-

point, it sees its autonomy (possibly only temporarily) constrained by commitments

it makes. The simplest kind of such commitments are intentions [11], which simply



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

12 M. Rovatsos & G. Weiss

“shift” certain actions from the core reasoning components to the environment, so

that they almost become part of the environment themselves (they will be executed

without further reasoning, unless intention revision – which can be seen as an almost

“external” interaction with those intentions – makes them undone). Much more in-

teresting, however, are social commitments [6, 37, 38], which stem from interaction

with others and constrain this kind of autonomy. It is important to note that these

(internal) commitments are very different from the societal view of commitments

because they only infringe autonomy if adopted by the individual [12, 10].

Frequently used concepts of this category are (dis)obedience, submission, and

benevolence.

Example. We observe both social and non-social commitment-relevant autonomy

restrictions in LIESON.

The main social autonomy restriction is that agents have to adhere to a set

of pre-defined communication patterns during inter-agent dialogues. Therefore,

once they choose a “path” in the set of possible response strategies, they commit

themselves to the restrictions imposed by the hard-coded patterns. So, for example,

if they agree to execute an action they actually internally commit to executing it.

However, they are able to learn from experience which of the given patterns to apply

in a given situation in a strategic (i.e. utility-maximising) way. This ensures that

such social commitments are not generated if they contradict the agent’s private

interests, and, in fact compensates them for the above loss of utility by providing a

mechanism of choice at the next level.

At the non-social level, agents commit to the goals they have selected, and will

maintain these goals unless they have been achieved or become inachievable. This

commitment is different from a motivation, because it does not spawn a certain kind

of activity. Instead, it serves to maintain such activity without further rational,

goal-oriented reasoning.

Expectation – external normative autonomy The final category is that of

expectations. Expectations are formed externally and concern interaction of the

agent with its environment. They are normative in the sense that they express the

rights, duties, obligations an agent is subject to, and possibly also the sanctions it

has to face if it breaks these expectations. However, such expectations need not be

a priori deontic claims made by the designer of the system, a social system, etc.

They can also express the “image” of an agent that has been formed through its

past behaviour by expecting a similar behaviour from it in the future [3].

Typical concepts in this category are norm, convention [13, 20], role [32, 22],

obligation [37], institution [15, 1], and social order [8, 14].

Example. For this last category, the internal commitments of agents do not matter,

since they cannot be observed. Still, we can infer the existence of expectations

in LIESON from the fact that when agents plan their strategic communication be-



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 13

haviour, they employ decision-theoretic utility maximisation over the set of admis-

sible continuations of the dialogue. This is only possible because they can expect

the agent to adhere to the given protocols. For example, if there are only three

alternative responses A, B and C that the other agent can use and probabilities for

these have been derived from previous experience, the expected utility of the whole

conversation can be easily computed. If, on the other hand, the other agent were

allowed to produce any reply, the utility calculation would be very imprecise.

Additionally, the fact that the agents use previous experience to infer the future

behaviour of other constitutes an expectation-based strategy by itself: each agent

expects that others will behave in a similar way in the future as they did in the

past.

3.6. A Pattern for Autonomy Status Descriptions

Based on the six types of autonomy, we can present a semi-formal pattern for

autonomy status descriptions that specify the autonomy situation of an agent (at

this point, we do not deal with groups of agents but only with single agents – most

of the concepts carry over, however, if groups are viewed as collective actors):

Component A is T -autonomous with respect to the influence of B in context

C from the perspective of an observer O because it acts according to model

M ′ rather than according to the model M that O expected.

A set of such status descriptions characterises which autonomy situation A is in.

For example, saying that

Agent 1 is control-autonomous with respect to the influence of Agent 4 in

the context of adding a link from Agent 1 to Agent 2 from the perspective

of Agent 4 because it adds the link to Agent 2 regardless of Agent 4’s plea

to refrain from this action

allows us to make a rather precise statement regarding a specific type of autonomy

in the behaviour of a particular LIESON agent.

It is important to note that this kind of description focuses on the relationship

between autonomy and determination, i.e. that autonomy is always identified by

observing a deviation from a behaviour that would have resulted from adhering to

some assumed model. In other words, M is an assumption regarding the factors

B that determine A’s behaviour in situation C, and after observing the actual

behaviour of A (either from the inside or from the outside), we have to overthrow

M in favour of some different model M ′. In the following sections, we will turn to

the dynamic nature of autonomy, where this modelling activity plays an important

role in reasoning about autonomy in a complex system composed of autonomous

software artefacts.



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

14 M. Rovatsos & G. Weiss

4. A Dynamic View of Software Autonomy –

The Autonomy Transformation Loop

Specifying autonomy with the above categories helps to define precisely the capa-

bilities, motivations and social comportment of an autonomous software component

with respect to a particular environment (that may contain other such components).

In particular, the autonomy of an entity is always a relative notion that refers to

a second entity: whenever there is a lack of autonomy, there must be heteronomy,

i.e. someone else must “hold” the autonomy that the first component lacks. Such

autonomy specifications provide a rather structural specification a system that is

made up of several autonomous components, a “snapshot” of who can, wants and

has committed himself to doing what at some specific point in time. What is amiss

is a dynamic view that explains how autonomy owned by a computational entity

such as a software system evolves, that is, how it transformed from one status into

another.

4.1. Transformation through Interaction and Communication

From work on adjustable computational autonomy it is known that interaction is

essential as a process that can change the status of autonomy. This implies that

there is a basic feedback loop between autonomy and interaction, as shown in fig-

ure 1. Here, the concept of interaction is understood in the most encompassing

sense, i.e. as interaction with the environment, the user, the designer, etc. The gen-

autonomy status interaction

Fig. 1. Basic autonomy transformation loop

eral intuition is that while interaction is unfolding, the range of possible behaviours

undergoes constant changes. For example, when LIESON agents explore the environ-

ment, they may discover a new site which alters their capability repertoire since new

linkage actions become relevant. At the same time, their link configurations may

change because of the actions of others, so that different goals appear promising or

achievable, while others may have to be disregarded. Or, a promise to maintain a

link to someone else may have caused a commitment that they must now be held

or at least considered. From an external point of view, the changes in the above

example may result in autonomy status changes, depending on who is observing the

respective autonomous entity and how he is modelling it.

Looking at the process of autonomy transformation through interaction more

closely, the simple feedback loop of figure 1 can be further refined, if we make the



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 15

assumption that the observer or participating agent is reasoning about autonomy

himself (i.e., the interesting case). Under this assumption, the decision-making pro-

cess of interacting parties is preceeded by modelling and decision-making processes

that take the autonomy status into account.

Modelling autonomy consists of identifying dependencies, analysing the distri-

bution of resources and the control flow between components and possibly also

building models of others’ modelling processes.

This modelling activity only makes sense if it has the potential to influence the

decision-making process of the actor. Of course, decision-making procedures also

depend on other aspects such as objectives, general domain knowledge, etc. The

less predictable the behaviours of other parts of the system are, the more important

the aspect of autonomy becomes.

As shown in figure 2, communication plays a special role in mediating between

modelling and decision making. This insight follows as a natural consequence once

we discriminate between “physical” actions that can be taken and which modify

the environment and purely communicative action. This is because communication

allows for obtaining information about the current autonomy status before making

decisions. This information feeds into the autonomy modelling processes of interact-

ing parties, and, even more importantly, it can be used to anticipate and plan future

autonomy configurations in a system. For example, if a component is informed of

modelling decision making

actionautonomy status

communication

interaction

Fig. 2. Extended autonomy transformation loop

something that contradicts prior belief and decides to revise its belief, it is increas-

ing its dependency on the knowledge of the informer. The informer, on the other

hand, is submitting himself to the expectation that he tells the truth, and unless he

states something like “I am not sure” or “I say X but won’t be held responsible if

it is not accurate” he implicitly agrees to be labelled as “liar” if others find out he

did not tell the truth. In other words, he is restricting his own normative autonomy

by committing himself to truthfulness. As another example, consider a boss who is



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

16 M. Rovatsos & G. Weiss

assigning a task to his employee and tells him “if you can’t cope with this, you’re

fired”. Through this statement, he is increasing the employee’s dependency on him

by threatening with loss of employment (rather than just with criticism or conflict).

At the same time, delegation of the task restricts the deliberative autonomy of the

employee; he must now “want” to complete the task more than anything else (at

least at his workplace). If the boss also says, “Smith and Miller are going to help

you in this, they are at your command”, he is increasing the employee’s performa-

tive autonomy, because the employee is endowed with additional resources that may

increase his productivity.

It is the capacity of allowing autonomous entities to predict future autonomy

states that makes communication highly suitable for coordinating future behaviours.

In a way, engaging in communication means seeking to reduce the contingencies

inherent to the behaviour of other autonomous components in the system.

4.2. Examples of Autonomy Transformation

Theoretically, any interaction can increase or decrease any of the six autonomy types

in our autonomy matrix at the same time. Usually, though, interactions hardly

affect more than two autonomy range types at the same time, and the effects are

analysed from both an internal and an external perspective at the same time.

Let us look at some examples in the LIESON application domain, where we are

going to discuss how the autonomy status of certain parts of a system can be

influenced, viewed from three perspectives: (1) the designer of the overall system,

(2) a human user that is using a LIESON agent to manage linkage from and to his

Web site, and (3) a LIESON agent seeking to maximise the dissemination of his

opinion. In these examples, we are going to mark each autonomy transformation

by a combination of pairs of letters (e.g. pi for performative-internal (capability),

ne for normative-external (expectation), etc.) and a + or - symbol for increase and

decrease in the respective autonomy type, respectively (such that, for example+pi-

ne stands for “increase in capabilities, increase in others’ expectations (decrease

in “expectation-related autonomy”)”). If different aspects of a single autonomy

category are affected by a transformation (or if we want to express the autonomy

changes of different parties at the same time), of course, this would have to be

accounted for by using a more elaborate syntax.

System designer perspective The system designer has access to the internals

of the agent design, so that he can, in theory, explain whatever is happening in

the deployed system, if he is given information about the preferences of the human

users, and if we assume that these users would not manipulate the code of the

LIESON application.

So, for example, if the designer knows the knowledge base contents of a LIESON

agent, he can derive the capabilities of this agent, and the transformations +pi and

-pi that occur when an agent obtains new information about sites or links (knowing



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 17

the internal design, pi autonomy is identical to pe autonomy). However, the mo-

tivation of agents, although in principle regulated by a specific goal prioritisation

scheme, is not entirely predictable. This is because agents randomly generate pos-

sible future linkage states in each round that they will consider in determining their

goals. Here, the random generator is a source of uncertainty, so that the designer

cannot tell whether a new, interesting alternative has been found in a specific rea-

soning iteration that would modify (+di/-di) the agents autonomy in choosing a

goal. However, the designer may certain +de and -de changes, e.g. when a new site

is created that makes it theoretically possible for the agent to have optimal linkage

with this site as a goal or when that site disappears again. As for normative auton-

omy, the designer knows that, by its design, the agent can only use the prescribed

communication protocols, which implies that other agents can expect it to answer

in a fairly predictable way. So if the designer observes, for example, that the agent

is committing himself a certain linkage action in the process of communication, this

reduces both its internal and external normative autonomy (-ni-ne).

As a final example, let us assume the designer is observing the system in op-

eration and finds out that agents are acting in an overtly aggressive and deceptive

fashion, so that linkage is highly sub-optimal from a global perspective. In the sys-

tem as it is, the only measures the designer could take would be to re-implement the

system or to insert additional agents into the running system that are programmed

in a more cooperative fashion in the hope that LIESON agents (who are adaptive in

the sense that they learn from communication experience) would adopt the more

cooperative interaction behaviour exhibited by new, “friendly” agents.

This nicely illustrates the potential dangers associated with autonomous sys-

tems, and the importance of taking appropriate precautions at design time.

Human user perspective Typically, a human Web site owner is only given a

rough description of the internal design of his LIESON agent, i.e. he knows something

about the general reasoning and communication mechanisms employed by the agent

but not much about the details of goal prioritisation, communication learning, future

utility estimation etc.

For the human user, agent autonomy is largely dependent on the feedback the

user provides regarding his preferences over others’ Web sites. The more complex

the preference profile, the fewer profitable future link constellations will the LIESON

agent be able to identify, and the smaller will his goal repertoire be (-di), but not

knowing the internal design of the agent it is questionable whether the user would

be aware of a corresponding -de transformation.

Also, the human user has the ability to inspect the linkage network himself,

so he will notice -de and -ne changes in his agent’s autonomy caused by some

other agent becoming very powerful, once these transformations become manifest

in agent’s actions (e.g. striving to obtain a link from the powerful site or obeying

the requests of this powerful site).

Obviously, the human designer is also able to check what the action options of



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

18 M. Rovatsos & G. Weiss

his agent are, i.e. +pe and -pe changes can also be observed, although they need

not coincide with the respective +pi and -pi transformations, because the agent

may have incomplete and/or incorrect knowledge of the network.

LIESON agent perspective From an autonomy standpoint, an agent is only an

external observer of another agent, so most of the above observations carry over to

agent observers. What is really interesting from an agent perspective are transfor-

mations that concern normative autonomy and that are caused by communication.

In fact, it is only by communicating that agents can influence each other’s auton-

omy status deliberately, as they do not have direct access to the capabilities and

motivations of others.

Depending on the nature of the communication protocols that are used and on

the physical action consequences that result from them, there exists a variety of

possible autonomy transformations. Examples include:

• A promise to execute some action or a complex series of actions in the con-

text of a distributed plan. This causes the expectation (-ne) that the agent

will adhere to the promise, unless the promise is cancelled. On the side of

the debtor of this commitment, such a promise constitutes an increase in

capability (+pi), since the agent is capable of evoking an action he cannot

perform itself.

• A reciprocal long-term agreement, for example making a contract to pay a

fixed amount of money every month to “rent” an ingoing link from some-

one else. The agent who is “renting” the link is loosing the capability of

disposing of a certain amount of money, while he gains the possibility of

achieving goals with a higher utility, and he is expected to make regular

payments (-pi+di-ne).

• A threat to sanction a certain behaviour of the other. This imposes nor-

mative expectations (to refrain from the behaviour and to implement the

sanction, respectively) on both sides, but, if successful, the threatening

agent will have a larger autonomy in predicting future states of the linkage

network, as it can rule out certain behaviours of others (-pi-ne).

These examples nicely illustrate that a thorough planning of the communication

and social reasoning functionality is essential in the process of designing distributed

systems that are able to handle autonomy issues effectively.

5. Conclusion

Since its inception in the 60s, software engineering has targeted at the development

of software whose functionality and structure is, directly or indirectly (via other soft-

ware entities), under full control of its users and administrators. With the advent

of autonomous software, this situation changes fundamentally: taking autonomy as

a software property serious means to hand action choice and invocation control over



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 19

to the software itself. In the ultimate vision, autonomous software is able to take on

any responsibility needed for successfully running an application under self-control

and, thus, to fully hide its complexity and the complexity of its environment from

users and administrators. This obviously is a long-term vision, although today soft-

ware products (especially in the area of data and server management, see e.g. [19])

and research results (especially in the area of agent and multiagent technology, see

e.g. [24, 29] and the two recent collections [17, 30]) are already available which indi-

cate that this vision is much closer to reality than skeptics might think. We envisage

that over the years software systems will appear which exhibit increasing levels of

autonomy. This is not to say that autonomy orientation will replace other software

models such as object orientation and component orientation; what autonomy ori-

entation does is to provide a qualitatively new level of abstraction on top of existing

models.

In the light of the state of the art in developing autonomous software, currently

the most urgent issue is to provide developers with engineering techniques – meth-

ods, formalisms, tools, and so forth – which enable them to appropriately tailor

the type and extent of autonomy a software system should own. Thereby “appro-

priately” means that software autonomy is neither unnecessarily cut down (as this

would result in software being not remarkably distinct from traditional software),

nor unnecessarily admitted (as this would result in an increased risk of undesirable or

even chaotic system behaviour). To tailor software autonomy appropriately without

any supportive techniques is a highly complicated task even in the case of relatively

simple applications such as LIESON (the LIESON case studies provided throughout

this chapter prove this). The specification framework introduced in this chapter

can serve as a guideline for devising such techniques. In particular, the framework

presented in this chapter shows that it is possible to break down the abstract notion

of autonomy into a set of concepts such as dependency and expectation which are

sufficiently concrete to be processable at the level of software engineering. Once

such techniques are available, other important questions can be addressed precisely,

for instance: How to identify the need for autonomous software in a particular

application? How to validate and verify autonomy as a software property? How

to make sure that software adapts its autonomous behaviour appropriately during

run time? Questions like these require considerable research efforts to be answered,

but these efforts are worthwhile in the light of the tremendous benefits autonomous

software offers.

References

1. Wolfgang Balzer and Raimo Tuomela. Social Institutions, Norms, and Practices. In
Rosaria Conte and Chrysanthos Dellarocas, editors, Social Order in Multiagent Sys-
tems, pages 161–180. Kluwer Academic Publishers, Norwell, MA, Amsterdam, The
Netherlands, 2001.

2. J.M. Bradshaw et al. Adjustable autonomy and human-agent teamwork in practice: an
interim report on space applications. In H. Hexmoor, C. Castelfranchi, and R. Falcone,



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

20 M. Rovatsos & G. Weiss

editors, Agent autonomy, pages 243–280. Kluwer Academic Pub., 2003.
3. W. Brauer, M. Nickles, M. Rovatsos, G. Weiß, and K. F. Lorentzen. Expectation-

Oriented Analysis and Design. In Proceedings of the 2nd Workshop on Agent-Oriented
Software Engineering (AOSE-2001) at the Autonomous Agents 2001 Conference, vol-
ume 2222 of Lecture Notes in Artificial Intelligence, Montreal, Canada, May 29 2001.
Springer-Verlag, Berlin.

4. D. Carmel and S. Markovitch. Learning models of intelligent agents. In Thirteenth
National Conference on Artificial Intelligence, pages 62–67, Menlo Park, CA, 1996.
AAAI Press/The MIT Press.

5. C. Castelfranchi. Social power. a Point Missed in Multi-Agent, DAI and HCI. In
Y. Demazeau and J. P. Muller, editors, Decentralized A.I., pages 49–62. Elsevier Sci-
ence Publishers, 1990.

6. C. Castelfranchi. Commitments: from individual intentions to groups and organiza-
tions. In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 41–48, 1995.

7. C. Castelfranchi. Guarantees for Autonomy in Cognitive Agent Architecture. In M. J.
Wooldridge and N. R. Jennings, editors, Intelligent Agents: Proceedings of the First
International Workshop on Agent Theories, Architectures and Languages (ATAL-94),
pages 56–70. Springer-Verlag, 1995.

8. C. Castelfranchi. Engineering social order. InWorking Notes of the First International
Workshop on Engineering Societies in the Agents’ World (ESAW-00), 2000.

9. C. Castelfranchi. Founding Agent’s “Autonomy” on Dependence Theory. In Proceed-
ings of the 14th European Conference on Artificial Intelligence (ECAI-2000), pages
353–357, 2000.

10. C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberate normative agents:
Principles and architecture. In Proceedings of the Sixth International Workshop on
Agent Theories, Architectures, and Languages (ATAL-99), Orlando, FL, 1999.

11. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213–261, 1990.

12. P. R. Cohen and H. J. Levesque. Teamwork. Noûs, 35:487–512, 1991.
13. R. Conte and C. Castelfranchi. From conventions to prescriptions: Toward an inte-

grated theory of norms. In Proceedings of the ModelAge-96 Workshop, Sesimbra, Italy,
January 1996.

14. Rosaria Conte and Chrysanthos Dellarocas, editors. Social Order in Multiagent Sys-
tems. Kluwer Academic Publishers, Norwell, MA, Amsterdam, The Netherlands, 2001.

15. Sue E. S. Crawford and Elinor Ostrom. A grammar of institutions. American Political
Science Review, 89(3):582–599, 1995.

16. Hewlett-Packard. Adaptive enterprise initiative,
http://www.hp.com/large/globalsolutions/ai.html?jumpid=go/adaptive, 2003.

17. H. Hexmoor, C. Castelfranchi and R. Falcone, editors. Agent autonomy. Volume 7 of
the Series on Multiagent Systems, Artificial Societies, and Simulated Organizations
(MASA), Kluwer Academic Publishers, Boston et al., 2003.

18. M.N. Huhns and M.P. Singh, editors. Readings in Agents. Morgan Kaufmann, San
Francisco, CA, 1998.

19. ICAC-2004. First International Conference on Autonomic Computing,
http://www.autonomic-conference.org/, 2004.

20. N. R. Jennings. Commitments and conventions: The foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8(3):223–250, 1993.

21. N.R. Jennings. On agent-based software engineering. Artificial Intelligence, 117:277–
296, 2000.



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

Autonomous Software 21

22. E.A. Kendall. Agent roles and role models: New abstractions for multiagent system
analysis and design. In International Workshop on Intelligent Agents in Information
and Process Management, 1998.

23. M. Luck, R. Ashri and M. D’Inverno. Agent-based software development. Artech House,
Inc, Norwood, MA, 2004.

24. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In Pro-
ceedings of the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 254–260, 1995.

25. T. Malone and K. Crowston. The interdisciplinary study of coordination. ACM Com-
puting Surveys, 26(1):87–119, 1994.

26. J. McCarthy. Ascribing mental qualities to machines. In V. Lifschitz, editor, For-
malizing Common Sense: Papers by John McCarthy. Ablex Publishing Corporation,
Norwood, NJ, 1990.

27. Microsoft. Dynamic systems initiative,
http://www.microsoft.com/presspass/press/2003/mar03/03-
18dynamicsystemspr.asp, 2003.

28. A. Newell. The Knowledge Level. Artificial Intelligence, 18(1), 1982.
29. M. Nickles, M. Rovatsos and G. Weiß. A schema for specifying computational auton-

omy. In Proceedings of the Third International Workshop on Engineering Societies in
the Agents’ World (ESAW-02), Volume 2577 of Lecture Notes in Computer Science,
Springer-Verlag, pages 82–95, 2002.

30. M. Nickles, M. Rovatsos, and G. Weiss, editors. Agents and Computational Autonomy.
Volume 2969 of Lecture Notes in Computer Science (Hot Topics Subseries), Springer-
Verlag, Berlin, Germany, 2004..

31. H.S. Nwana. Software agents: An overview. The Knowledge Engineering Review,
11(3):205–244, 1996.

32. O. Pacheco and J. Carmo. A role based model for the normative specification of
organized collective agency and agents interaction. Journal of Autonomous Agents
and Multi-Agent Systems, 6(2):145–184, 2003.

33. A. S. Rao and M.P. Georgeff. An abstract architecture for rational agents. In
W. Swartout C. Rich and B. Nebel, editors, Proceedings of Knowledge Represena-
tion and Reasoning (KR&R-92), 1992.

34. IBM Research. Autonomic computing, http://www.research.ibm.com/autonomic/,
2003.

35. M. Rovatsos. LIESON – User’s Manual and Developer’s Guide.
http://www7.in.tum.de/∼rovatsos/lieson/users-manual.pdf, 2002–2004.

36. M. Rovatsos, G. Weiß, and M. Wolf. An Approach to the Analysis and Design of
Multiagent Systems based on Interaction Frames. In Maria Gini, Toru Ishida, Cris-
tiano Castelfranchi, and W. Lewis Johnson, editors, Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-02),
Bologna, Italy, 2002. ACM Press.

37. M.P. Singh. Multiagent systems as spheres of commitment. In ICMAS-96 Workshop
on Norms, Obligations, and Conventions, 1996.

38. M.P. Singh. An ontology for commitments in multiagent systems: Toward a unification
of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

39. Sun. N1 initiative, http://www.sun.com/software/solutions/n1/index.html, 2003.
40. G. Weiß, editor. Multiagent Systems. A Modern Approach to Distributed Artificial

Intelligence. The MIT Press, Cambridge, MA, 1999.
41. G. Weiß. Agent orientation in software engineering. Knowledge Engineering Review,

16(4):349–373, 2002.



October 12, 2004 0:21 Handbook of Software Engineering & Knowledge Engineering
seke-autonomy-final

22 M. Rovatsos & G. Weiss

42. M. J. Wooldridge, editor. Reasoning About Rational Agents. The MIT Press, Cam-
bridge, MA, 2000.

43. M. J. Wooldridge. An introduction to multiagent systems. John Wiley & Sons Ltd,
Baffins Lane, 2002.

44. M. J. Wooldridge and N.R. Jennings. Agent theories, architectures, and languages: A
survey. In M. J. Wooldridge and N.R. Jennings, editors, Intelligent Agents, Lecture
Notes in Artificial in Artificial Intelligence, vol. 890, pages 1–39. Springer-Verlag,
Berlin et al., 1995.


