
Chapter 3

A SURVEY ON AGENT-ORIENTED ORIENTED
SOFTWARE ENGINEERING RESEARCH

Jorge J. Gomez-Sanz
Facultad de Informatica,
Universidad Complutense de Madrid, 28040 Madrid, Spain

jjgomez@sip.ucm.es

Marie-Pierre Gervais
Laboratoire d’Informatique de Paris 6
8 rue du Capitaine Scott, 75015 Paris, France

Marie-Pierre.Gervais@lip6.fr

Gerhard Weiß
Institut für Informatik,
TUM Boltzmannstrasse 3, 85748 Garching, GERMANY

weissg@informatik.tu-muenchen.de

Abstract This chapter presents a selection of current research works on agent

technology which are focused on the development of Multi-Agent Sys-

tems. The purpose of this chapter is to guide developers through exist-

ing theories, methods, and software that can be applied in each stage of

a development. However, this guide is not exhaustive due the amount

of agent-related research works. Thus authors have added references

to consult other information sources and complement the information

given here. Readers are encouraged to consult these external references

in order to obtain a more accurate view of the field.



2

1. Introduction

This past decade, developing a Multi-Agent System (MAS) has evolved
from an art to a structured discipline. Existing results in MAS research
enable a developer to construct MAS easier than before. Among others,
there are tools that can produce complete MAS from a specification,
libraries of components that deal with concrete MAS issues (distributed
planning, reasoning, learning), and theories that describe MAS behavior
and properties. Knowing all of them requires a great effort. Existing
surveys facilitate this task, but it is hard to give an overall view of what
software, theories, and methodologies exist, and how they are applied to
MAS development.

To alleviate this problem, and make the information easier to appre-
hend, authors of this chapter have structured existing references into
sections that deal with MAS development from an engineering point of
view. Thus, there are sections that consider analysis, design, implemen-
tation, and testing. The purpose is to make this chapter less a survey and
more a manual for MAS development. This way, developers with some
background on conventional Software Engineering (SE) will see how they
would do with agents what they do using other paradigms. Also, this
approach benefits beginners and specialized researchers in this field by
introducing a general picture of the development, not just solutions to
concrete problems.

The criteria to distribute agent research into these stages have been
obtained from the SE itself. In SE, each stage of a development process
deals with concrete topic and pursues the production of certain docu-
mentation, specification or software. Trying to adapt topics considered
in MAS research and the topics associated to each development stage,
the authors of this paper have prepared a brief summary of what readers
can find along the chapter:

Analysis. This section deals with research work in agents helping
to obtain a problem description. In traditional software engineer-
ing, this relates to the expression of requirements. In the agent
domain, there are agent approaches that deal directly with these
requirements, but there are also other hybrid approaches that have
been adapted to the agent concepts. This section includes consid-
erations about the role of agents in analysis purposes, specification
languages that use agent concepts, and support tools for these lan-
guages.

Design. This section considers how to facilitate a design of a MAS
using agent concepts and technology. In software engineering, de-



A Survey on Agent-Oriented Oriented Software Engineering Research 3

sign covers the study of how to realize analysis elements into an-
other specification - software architecture, components, expected
behaviors - that can be directly implemented. To translate analy-
sis specifications, it is necessary to know how to build agents from
scratch and using agent development environments.

Implementation. This section surveys different approaches to use
agent technology in realizing concrete agent oriented designs. It
proposes several agent oriented languages, software libraries, frame-
works, and support tools.

Testing. This section is a review of testing methods based on agent
concepts enabling to check that a MAS satisfies initial requirements
and that it has been built with no errors.

It should be remarked that the results mentioned in these sections are
focused in the Agent Oriented Software Engineering (AOSE) domain.
There is no intention to evaluate state of art of Software Engineering
(SE). In principle, existing formalisms, techniques and methods (e.g.,
object-oriented ones) can be applied to develop agent-oriented software.
However, a problem with these approaches is that they fail, or tend to
fail to capture the essence of agent orientation [Jennings, 2000]. Con-
sequently, approaches devoted to the agent orientation are needed and
such approaches are surveyed in this chapter. For the sake of accuracy,
the chapter uses software engineering terminology when possible. This
terminology is found in [Sommerville, 2001] and [Pressman, 1982].

Each section contains recommendations of the authors of this survey
about specialized literature and software. Though authors of this chap-
ter have tried not to forget any relevant research, reading this chapter
is not sufficient to obtain an adequate knowledge of the area. So, it is
strongly recommended to read the papers referred in this work, as well
as subscribing to organizations like AgentLink or AgentCities in order
to be up to date with new results from research work.

2. Analysis

The analysis bases on the obtention of requirements in order to derive
a description of what has to be built. A requirement determines what
a software system should do and defines constraints on its operations
and implementation. According to [Sommerville, 2001], there are sev-
eral types of requirements. Among others, there are user requirements,
system requirements, software, functional, and non-functional require-
ments. The process for obtaining requirements is not trivial. In fact,



4

there is a discipline, named Requirements Engineering (RE), with this
purpose. RE will be reviewed later in this section.

Agent research centers in functional and non-functional requirement
definition. Functional requirements are statements of the services that
the system must provide, or descriptions of how some computations
must be carried out. Non-functional requirements are product require-
ments which constrain the system being developed, process requirements
which apply to the development process and external requirements [Som-
merville, 2001]

Despite the type of requirement, gathering them does not imply the
choice of an agent model, since most of existing approaches make general
assumptions about agents. A model of agent determines what elements
are required to specify agents and establishes a predefined behavior. A
comprehensive collection of articles, and a survey of features of existent
agent models, can be found in [Huhns and Singh, 1997]. Choosing an
agent model at this point may couple too early a development with dif-
ferent agent architectures. So it may be better, unless it is a requirement,
to leave this choice to the design stage.

Requirements themselves are understood in different ways by researchers
in agents. Existing results can be categorized in one of these:

Agent approaches oriented towards requirements representation.
These representations include the concept requirement as first class
citizen. These works are referred in the RE literature as well.

Agent approaches that represent the system to be built using for-
mal methods. These methods reuse formalisms tested in SE. They
are directed towards the obtention of a formal specification.

Agent approaches that represent the system to be built using dia-
grams. A frequent solution in SE is the use of diagrams to repre-
sent different aspects of a system. Agents have followed this line
proposing different types of diagrams and concepts to capture the
internals and externals of MAS. The specification obtained does
not need to be formal.

Developers can decide at this moment what kind of analysis is more
adequate to their situation. To present research works in each category,
the chapter have been divided into three subsections.

2.1 Agent approaches specialized in defining
requirements

This section studies the role of agents in RE. Applying agents in RE
implies what some authors name Agent Oriented Requirement Engineer-



A Survey on Agent-Oriented Oriented Software Engineering Research 5

ing (AORE). These approaches are characterized by ascribing a more
important role to the agents. However, according to surveys like [van
Lamsweerde, 2000], the goal concept is more extended than agent con-
cept to represent requirements. As this may disorient non-experienced
developers, it is suggested that they read [Yu and Mylopoulos, 1998],
which includes an extensive argumentation in favor of using goal as a
first class concept when determining requirements. To have a pure,
i.e. a non agent oriented view of requirements engineering, readers can
consult [Zave, 1997] or [Nuseibeh and Easterbrook, 2000]. The main
difference of these works with respect to [van Lamsweerde, 2000] is that
the agent concept is not so important. [Zave, 1997] categorizes require-
ments engineering works taking into account the kinds of problems that
are addressed, and types of solutions to these problems. [Nuseibeh and
Easterbrook, 2000] is a detailed review of RE that introduces different
stages identified in RE processes and related works for each one.

Integrating agents and RE is not easy. For instance, [Yu, 1997b]
indicates that agent is a concept to be delineated with different require-
ments like being distributed, being intelligent, or being autonomous. The
problem is that the agent concept also ties in with concrete implemen-
tations that already carry their requirements. So, to make sense an
agent-oriented approach in RE, it is better to use initially more abstract
concepts like role or actor and once what is required from an agent is
clear, assign roles to agents. Later on, agents will be implemented so
that initial requirements hold.

One of the main references in AORE is i* [Yu, 1997a]. It is a frame-
work that uses actors, beliefs, commitments, and goals to model organi-
zational environments and their information systems. There are exam-
ples of using i* in [Yu et al., 2001], that indicates how to identify the
importance of a piece of information in a organization, and [Yu, 1999],
that models a real furniture company. More examples can be found in
the home page of the author [Yu, 03a]. i* has been also the starting point
for other frameworks, concretely Non-Functional Requirements (NFR)
[Chung et al., 2000] and Goal-oriented Requirement Language (GRL)
[Yu and Liu, 2002]. There are examples and tutorials available for GRL
at [Yu, 03b]. i* has a support tool called Organization Modelling En-
vironment (OME) [Yu and Liu, 03]. This tool can be downloaded if
previously a license agreement is sent to authors. OME also supports
other notations, concretely GRL and NFR. So the same tool gives sup-
port for slightly different RE approaches.

Recently, i* has been adopted as underlying framework for an AOSE
methodology named Tropos [Mylopoulos and Castro, 2000]. Tropos has
added to i* a development process and automated translation methods



6

from a i* specification to agents based on Jack agent platform [Busetta
et al., 1999].

Besides i*, there are also two other classic works like KAOS method-
ology [Dardenne et al., 1993] and Albert [Dubois et al., 1994]. KAOS
also considers agents, actions, entities consumed by actions, and other
relationships among entities. Agents are responsible for the execution of
tasks in order to satisfy a goal, i.e., a requirement. An example of how
to apply KAOS is [van Lamsweerde and Massonet, 1995], a paper that
describes a distributed meeting scheduler. Notation of KAOS appears in
[Dardenne et al., 1993]. KAOS has also its support tool, which is named
GRAIL [Darimont et al., 1997].

Albert is a pure specification language with more detailed semantics
than KAOS or i* semantics. In fact, it is less ambiguous than other
approaches reviewed here. So its presentation has been moved to the
next section.

Previous approaches lack of elements to model requirements with re-
spect to agent interaction. In this sense, a recurrent solution is role
modeling. It is oriented towards functional requirements, expressed with
tasks, services, and roles integrated in workflows. Research from Kendall
[Kendall, 1998] is a classic in this line of research. There are studies in
identifying roles [Kendall, 1998] inside a development process though
most of the work is done at the analysis level. This work has had a big
influence on other works, such as ZEUS [Nwana et al., 1999] or MaSE
[DeLoach, 2001]. Kendall’s ideas constitute the method applied in the
initial steps of ZEUS methodology [Collis and Ndumu, 1999] and MaSE
[Wood and DeLoach, 2001]. For a more object-oriented approach, read-
ers can consult [Depke et al., 2001], that considers functional require-
ments as UML use cases where roles participate in performing certain
tasks. ODAC is also a methodology adapting standards from distrib-
uted object computing to agent and using UML [Gervais, 2003]. More
details on approaches using UML are given in the UML based approaches
section.

2.2 Analysis applying formal methods

Formal methods are mathematical modelling techniques applied to a
software engineering process in order to obtain a non-ambiguous correct
specification of the system to be built [Pressman, 1982]. The expected
output of a formal method is a formal specification. This specification
can be used with different purposes, besides formal verification, as it is
mentioned in the tests section. As [Wooldridge, 1997] remarks, a formal



A Survey on Agent-Oriented Oriented Software Engineering Research 7

specification can be compiled to executable code or interpreted directly,
without user intervention.

There are several research works that show how to apply formal meth-
ods in generating a specification of a MAS.

Abstract State Machines [Gurevich, 1984] are the formalism employed
in MAS-CommonKADS [Iglesias et al., 1998a] to represent behavior of
the system at a high level. Concretely, MAS-CommonKADS uses Spec-
ification and Description Language (SDL) [Union, 9 AD], a standard
language used to describe systems in the telecommunications domain.
However, the degree of details in SDL is quite high. This formalism is
complemented with Class Responsibility Collaborator (CRC) cards as
a representation method to gather information about different aspects
of the system, like tasks specification or the purpose of a system ser-
vice. CRC cards are templates with slots that developers must fill using
a concrete language. Other works reuse state machines, like agenTool
[DeLoach, 2001] that uses them to represent the behavior of internal
components of agents and protocols as well. This solution shares with
SDL a common view of communication as interchanged messages among
different state machines. In this line of research, developers can consult
[Rosenschein and Kaelbling, 1995], that show how to translate first order
logic formulae to state machines using automated methods. Though it
is not exactly the same, Petri Nets have been used many times to ex-
press the behavior of a component. As an example to its application to
the MAS domain, readers can consult [Xu et al., 2002] and [Demazeau,
1995]. The first directly models the internal behavior of agents with
this formalism. The second introduces Petri Nets as an abstraction to
implement agent synchronization.

Z [Spivey, 1992b] is a mathematical formalism based on sets manipu-
lation. There have been experiments in adapting Z to the agent domain
[d’Inverno, M., Hindriks and Luck, 2000] [d’Inverno and Luck, 1996].
Benefits of using Z are mainly reusing the big amount of software and
tools available to this language, what includes automated code genera-
tion and formal verification methods.

Logics appear frequently as formalism to represent agent behavior,
perhaps due to the the extensive use of logics in classic artificial intel-
ligence. For a review of logics in a MAS context, readers can consult
[Singh, 1997]. A short introduction of modal logic to MAS appears in
[van der Hoek, 2001] and [Wooldridge and Jennings, 1995a]. According
to these reviews, modal logics are playing a main role in the agent re-
search field. This is a novelty, since AI centers on propositional logic to
represent knowledge and reasoning [Genesereth and Nilsson, 1987] with
few attention to modal logic. In the agent domain, modal logic can han-



8

dle formulas that do not satisfy extensionality. Extensionality says that,
to determine the truth-value of a formula, only the truth-value of its sub-
formulas must be considered. Due this property, time and desire cannot
be modelled in classic logic, see [van der Hoek, 2001] for further expla-
nations. Main works in modal logics in this field are the formalization of
BDI [Bratman, 1987] model in [Rao and Georgeff, 1991] and intentional
logic from [Cohen and Levesque, 1990]. The first one was extended
with architectures and methodologies [Kinny et al., 1996] and is referred
in most works in the field. The second remarks the role of intentions
using intentional logics. It centers on how beliefs, desires, intentions re-
late to agent actions. As a detailed example of a framework with BDI
formalization and tool support, readers should review DESIRE [Brazier
et al., 1997] [Brazier et al., 1994], framework for DEsign and Specification
of Interacting REasoning components. Another relevant work in tem-
poral logics, which are modal logics, is Concurrent-MetaMem [Fisher,
1994], though it relates to agent implementation rather than specifica-
tion. However, it is interesting to read [Fisher, 1995a] since it sketches
how to apply this logics in a software process as a whole. Though it
does not focus in the whole process, Albert [Dubois et al., 1994] pro-
poses a variant of temporal logic with extensions to consider actions,
agents, and constraints of the behavior of the system. This language,
mentioned in the previous section, was designed to gather requirements
that later could be processed using formal tools, like theorem proving
software. The web site of Albert is [Schobbens, 2003] to know more
details or contact authors.

GAIA [Wooldridge et al., 2000] also applies logics to describe some
aspects of the system. Like MAS-CommonKADS, uses set of CRC-like
cards whose slots are filled with logic formulae. It is not completely
formal because these logic formulae, in the available examples, are not
tied to any model or implementation, so their interpretation depends on
the developer. However, these can be considered as a good approach to
integrate SE methods together with formal ones.

Situation calculus [McCarthy and Hayes, 1981] is another formalism
applied to model MAS. Situation Calculus is a first-order language (with
some second-order features) for representing dynamic domains. In the
agent domain, a key work is ConGOLOG [Giacomo et al., 2000], a con-
current language to generate computational models that constraints task
execution according to their preconditions and side-effects. The compu-
tational model that it defines executes tasks if and only if their execution
will not take the system to instability. Though computationally it is an
expensive problem, they have relaxed ConGOLOG constrains so that
costs are affordable.



A Survey on Agent-Oriented Oriented Software Engineering Research 9

2.3 Analysis using diagrams

Some methodologies represent part of the analysis results using dia-
grams. Diagram based representations may not be formal. Some ap-
proaches propose diagrams that are interpreted by a developer, like
UML. In those approaches, different developers can derive different in-
terpretations. However, there are also diagrams that are not ambiguous
at all, like Petri-Net graphic representations of a protocol or Entity-
Relationship diagrams to represent databases tables. This section re-
views two kinds of diagram based approaches. The first deals with UML
applied to the agent domain. The second with meta-modelling languages
as specification language of the MAS at the analysis level.

UML based approaches One the most widespread approach is AUML
[Bauer et al., 2001], a project aiming at bringing agent concepts into
UML [OMG, 2000c]. As a suggestion, readers should start by [Odell
et al., 2000] since it is one of the first papers about AUML. One of
the relevant results of AUML is protocol diagrams notation, which is
being considered as a new notation for the standard UML to express
concurrence and decision. [AUML Team, 03] is AUML web site. It con-
tains working documents and articles about applying AUML to model
different aspects of a MAS [Bauer et al., 2001] [Odell et al., 2001]. Un-
fortunately, there are no support tools for AUML.

A Process for Agents Societies Specification and Implementation (PASSI)
[CSAI LAB, 03] is recent work that reuses UML tools as front-end. It
applies a UML representation of elements belonging to an architecture
for a better understanding and handling. Concretely, Rational Rose
is supplemented with a customized plugin that provides PASSI extra
functionality. As an example of PASSI modelling, readers can consult
[Burrafato and Cossentino, 2002] that shows modelling of a book store
company. In this line of research, something similar has been proposed
in [Bergenti and Poggi, 2001]. It is a framework and a programming
language that facilitates the definition of planning capabilities of agents.
This approach inputs an XMI [OMG, 03] description of UML diagrams
to generate code directly to a target agent platform. XMI is a model
driven XML Integration framework for defining, interchanging, manipu-
lating and integrating XML data and objects. As it is a standard (issued
by OMG), any UML compliant tool should be valid as front-end.

Though these research works are very complete, they do not address
properly MAS definition using a development process. Actually, they
propose a too simple development process. Those readers interested in a
more detailed solution to perform analysis, may read ADELFE [Carole



10

Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, 2002]. It proposes a
very detailed analysis method reusing UML notation that can be adapted
to several agent models. The point with this work is that it offers a
general view of what elements are implied in a MAS generation, which
is complementary of [Wooldridge, 1997].

Meta-modeling as specification language. Meta-modelling is a
technique for model description. Meta-modelling consists in describing
types of objects, their properties, relationships and how they appear
together in a model. This description is called a meta-model. A model
is the instance of a meta-model and it conforms to a set of constraints
defined in the meta-model, like among objects of type A and B there can
be only relationships one to one of type C. Readers interested in knowing
more about meta-modelling can consult [OMG, 2000b] or [OMG, 2000c],
where a meta-modelling language is presented and applied to describe
application data, program interfaces, or diagrams.

Why using meta-models in the agent domain? Citing [Gomez-Sanz
et al., 2002], meta-models are useful as a kind of templates for generating
agent models. They describe what any MAS should have. With meta-
models of a MAS, the mission of the engineer turns into instantiating
these meta-models in order to define the entities that may appear in a
concrete MAS.

Meta-models have been used to specify AORE notation, like in [Dar-
denne et al., 1993], where KAOS elements were specified using a meta-
model. Another referred work in the MAS domain is the AAlaading
framework or AGR (Agent-Group-Role) [Ferber and Gutknecht, 1998].
In that paper, authors show how to model organizations of agents us-
ing meta-models. That research has evolved into the MADKIT plat-
form [MADKIT, 1999]. An example of how this meta-model integrates
with MADKIT can be found on [Gutknecht, O.,Ferber J., Michel, 2001].
MESSAGE [Caire et al., 2001] proposes a meta-model for MAS that
bases on engineering practices. As it is presented in detail in this book,
it will be enough to say that its meta-model can be accessed at [EU-
RESCOM P907 consortium, 03], where there are also prototypes and ex-
amples of specifications. Following the steps of MESSAGE, readers may
also consult INGENIAS [Gomez-Sanz and Pavon, 2003]. INGENIAS
official web-site is [GRASIA! research group, 2003]. It also provides ex-
amples and Java-based development tools. Finally, meta-modelling is
applied too in [Knublauch and Rose, 2002]. [Knublauch and Rose, 2002]
presents a visual modelling tool, AGILShell, and a notation to spec-
ify MAS. According to authors, this notation is specially suited for the



A Survey on Agent-Oriented Oriented Software Engineering Research 11

design of agents that support the information flow between humans in
existing work groups.

3. Design

According to conventions in software engineering [Pressman, 1982],
analysis refers to what has to be done, whereas design determines how it
could be done. Design also supplements analysis with information that
deals with implementation choice. So design aims at producing concrete
instructions that allow programmers or tools to generate a system that
satisfies analysis requirements.

Having selected a concrete analysis method influences the kind of de-
sign to be performed. Clearly, some of the works introduced in the
previous section already include design concerns. So it would seem nat-
ural to continue the design using the same method. However, analysis
does not compromise that all. Certainly, an experienced developer can
choose any of the previous analysis approaches and still have freedom to
selected another different kind of design. The link between design and
implementation is harder to broke.

This section introduces two main tendencies in an agent oriented de-
sign. Some works suggest that design mainly consists in a refinement of
diagrams [DeLoach, 2001] [Collis and Ndumu, 1999]. These works relay
on a specific development environment that translates diagrams to code.
A development environment is a tool or set of tools capable of perform-
ing tasks required by a developer in order to build a software system.
Usually, a development environment also defines a set of components,
or a framework, to be used in the final system. This reduces the set of
decisions to be taken during design. At the same time, it also makes
the design less flexible, because there are parts that cannot be changed
easily. Another trend is not to obviate these decisions and face the whole
development from scratch, selecting adequate frameworks and libraries.
[Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, 2002] [Kinny
et al., 1997] belong to this kind of works. Indeed, this is more flexible,
but also harder to realize since it requires quite more experience than
the other alternative.

3.1 Design with an Development Environment

Development environments for MAS building are oriented towards
rapid prototyping. First development environments for MAS generation
combined a graphical front-end and a MAS framework. The purpose of
this front-end was to facilitate the MAS framework configuration. The
resulting prototype was an instantiation of this framework. These en-



12

vironments for MAS generation were ZEUS [Nwana et al., 1999] and
AgentBuilder [IntelliOne Technologies, 1999]. ZEUS includes ontologies
definition, communication among agents, and planning capabilities. It is
a really good tool if a developer wants to create MAS quickly and exper-
iment with their features. AgentBuilder is supposed to be the evolution
of the agent programming language Agent0 [Shoham, 1993]. Seman-
tics of the models bases on the original Agent0 programming language.
As ZEUS, it includes a visual editor, simulator, and debugger. Unlike
ZEUS, it gives developers more control of the development environment,
enabling developers to add new customized modules, called Project Ac-
cesory Classes (PACs), or connecting agentbuilder agents with legacy
applications.

These environments are adequate for rapid prototyping. Neverthe-
less, there are two risks on using them. First, this kind of tools may
accelerate the development, but there is no guarantee that the result-
ing prototype will satisfy initial requirements. The problem may not
appear at the beginning, but later on, when development needs become
more strict. Besides, underlying frameworks of these tools cannot be
modified easily. Usually, their code is not documented, so changing one
component is risky. It may cause a general crash of the whole appli-
cation. Second, developers depend on the authors of the tools to have
updated versions with less bugs or improved functionality. By applying
the tool to different domains, bugs are likely to appear. Testing of these
tools cannot be exhaustive enough to ensure bug-free applications, spe-
cially when they are not commercial. Therefore, having regular updates
of these environments is fundamental. The conclusions is that a rapid
prototyping tool may not be the solution to all kinds of developments,
specially if there is few budget available to buy good commercial tools,
such as AgentBuilder.

Then, should rapid prototyping be discarded? The answer is no.
There are other tools that propose a different way of generating pro-
totypes. The proposal is to decouple the development environment and
the predefined prototype. These tools support analysis and design and
can produce code into any language. This is the case of agentTool [Mul-
tiagent and Cooperative Robotics Lab, 2000], INGENIAS IDE [GRA-
SIA! research group, 2003], PASSI [Burrafato and Cossentino, 2002], and
[Bergenti and Poggi, 2001].

The two first act as translators of the specification language they use
to a concrete implementation language. In the design, agentTool uses
state machines notation, UML sequence diagrams and some variants of
class diagrams to represent internal components of agents and the agents
themselves. As a meaningful feature of agentTool, it uses a protocol ver-



A Survey on Agent-Oriented Oriented Software Engineering Research 13

ification tool, named SPIN [Holzmann, 1991], that prevents deadlocks.
INGENIAS IDE, in the line of MESSAGE, uses a language built of
common elements in MAS specifications (agents, tasks, resources, orga-
nizations, ...) and a hierarchy of relationships that may appear among
them. The result is different from UML, though it is constructed in
a similar way. In a INGENIAS design, a developer centers on taking
analysis elements and enhances the specification with more details and
diagrams that illustrate how it could be done. Like UML, INGENIAS
IDE uses incremental development techniques.

The two last, PASSI and [Bergenti and Poggi, 2001], propose reusing
existing UML design tools and complementing them with agent code
generation facilities. These tools also decouple the graphical front-end
from facilities to translate a graphical notation to pieces of low level code.
Later, these pieces are put together with other existing pieces of low level
code. In the case of [Bergenti and Poggi, 2001] documentation is avail-
able. However, PASSI does not provide enough information about its
approach. In both cases, developers perform design using UML notation
in a UML compliant tool. This notation is marked up with stereotypes,
the UML extension mechanism to type classes, so that developers can
relate to a class titled Agent with a piece of software that will be gener-
ated later. The approach seems promising since it is a quick method for
integrating agent techniques with UML, apart of AUML.

Though it is not a development environment, DESIRE [Brazier et al.,
1997] deserves a few lines. Probably, it is one of the most mature works
in this field, due to the number of related papers and training courses
[IIDS, 2003]. DESIRE proposes a method to build agents based on the
recursive composition of interconnected tasks. DESIRE is supported by
a theory on the operation of the framework, a method of development,
and tools to facilitate a development with this framework [Brazier et al.,
2002]. There are examples of the application of DESIRE to different
domains, like a scheduler for appointments in a call center [Brazier et al.,
1999] or the diagnosis of failures in a fridge [Brazier et al., 2002]. Both
papers show in detail how a design takes place in this approach.

3.2 Design without a Development Environment

Not using a development environment means that developers have to
work more choosing proper theories, methods, and software. To help
developers in selecting and applying them into their systems, it would
be a good idea to review works that have made this effort, already.
For instance, [Massonet et al., 2002] considers how to translate MES-
SAGE/UML diagrams to a concrete target agent platform, JADE, where



14

control of agents are expert system shells. For more detailed exam-
ples, readers may consult [Carole Bernon, Marie-Pierre Gleizes, Sylvain
Peyruqueou, 2002], [Caire et al., 2001], and [Kinny et al., 1997] which
correspond to different approaches to this problem: object-oriented,
agent-oriented, and formal methods based. These are works that pro-
vide examples of use and that integrate results in existing research in
agents. There are others that deserve being mentioned, but the lack of
space prevents a serious review. Readers are invited to review chapters
in this book to find additional information.

Reading these works, developers will find out that there are too many
concerns to take into account. Among others, authors of this chapter
highlight the selection of an agent model, agent architectures for models
of agent, code distribution issues, agent features design, agent platforms,
and MAS frameworks.

Though relevant, the problem of selecting an agent model is not ad-
dressed here. As it was said in the analysis section, readers are invited
to consult [Huhns and Singh, 1997] to get a general picture of what
features provide different representations. To complement this view,
[Nwana, 1996] contains a huge collection of references to developments
of agents in many domains. Developers can obtain examples of to know
how to develop agents for different purposes.

To introduce other aspects, this paper provides three sections. The
first deals with agent architectures. The second with issues related with
the distribution of agents, MAS or internal components among different
nodes in a network. The third presents research works that addresses
theory and implementation of different agent features. The last one
collects recommendations of agent platforms and frameworks for MAS
design.

Agent Architectures. Why an agent architecture? Because
an architecture shows how to put together different pieces of software
and make them interact. Here, an agent architecture would provide a
framework for realizing different features that researchers require from
agents. In this domain, agent architectures have been defined in many
ways. Specially, when research on agent started, agent architectures, like
IRMA [Bratman et al., 1988], were defined using flows of data among
interconnected boxes whose functionality was explained in natural lan-
guage. There are logical definitions of agents, like those expressed as
tuples of functions, as in [Wooldridge, 1992]. Each function defines a
particular aspect of the agent, like belief revision functions that deter-
mine in each state what beliefs are correct. Layered definitions are also
frequent, like [Kendall and Malkoun, 1996]. In a layer definition, sensory



A Survey on Agent-Oriented Oriented Software Engineering Research 15

inputs come through lower layers and induce reactions which propagate
upwards. When an upper layer wants to perform an action in the en-
vironment, the process is the opposite: downwards propagation. Each
layer inputs the output of lower layers, and viceversa. Finally, there
are also definitions biased by object-oriented approaches that define sys-
tems, subsystems, their interfaces and how they are interconnected, like
agents described in [Garijo et al., 1998]. This kind of definition is very
useful towards implementation, since it already identifies the interfaces
of components, the number of existing components, and their purpose.
In this direction, software engineers also use Architecture Definition Lan-
guages (ADL). Reviews on ADL can be found in [Clements, 1996] and
[Medvidovic and Taylor, 1997]. An ADL expresses at a high level what
subsystems exist and how they connect. Let us notice that UML v. 2.0
is being considered as a kind of ADL. This would be very interesting,
since it would facilitate the integration of an architectural view in the
agent approaches close to UML.

In an effort of classifying existing agent architectures, [Wooldridge and
Jennings, 1995a] suggested three paradigms: deliberative architectures,
reactive architectures, and hybrid architectures. Deliberative stands for
thinking before doing. These architectures usually have a symbolic repre-
sentation of knowledge and provide mechanisms to decide actions upon
it. Though flexible, these architectures have an important drawback:
reasoning mechanism consume too much time. Perhaps when the agent
decides what to do, it may be too late. Reactive means that there is no
reasoning on deciding what to do next, just associations of inputs and
outputs, like Should happen A, then do B. These architectures decide
what to do next very fast, but chosen action may not be the best one.
Finally, hybrid architectures are architectures that share deliberative and
reactive features. [Wooldridge and Jennings, 1995a] contains representa-
tive examples of architectures of each kind that need not to be mentioned
again. Just to add a couple of references, this section mentions some
recommendable examples of deliberative, SOAR [Laird et al., 1999] and
Cougaar [DARPA, 2003], and a hybrid architecture,INTERRAP [Muller,
1996].

SOAR [Laird et al., 1999] derived from the original work of A. Newell
[Laird et al., 1987] is an important deliberative architecture. There have
been applications of SOAR ranging from modelling human behavior in
urban combat till players in first-person-shoot-em-up games. Cougaar
[DARPA, 2003], according to their experiments, is may be the most
stable agent architecture available nowadays. There are development
manuals and examples of developments available at its web site.



16

INTERRAP [Muller, 1996] shows in detail how this kind of agent is
built and used to solve concrete problems. Rather than software, IN-
TERRAP provides the experience of the developer in how a determined
organization of components may increase software reuse from one do-
main problem to another.

The list of agent architectures may continue for pages and pages. Of
course, it is recommendable knowing at least representative examples.
To save some extra reading, [Muller, 2003] gives rules of thumb to help
selecting a suitable agent architectures. These rules are obtained after
a study of several application domains and their key features.

Distribution of components. Distribution of agents across a
network, parts of a MAS, or just internal components of an agent is
a decision that may take place at this stage. As an example of how
to deal with distribution of agents, readers can consult [Gervais and
Muscutariu, 2001]. As an alternative to distribution, agents can use
mobility and forget about where they are. However, an agent can move
from one node to a destination node in a network if and only if there is
an agent platform, or similar, installed in the destination node. So, who
decides which nodes implement what agent platform so that it all works?
Deployment is an important part of a specification. The problem is not
new at all. In fact, there is notation in UML to deal with this problem
and show how the final system should be deployed.

In any case, distribution of agents among different machines, physical
or virtual, implies taking into account the issues about how commu-
nication may take place, what is being communicated, and how this
communication can be used to organize a system behavior.

Communication technologies. Representative technologies that
facilitate communication between components are: shared spaces
of tuples, emphRemote Procedure Call (RPC), and message pass-
ing. The first is a repository of information where several processes
are connected and read/write information. An extended, and free,
implementation of this technology is Java Network Interfaces (JNI)
from Java. The second is based on the existence of a midleware act-
ing as intermediary among two processes. In this variant, a process
implements an API, which is offered remotely to other processes
in any machine through this middleware. The main reference in
this technology is CORBA [OMG, 2000a], a standard ported to
most programming languages and Operative Systems. CORBA
provides many more things than RPC, but this is not the place
for such a discussion. Another middleware offering similar fea-
tures as CORBA is .NET [Microsoft, 2002] which is recently born,



A Survey on Agent-Oriented Oriented Software Engineering Research 17

compared to CORBA, and based on Microsoft platforms. Also,
the famous Remote Method Invocation (RMI) available in Java,
that supports serialization and transmission of objects through
the network. Finally, message passing, though not new at all, per-
haps the most frequently used in agent research. It may relay
on any of the previous communications technologies since what
it defines is asynchronous high level communication among two
processes. Messages themselves are described with Agent Commu-
nication Languages (ACL).

Agent Communication Languages. An ACL describes the for-
mat and semantics of messages interchanged among two or more
agents. Interpreting properly an ACL requires more than simply
parsing the message and extracting data, as remarks [Genesereth
and Ketchpel, 1997], since messages have an implicit semantics
that detail what kind of reaction is expected in the receiver. There
are nowadays two main ACL: KQML [KQML, 1999] [Labrou and
Finin, 1997] and FIPA-ACL [FIPA, 2003a]. The first established
the bases of current FIPA-ACL, identifying a set of speech acts
to be used in agent communication. However, current research fo-
cuses in FIPA-ACL, that synthesizes the best of KQML together
with other aspects of agent communication, such as standard pro-
tocol definition, content languages, and ontologies. Readers in-
terested in the semantics of FIPA-ACL are invited to review its
specification, where semantics are expressed using modal logics.
Both KQML and FIPA-ACL have several implementations accesi-
ble from [KQML, 1999] and [FIPA, 2003b].

Ontologies. An ontology determines allowed terms in the content
of a message, as well as concrete semantics and relationships with
other elements of the ontology. Specialized languages to define
ontologies are Resource Description Framework RDF [W3C, 03],
a classic one, and DAML [DARPA, 2001], the unofficial successor
of RDF nowadays. To handle ontologies, there are tools such as
those available at available at [DARPA, 2001] and Protegè [Stan-
ford Medical Informatics, 2003], one of the most famous. [Stanford
Medical Informatics, 2003] contains libraries of ontologes as well
as tutorials, papers, and examples. Also, there are extensions to
the JADE agent platform to use ontologies created with Protegè.

Coordination. Coordination languages provide description of
how interaction should perform over the time. The importance
of coordination in MAS does not need justification. According to



18

[Gelernter and Carriero, 1992], a system can be built out of a com-
putational model and a coordination model. The first deals with
sequences of instructions to be executed without interruption. The
second attends to how these pieces appear together so that the sys-
tem satisfies its initial requirements. To achieve such decoupling
of aspects, computation vs. coordination, and their later integra-
tion, coordination languages propose both a language to express
the coordination and frameworks to support these languages. For
a general discussion about relationships between computation and
coordination, pros and cons of different integration solutions, read-
ers can consult [Gelernter and Carriero, 1992]. In this domain,
a main reference is the Linda language [Carriero and Gelernter,
1989]. It defines how coordination can be defined when the com-
munication is performed over a shared tuple space. For a complete
review of relevant coordination languages, it is recommended to
read [Papadopoulos and Arbab, 1998]. But, how does a developer
apply these languages in a MAS? What is different between con-
ventional coordination languages and MAS is the computational
model used by agents, which, in general, is more complex. To help
in the adaptation of these concepts, readers can consult [Bergenti
and Ricci, 2002]. This paper shows how coordination takes place
with coordination languages like the previous, with protocols and
through the semantics of ACLs. Besides these references, readers
are invited to consult the chapter titled coordination infrastruc-
tures that appears in this book.

For instance, JADE uses, by default, RMI as internal communication
facilities, defines wrappers for FIPA-protocols and other facilities to de-
couple computation from interaction, and includes components to define
ontologies. In this sense, JADE is very complete. However, a designer
must know that it is possible to generate other kinds of agent-based
systems by reusing existing technology.

Agent features. Researchers associate agents with certain features
like autonomy, social ability, or intelligence. This section gathers ref-
erences to research work in designing these features. Why considering
these elements in the design section? Because agent abilities are related
with agent models and, as it was mentioned before, agent model selection
had been postponed to design.

Autonomy, as intelligence, is a term that it is hard to define since it in-
volves philosophical considerations. According to dictionaries, it can be
understood as freedom of will. However, [H. Hexmoor, C. Castelfranchi,
2003], a kind of survey on autonomy, shows that there are many forms



A Survey on Agent-Oriented Oriented Software Engineering Research 19

of autonomy and different ways of understanding it. Among others, it
refers to adjustable autonomy, the user of an agent decides whether it
is autonomous or not, and behavioral autonomy as the agent’s capacity
to be original and not guided by outside source. But, how to achieve or
describe autonomy?

[Hexmoor, 2001] defines a predicate calculus account of autonomy
using a Believes Desires Intention model. This representation clar-
ifies the notion of autonomy through the concept situated auton-
omy.

Situated autonomy is an agent’s stance, as well as the cognitive

function of forming the stance, toward assignment of the performer

of a goal at a particular moment when facing a particular situation.

[Luck and d’Inverno, 1995] describes autonomy using Z [Spivey,
1992a] notation. This description assumes that autonomy arises
when an agent has a set of motivations. Here a motivation is:

... any desire or preference that can lead to the generation and

adoption of goals and which affects the outcome of the reasoning

or behavioral task intended to satisfy these goals.

[Castelfranchi and Falcone, 1998] proposes to understand auton-
omy through a theory of delegation. In this paper, an agent is
autonomous with respect a task delegated by other agent. Say an
agent A has to execute a task demanded by an agent B. Factors to
be considered in order to qualify the degree of autonomy of A with
respect B according to this delegated task are: how unspecified
the task to execute is, who is responsible of checking the state of
the task, and what decisions have been delegated.

[Weiß et al., 2003] introduces a formalism called Role Norms Sanc-
tions (RNS) for explicit specifying the autonomy of computational
agents. The idea behind RNS is to support developers of agent-
oriented systems in precisely stating what an agent as an au-
tonomous entity is allowed, obliged and forbidden to do. RNS
is supported with a tool called XRNS, so developers can generate
rather easily their definitions.

Artificial Intelligence and Distributed Artificial Intelligence are the
main disciplines in studying computational aspects of intelligence. [Rus-
sell and Norvig, 1995a] is a rather complete review of modern AI research
in this topic. It focus on AI applied to the construction of intelligent
agents. With respect DAI, [Ferber, 1999] makes an account of relevant
research of DAI in the context of MAS. Also, [Weiß, 1999] contains a



20

broad review of research in DAI and MAS considering key topics such
as distributed problem solving, reasoning, or MAS learning.

As a guideline for reviewing computational intelligence, a broad field,
this section follows list of relevant topics in intelligent agents accord-
ing to [Russell and Norvig, 1995b]. These are planning, Problem Solv-
ing Methods, Learning and Reasoning. For a deeper understanding of
the topics reviewed here, [Rich and Knight, 1990], [Russell and Norvig,
1995b], [Weiß, 1999], or [Ferber, 1999] should be consulted. Developers
looking for software for any of these topics, can go to [CMU, 2003] and
download it. This address also contains links to relevant material in AI.

Planning. Incorporating planning capabilities means that an
agent will know, without human intervention, how to combine dif-
ferent tasks in order to get a concrete result. There is a lot of
research in planning in AI. STRIPS [Fikes and Nilsson, 1971] is
one of the seminal works in the area. It provides a planning al-
gorithm and a language to describe tasks. In the agent domain,
TAEMS [Decker, 1996] and Generalized Partial Global Planning
(GPGP) algorithm [Decker, 1995] must be mentioned. The first
provides concepts and notation for the second, which is a distrib-
uted planning solution for tasks that assumes that participants
in a plan may have only partial information about it. For both
works, there are software and examples available at [Multi-Agent
Systems Lab, 03]. A more comprehensive list of planning systems
and architectures can be found in [Amant, 03].

Problem Solving Methods (PSM). A PSM describes the rea-
soning components of knowledge-based systems as patterns of be-
havior that can be reused across applications [Fensel and Motta,
2001]. Using PSM can make a program autonomous since it pro-
vides reusable behaviors to solve concrete problems. There are
libraries of PSM and methodologies that integrate them into a
development lifecycle. For a general overview of what a PSM is,
from a Knowledge Engineering point of view, and what kinds are
available, readers can consult [Fensel and Motta, 2001]. For an
adaptation of PSM to the agent domain, readers should consult
MAS-CommonKADS [Iglesias et al., 1998b], specially the section
dedicated to task model and knowledge modelling which addresses
PSM integration. For an extended version, readers can consult
original work in [Iglesias, 1998]. Finally, extended surveys on dis-
tributed PSM can be found in [Decker et al., 1989] and [Durfee
et al., 1989].



A Survey on Agent-Oriented Oriented Software Engineering Research 21

Learning. Learning is a key element if the developer wants the
agents to improve over the time. There are many kinds of learn-
ing techniques. Apart from AI literature, readers can consult the
machine learning review [Dietterich, 1998]. That paper contains
pseudo-code examples for different kinds of algorithms and studies
of their performance and results. In the agent domain, readers can
find the chapter [Sen and Weiß, 1999], that contains learning tech-
niques applied to MAS, and [Stone and Veloso, 2000], that offers
a collection of different MAS scenarios and a collection of useful
learning techniques to apply in each of them.

Reasoning. In developing reasoning mechanisms, logics have
proven to be a valuable tool. Nevertheless, reasoning capabili-
ties depend strongly on the kind of knowledge representation. For
instance, with a first-order logic representation, there exists algo-
rithms allow to draw conclusions or courses of action. It is not ex-
actly planning, since it deals more with theorem proving techniques
and logic inference (backward or forward chaining). To know more
about trends in reasoning using logics, readers can consult [Joseph
Y. Halpern, Ronald Fagin, Yoram Moses and Vardi, 1995]. For
a comprehensive review of knowledge modelling techniques, read-
ers can consult [Devedzic, 1999]. That paper collects examples for
each kind of representation as well as references to tools that help
in modelling and reusing knowledge.

An agent being social, according to [Wooldridge and Jennings, 1995b],
meant that an agent had to interact with other agents using an Agent
Communication Language [Genesereth and Ketchpel, 1997]. Results re-
ferred here are closer to [Huhns and Stephens, 1999] point of view. In
[Huhns and Stephens, 1999], being social implies characterizing agents
with abstractions from sociology and organizational theory. In principle,
this kind of view would facilitate developing MAS using peer-to-peer in-
teraction instead of a server-client paradigm. This section will comment
results in two research lines on social aspects: how to make an agent con-
scious of its relationships with other agents and how to build a society of
agents. The first line refers to representation of social dependencies and
reasoning upon this information. The second line distinguishes between
agent being organized and agents organizing by themselves, also known
as self-organizing. For an alternative point of view about these aspects,
readers are invited to consult [Boissier, 2003]. [Boissier, 2003] presents
organizations in detail from an observer point of view, from the designer
point of view, and from the perspective of an agent.



22

[Sichman et al., 1994] introduces the study of social dependencies.
This paper indicates, starting from an external description of an agent,
how to derive dependencies upon other agents and establishes the foun-
dations of the so-called social reasoning. This kind of reasoning is pre-
sented in more detail in [Sichman and Demazeau, 2001] as:

... a mechanism that uses information about the others in order to infer

some new beliefs from the current ones.

This research links with other aspects already reviewed in this paper,
such as autonomy or coordination. According to authors, these results
had been implemented in two systems: DEPINT [Sichman, 1998], a
simulator of micro-societies, and DEPNET [CONTE and SICHMAN,
1995], an open MAS.

In the agents being organized trend, the first recommended paper
is [Ferber and Gutknecht, 1998]. In this trend there is an organiza-
tion that can be distinguished as an first class citizen or just appear
in form of roles and social dependencies. [Ferber and Gutknecht, 1998]
presented a meta-model for organization description where organization
appeared as first class citizen. This work evolved into the MADKIT
[MADKIT, 1999] platform, that will be reviewed later. A similar or-
ganization description appears in MESSAGE/UML [Caire et al., 2001],
where organizational entities relate with interaction related or task re-
lated entities. GAIA [Zambonelli et al., 2000] describe its organization
with three main organizational abstractions: organizational rules to con-
straint system behavior, organization structures by defining roles, and
organizational relationships that determine agent to agent dependence.
This notion of the organization is partially shared by enterprise mod-
elling [Fox and Gruninger, 1998]. This discipline studies how to create
computational representations of businesses, governments, or any other
organizational structure. In this discipline, readers can find ontologies to
describe MAS organizations as well as tools to simulate organizations or
formats to interchange organizational processes definitions. The applica-
tion of agents in enterprise modelling to simulate or implement business
process workflows have appeared with relative frequency in the agent
literature. [Stohr and Zhao, 2001] introduces basic workflow terminol-
ogy, concepts, and related architectures. It is a good first step towards
understanding what is the role of agents in workflows. Examples of appli-
cation of agents to workflow automation are [D. et al., 2000], that shows
how to define a workflow using XML and reactive/cognitive agents, and
[Judge et al., 1998], that shows how agents can enhance a workflow basic
functionality.

In the agents organize by themselves trend, the main concept is self-
organization. Self-Organization approaches assume that agents get or-



A Survey on Agent-Oriented Oriented Software Engineering Research 23

ganized without human intervention. This idea is the opposite of the
previous one, where organization exists by itself, whereas here it is just
a bottom-up construct. This had been discussed deeply in philosophy
in relation with the concept of autopoiesis and biological systems, read-
ers can check [Whitaker, 2003] and [SOFAQ, 2003] for an introduction
and related software. Here, researchers look for emergent behaviors, or
how to obtain certain patterns of global behavior in a MAS by changing
the way some agents interact. As an example, readers can review [Roli,
2002], a work based in cellular automata. A cellular automata are cells
in a grid that can only switch on or switch off autonomously depending
on the state of their neighbors. More examples of self-organization and
emergent behaviors can be found in literature about Multi-Agent Based
Simulation (MABS) like [Moss, 2000] and [Conte et al., 1998], both
gather research trends in MABS. There are some attempts of structur-
ing these self-organization results into bodies of knowledge. One of them
is ADELFE [Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou,
2002], a methodology supported by the ADELFE toolkit. This method-
ology, with a dedicated chapter in this book, integrates Adaptative Multi-
Agent Systems considerations in the development process so that devel-
opers can have some control over this kind of systems. Also, there is
Engineering Self-Organizing Applications [ESOA, 2003] working group.
This group, as its name remarks, researches self-organization applied to
agents. At their web site, researchers will find references to work on this
kind of systems and an interesting survey of their current results.

A work in the middle of the previous trends is [Esteva et al., 2002].
This work provides methods to obtain emergent behaviors that satisfy
the needs foreseen by developers at design time. Readers interested
in this work can review the chapter dedicated to Social Agents Design
Driven by Equations (SADDE) methodology in this book.

Besides organizational approaches, there are other alternatives to man-
age the behavior of a MAS, like policies. In networks and telecommuni-
cation domain, the concept of policy is widespread. A policy describes a
constraint in the behavior of the system. This concept of policy would be
similar to the social laws [Shoham and M., 1995]. The main difference
is that a policy can be changed in runtime. The application of policy
to agents has been studied in [Dulay et al., 2001]. This paper shows a
language to define policies and a framework based on agents to support
them. The work is interesting because it shows researchers how to build
a system that support behavior changes in runtime.

Agent Platforms and frameworks. Citing [Pree, 1995], frame-
works represent application skeletons for a particular domain. The util-



24

ity of a framework, then, it is to save the effort in developing by reusing
architectures, components or libraries. An agent platform can be under-
stood as a set of services that allow agent management and communica-
tion. An agent platform may come with shells of agents that developers
can reuse for their systems. There are so many that reviewing all exist-
ing MAS frameworks in this chapter is not possible. Thus only some of
them will be mentioned here. For a broader view, readers are invited to
go through other surveys like the list of agent software from [IntelliOne
Technologies, 1999] or software reports and technology roadmaps avail-
able at AgentLink [AgentLink, 03]. As developers, adopting tools that
follow standards is a wise option. However, in the agent domain, stan-
dards do not provide answers to some problems, like what the internal
structure of agents is or its control. That is the reason to consider not
only standards, but also other proposals:

Standard. There are two standards MASIF and FIPA. MASIF
stands for Mobile Agent System Interoperability Facility (MASIF
[OMG, 1999]) standard. It is based on pure CORBA to implement
communication among agents and mobility. The official platform
for MASIF is Grasshopper [IKV++ Technologies AG, 1998]. FIPA
stands for Foundations for Intelligent Physical Agents. It pro-
poses several services similar to CORBA, but centered on defining
interaction protocols and communication languages. Also, FIPA
services can be implemented over different communication tech-
nologies, like RMI, CORBA, or HTTP based. JADE [Bellifemine
et al., 2001] [Telecomm Italia LAB, 1999] and FIPA-OS [Emor-
phia, 2000] implement FIPA standard. Other implementations of
FIPA are available at [FIPA, 2003b].

Non-standard. A frequently referred work is RETSINA [The Intel-
ligent Software Agents Lab, 2000]. This framework deals, among
others, with advanced matchmarking capabilities [Sycara et al.,
1999] that facilitate locating agents relevant for a certain task.
RETSINA also indicates a kind of MAS infrastructure by identi-
fying general tasks to be accomplished in the system, and roles
that tend to appear, like information brokers. Readers will find
that RETSINA has been applied in several projects and lots of
papers are available about different aspects of RETSINA. Also,
RETSINA supplies software to create agents in their website.

MADKIT [MADKIT, 1999] is an extensible framework for agent
design, in which the graphical front-end is just an optional plugin;
it is based on the AAladin framework already mentioned in the
analysis section. It provides a basic kernel of MAS where concrete



A Survey on Agent-Oriented Oriented Software Engineering Research 25

functionality can be plugged in. Also it includes graphical tools to
launch, monitor, or kill agents.

In case readers are interested in developing agents using AI ap-
proaches, a good choice is ABLE [IBM, 2002]. It can define agents
in terms of predefined modules that implement several control
mechanisms ranging from neural networks to decision trees. It
also implements learning algorithms, like inference learning. These
components can be interconnected in a graphical front-end or man-
ually by a couple of lines of code. This framework is a good tool
if the developer wants to experiment how to control an agent by
combining different techniques.

The number of non-standard platforms is appealing. Previous ones
have been selected due to their impact and sucess in dealing with differ-
ent agent features. In any case, the platforms referred here are only a
small percent. Readers are strongly advised to consult reviews of agent
platforms such as [Ricordel and Demazeau, 2000], that centers on the
suitability of agent development tools from a methodological point of
view, or [Mangina, 2002], that is an exhaustive survey of MAS develop-
ment frameworks.

4. Implementation

Implementation is the translation of design concepts to programs com-
pilable to executable code or interpretable. To implement a MAS, the
language may be conventional or agent-oriented. This paper assumes
that, despite the high level of abstraction of agent oriented languages,
they are still programming languages. Therefore, proposing a develop-
ment using exclusively an agent oriented language, without specialized
analysis notations, or without taking into account design concerns, may
be affordable in a small development. But, the same approach in a
medium size may not be realistic.

This section does not addresses the problems of reusing software
(agent platforms, MAS frameworks, development environments). It is
assumed that these elements have already been selected in the design
and their influence taken into account. So the problem is to select a
language to implement these components. If the developer is using some
existing software, perhaps there is no choice.

Declarative languages (Functional and logical based).

– April [McCabe and Clark, 1995] is a functional language that
incorporates communication facilities. Examples of develop-
ments with April can be downloaded from [Labs, 03]. Refer-



26

ence manuals available from April web site contain examples
of application.

– Concurrent-METATEM [Fisher, 1995b] allows to express tem-
poral logic programs. A previous paper [Fisher, 1994] shows
applications of this language and some small examples.

– CLIPS [NASA, 2003] stands for C Language Integrated Pro-
duction System. It is an expert system shell that can be used
to implement the behavior of an agent. The behavior can be
expressed using rules, as it is done in some works referred in
this chapter. Support tools and manuals for CLIPS can be
downloaded from [NASA, 2003]. There are ports to JAVA
(JESS [Friedman-Hill, 2003]). JESS also has been used into
JADE agents as an alternative to the default JADE behavior
definition.

– Mozart [MOZART, 2003] is a multiparadigm language. Con-
cretely, it is a functional concurrent object-oriented language.
There have been some enhancements to support mobility.
[Van Roy and Haridi, 1999] is a review of some agent-based
projects using Mozart.

– Prolog is a pioneer language in logic programming. Its origin
is quite complex and many researchers have worked on it. [Co-
hen, 1988] contains a review of relevant research work involved
in the creation of this language. There are many implemen-
tations of this language and suitable extensions. [Sadri and
Toni, 1999] contains references to extensions of this language
to define agents. Each extension provides its own examples
of application.

– Lisp [McCarthy, 1978] is one of the first languages in AI.
There is a huge collection of libraries and utilities based on
Lisp [ALU, 2003]. [ALU, 2003] also contains references to ap-
plications of Lisp for agent programming, like LISA [LISA,
2003], a production-rule system implemented in Lisp, or OS-
CAR [Pollock, 03], an architecture for anthropomorphic agents.

Agent-oriented languages. They incorporate concepts common to
agent theories but do not provide primitives dealing with concur-
rence or temporal logic.

– ConGOLOG [Giacomo et al., 2000] is a language based on
situation calculus. It is the concurrent version of GOLOG. It
is downloadable from [Cognitive Robotics Group, 03], where



A Survey on Agent-Oriented Oriented Software Engineering Research 27

development examples are also available. As an example of
a development with ConGOLOG, readers can consult [Yves
Lesperance, Todd G. Kelley, John Mylopoulos and Yu, 1999]
where authors model a mail-order business.

– Agent0 [Shoham, 1993] is the first agent-oriented language.
Unfortunately, there are no interpreters available in the In-
ternet. PLACA [Thomas, 1995] is frequently referred as an
extension of Agent0 to MAS. It incorporates ideas of planning
among several agents. As Agent0, it cannot be found in the
Internet.

– AgentSpeak(L) [Rao, 1996] is designed as a definition lan-
guage for BDI agents. An implementation of AgentSpeak(L)
is SIM SPEAK [Machado, 2003] [Machado and Bordini, 2001].
There is an extension named AgentSpeak(XL)[Bordini et al.,
2002] that incorporates elements from TAEMS [Decker, 1996]
to the original work.

– MAML [Gulyas and Corliss, 1999] is a language to model so-
cial simulations of MAS. It is derived from SWARM [Swarm,
2000], another language for MABS. Tutorials, software, and
examples can be accessed at [MAML, 2003].

– 3APL [Hindriks et al., 1999] stands for Abstract Agent Pro-
gramming Language. This language has been defined to ex-
press control and deliberation in BDI agents. There is soft-
ware, tutorials, and examples available at 3APL web site [de
Boer, 2003].

Of course, a developer can choose any conventional language: struc-
tured or Object-Oriented. In these cases, the developer has to rely on
libraries that provide basic functionality, like communication facilities.
Most of the agent platforms presented in previous sections are imple-
mented using object-oriented paradigm. However, it may be needed to
integrate different programming paradigms into a single architecture. In
that case, there are three possibilities: wrapping the foreign language,
creating mediators among these structures implemented in different lan-
guages, or simply rewriting foreign code. Wrapping is the solution to
integrate expert system shells and agent architectures, as the JESS and
JADE integration. For mediators, a low cost solution is to use middle-
ware, like CORBA. Mediators of components implemented in different
languages offer a remote interface, which is accessible using the same
facilities. Rewriting should be the last option, since it requires a lot of
work.



28

In combination with these languages, the developer can use other pur-
pose specific languages. There are languages specially designed to cover
issues like coordination, knowledge representation, or ontology represen-
tation. References to such languages have been already mentioned in
the previous section dealing with architectural issues.

5. Testing

Testing enables to identify the existing failures and to check if the
code sticks to the specification of the system or at least, if it satisfies the
requirements of customers. In this stage, classic software engineering
distinguishes between validation and verification. Citing [Boehm, 1984],
in the case of validation, an engineer focuses on the question ”Am I
building the right software?”, whereas in the case of verification, the
focus is on the question ”Am I building the software right?”. In other
words, verification is concerned with the (formally) checking the internal
consistency of specifications, and validation is concerned with checking
the specifications’ consistency with the stakeholder’s intentions.

Research in testing MAS has mainly addressed verification aspects.
Validation of MAS has been studied in works related with agent-oriented
requirements engineering, like i* and TROPOS. As it was reviewed in
the analysis, software requirements are labelled as goals. As they appear
as first-class concepts of the specification, it is easy to say if some re-
quirement has been considered or not. It is a matter of checking whether
a goal has any associated activity or not. This naive approach does not
work in all cases. For an example of more complex validation using a
AORE approach, readers can consult [Dubois, 1998]. This paper con-
tains an example of validating a system using the specification language
Albert II. The paper also describes a tool able to simulate the specifica-
tion so that clients can see how it should work and perform the validation
themselves.

Since there is more literature dealing with verification than valida-
tion in the agent domain, verification will be considered in detail in
the next section. The last section will be dedicated to study debugging
approaches with agents. Debugging is the complementary task of valida-
tion and verification. It seems coherent to reference also research works
and tools that help developers to find out exactly why the program has
failed.

5.1 Verification of MAS

As an introduction to conventional software engineering testing tech-
niques, readers can consult [Pressman, 1982]. The most relevant ones



A Survey on Agent-Oriented Oriented Software Engineering Research 29

are black box and white box tests. The first considers the system as a
black box where only its inputs and outputs are known. The second
is quite similar, although it assumes a certain knowledge of internals of
the black box. In MAS, white and black box testing is rarely published
as original research. Though still infrequent, MAS formal verification is
more likely to appear.

Formal verification is based on the existence of an specification ex-
pressed with a formal language. In the analysis section, there was a
review of different languages that could be used for formal specification.
The verification itself can be applied anytime. A verification usually
demonstrates the correctness of a program with respect to a specifica-
tion of what it has to do. For instance, based on Petri Nets formalisms,
[Xu et al., 2002] determine if a plan performed with the collaboration of
several agents can be performed. For this, they input a Petri Nets spec-
ification of the plan. On the other hand, to verify communication from
AUML diagrams, [Poutakidis et al., 2002] suggest a mapping method
from AUML diagrams to Petri Nets, which well-known algorithms of
deadlocks detection are associated with.

According to [Wooldridge and Ciancarini, 2000] there is little work
in the verification of MAS. Existing works could be categorized into
axiomatic approaches and model checking approaches. The first have
several variants and all of them can be considered as theorem proving
problems. Research in automated theorem proving field started early in
the last century. Unfortunately, it requires high skills in logics for those
interested in applying it. For an overview of what kinds of theorem
proving techniques exist, readers can consult [Bledsoe, 1985], a survey
frequently referred in the area. With respect to application of theo-
rem proving in MAS, [Wooldridge and Ciancarini, 2000] cites works in
which axiomatic verification is applied to MAS specified with BDI logics
and Concurrent Meta-MEM. However, as [Wooldridge and Ciancarini,
2000] notice, a main problem here is how to apply this kind of verifi-
cation when the BDI principles are implemented with non-logic based
languages, such as C++ or JAVA. This is known as the computational
grounding problem.

Let us also mention the trend called design by contract [Meyer, 1992]
that consists in defining pre/postconditions and invariants for the meth-
ods or procedures of the code and verifying them in runtime. Violating
any of them raises an exception. This technique is built-in in last ver-
sions of JAVA and can be simulated in C++ [Plosch, R.; Pichler, 1999].
The problem is this technique does not check program correctness, it
just informs that a contract has been violated.



30

Model checking is less fine grained than axiomatic approaches, but
also more tractable. It consists in verifying concrete properties that
a system must satisfy. The method inputs a model of the system to
check and a property definition. Of course, the language in which model
and property are defined is relevant. This approach seems to be well
accepted by industry. Its difficulty is the identification of the interesting
properties to check. Some of them are listed hereafter, extracted from
the literature:

Liveness. The agent always has something to do. Wooldridge
[Wooldridge, 1992] names it, according to his model, the weakly
complete concept: there should always be at least one applica-
ble action/message available to every agent, whatever its beliefs.
This property is relevant because a developer surely wants that
the agents do not get stuck.

Deadlock free. A MAS, or some agents belonging to it, may fall in
different kinds of deadlocks. A deadlock means, in general, that an
agent is blocking others and being blocked at the same time. This
may happen, for instance, when there are shared resources among
agents and an agent requires a resource that the other holds and
viceversa, but none of them wants to release them. There have
been thorough deep studies of deadlocks in the concurrent pro-
gramming, operating systems and telecommunication literature.
To have a deeper knowledge on deadlocks, theory and practice,
it is very recommended reading the classic [Coffman et al., 1971].
This paper focuses on deadlocks mixing both theory and practice
on detection and prevention.

Another interesting property is that a task must not take the sys-
tem to an undesirable state. This is a property required in the
situation calculus approach of ConGOLOG [Giacomo et al., 2000].
Unlike other properties, ConGOLOG itself takes care of this as-
pect. For a developer, this property has a high value, since it
ensures that state of the world always changes according to the
desires of the developer. However, in real systems, this property is
very hard to ensure.

Some free software is available to perform model checking and theo-
rem proving. [Bowen, 2003] contains references to this kind of software.
As an example of how to apply model checking to MAS, apart of those
cited by [Wooldridge and Ciancarini, 2000], readers can consult agen-
Tool [DeLoach, 2001] and MABLE [Wooldridge et al., 2002]. Both use
the free SPIN model checker [Holzmann, 1991]. AgenTool uses SPIN



A Survey on Agent-Oriented Oriented Software Engineering Research 31

allowing to identify deadlocks in agent interaction. MABLE is a pro-
gramming language enabling to include asserts in the code. These are
named claims. SPIN is used to verify their truthfulness. It must be said
that MABLE is different from the design by contract solution, that is
verified only in runtime, whereas SPIN verifies during compilation.

Model checking, in principle, requires translating the system into a
model specified with a concrete language. SPIN uses as input a language
named PROMELA [Holzmann, 1991]. However there are works that
suggest that this is not a compelling condition. For instance, [Visser
et al., 2000] have studied how, from source code in c++, extract a model
of the behavior of the agent, by adding some instructions to the original
code, and then perform the model checking.

5.2 Debugging MAS

What if something goes wrong? Researchers in debugging distrib-
uted systems give some answers. Debugging MAS is similar to debug
open distributed systems or concurrent systems. As developers know,
an important problem of distributed systems is that there is too much
information to analyze. There is literature that deals with this problem,
like [Garcia-Molina, H., Germano, 1984] or [Joyce et al., 1987]. [Joyce
et al., 1987] describes the construction of a monitoring system and how
collected information can be presented to the user. Benefits of visual
representations for debugging is also discussed in [Baecker et al., 1997],
where authors propose different kinds of visual and audio presentations
of source code and insights of a program. In other trend, [Garcia-Molina,
H., Germano, 1984] proposes generation and later analysis of traces of
programs.

In the agent domain, there are few tools that can help to test and
then debug a system:

ZEUS incorporates visual debuggers to view internal state of agents.
Authors of ZEUS extend their ideas in [Ndumu et al., 1999] propos-
ing internal and external inspectors for a MAS.

JADE has a sniffer agent that shows in a separate GUI what ACL
messages are exchanged by the agents.

MadKit [Gutknecht, O.,Ferber J., Michel, 2001] uses graphical
tools and introspection on agent code to discover at runtime groups
and roles, references to other agents, and other direct manipulation
of these structures.

The drawback of these tools is that they must be used since the begin-
ning of the project. So, what if the framework or the agent platform is



32

none of these? Then, the developer should consider using the techniques
commented at the beginning of the section.

6. More information

To broader the vision of the field, readers are invited to consult other
surveys. As a recommedation, it is suggested [Jennings et al., 1998],
[Nwana and Ndumu, 1999], and [Weiß, 2003] (the latter served as a
main source of inspiration for this chapter).

Current trends in software agents are well reflected in the AgentLink
website [AgentLink, 03]. Under AgentLink cover, there are regular pub-
lications like the agentlink roadmaps, published each year, and special
interest research groups on different topics, like the Methodologies and
Software Engineering for Agent Systems (MSEAS) group, which is spe-
cialized in methodologies. AgentLink also sponsors European Agent Sys-
tems Summer School (EASSS), a school whose proceedings contain tu-
torials about relevant agent topics.

The Object Management Group, responsible of UML and CORBA
standards, has a special interest group on agents [OMG, 2003] with links
to projects and documents.

With respect to conferences, let us mention Autonomous Agents and
Multi-Agent Systems (AAMAS) conferences, which are of very high qual-
ity and the AOSE workshop, focused on software engineering for agents.
There are also chapters dedicated to MAS research in most conferences
on Artificial Intelligence, like ICAI, ECAI, or IBERAMIA, whose pro-
ceedings appear in catalogues of relevant publishers.

7. Conclusions

This chapter has introduced briefly research results that can help de-
velopers and MAS researchers to create MAS. It has surveyed which
tools, software libraries, frameworks, theories, and methods are avail-
able today for developers. Indeed, having so many results is good news
since a developer can produce a MAS with less effort than years ago.
However, there are still important gaps and questions, like how to jump
from agent theories to MAS implementation, which are the consequences
of selecting a concrete agent architectures, how to reuse existing MAS
development experience in other developments, or what concepts are
needed to tackle with each aspect of a MAS. The agent community is
making a huge effort to answer these and others questions, and this is
not a trivial task at all. So the best way to finish this chapter is simply
congratulating researchers for the work done and encouraging them to
keep on contributing to this field.



A Survey on Agent-Oriented Oriented Software Engineering Research 33

Acknowledgements

Gerhard Weiß greatly acknowledges support by the German National
Science Foundation (DFG) under contract Br609/11-2. Jorge J. Gomez
Sanz acknowledges support by Spanish Ministry of Science and Technol-
ogy under grant TIC2002-04516-C03-03 and Ruben Fuentes and Juan
Pavon for reading this chapter and providing useful comments.





References

AgentLink (03). The european network of excellence for agent based
computing. http://www.agentlink.org.

ALU (2003). Association of lisp users. http://www.alu.org.
Amant, Rob St. (03). Planning resources at the north carolina state uni-

versity. http://www.csc.ncsu.edu/faculty/stamant/planning-resources.
html.

AUML Team (03). Agent UML web site. http://www.auml.org.
Baecker, Ron, DiGiano, Chris, and Marcus, Aaron (1997). Software vi-

sualization for debugging. Communications of the ACM, 40(4):44–54.
Bauer, B. Müller, J. P. and Odell, J. (2001). Agent UML: A formal-

ism for specifying multiagent software systems. In Ciancarini, P. and
Wooldridge, M. J. editors, Agent-oriented software engineering. Pro-
ceedings of the First International Workshop (AOSE-2000), volume
1957 of LNCS, pages 91–103. Springer-Verlag.

Bellifemine, Fabio, Poggi, Agostino, and Rimassa, Giovanni (2001). Jade:
a fipa2000 compliant agent development environment. In Proceedings
of the fifth international conference on Autonomous agents, pages
216–217. ACM Press.

Bergenti, Federico and Poggi, Agostino (2001). A development toolkit
to realize autonomous and interoperable agents. In Proceedings of the
fifth international conference on Autonomous agents, pages 632–639.
ACM Press.

Bergenti, Federico and Ricci, Alessandro (2002). Three approaches to
the coordination of multiagent systems. In Proceedings of the 2002
ACM symposium on Applied computing, pages 367–372. ACM Press.

Bledsoe, Lawrence J. Henschen W. W. (1985). What is automated the-
orem proving? Journal of Automated Reasoning, 1(1):23–28.

Boehm, B. W. (1984). Verifying and validating software requirements
and design specifications. IEEE Software, 1(1):75–84.

Boissier, Olivier (2003). Master web intelligence: Organizations. http://
www.emse.fr/∼boissier/enseignement/sma03/pdf/organisation.

4pp.pdf.



36

Bordini, Rafael H., Bazzan, Ana L. C., de O. Jannone, Rafael, Basso,
Daniel M., Vicari, Rosa M., and Lesser, Victor R. (2002). Agents-
peak(XL): efficient intention selection in BDI agents via decision-
theoretic task scheduling. In Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pages
1294–1302. ACM Press.

Bowen, Jonathan (2003). Formal methods resources. http://www.afm.
sbu.ac.uk.

Bratman, M. E. (1987). Intentions, Plans, and Practical Reason. Har-
vard University Press.

Bratman, M. E., Israel, D., and Pollack, M. (1988). Plans and resource-
bounded practical reasoning. Journal of Computational Intelligence,
4(4):349–355.

Brazier, F., van Langen, P., Treur, J., Wijngaards, N., and Willems, M.
(1994). Modelling a design task in DESIRE: the VT example. Tech-
nical Report IR-377, Universiteit Amsterdam, Department of Mathe-
matics and Computer Science, Vrije, Amsterdam.

Brazier, F. M. T. Dunin-Keplicz, B. M. Jennings, N. R. and Treur,
J. (1997). DESIRE: Modelling multi-agent systems in a composi-
tional framework. International Journal of Cooperative Information
Systems, 6(1):67–94.

Brazier, F.M.T., Jonker, C.M., Jungen, F.J., and Treur, J. (1999). Dis-
tributed scheduling to support a call centre: a co-operative multi-agent
approach. Applied Artificial Intelligence Journal, 13. Special Issue on
Multi-Agent Systems.

Brazier, F.M.T., Jonker, C.M., and Treur, J. (2002). Principles of component-
based design of intelligent agents. Data and Knowledge Engineering,
41.

Burrafato, P. and Cossentino, M. (2002). Designing a multi-agent so-
lution for a bookstore with the PASSI methodology. In Fourth In-
ternational Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS-2002), Toronto, Ontario, Canada. CEUR-WS.

Busetta, P. Rönnquist, R. Hodgson, A. and Lucas, A. (1999). JACK In-
telligent Agents – Components for intelligent agents in Java. Agentlink
News, 2:2–5.

Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gomez-Sanz,
J. J., Pavon, J., Kerney, P., Stark, J., and Massonet, P. (2001). Agent
oriented analysis using MESSAGE/UML. In G. Weiß P. Cianciarini,
M. Wooldridge, editor, Agent-Oriented Software Engineering II: Sec-
ond International Workshop, AOSE 2001, Montreal, Canada, May 29,
2001. Revised Papers and Invited Contribution, LNCS 2222. Springer
Verlag.



REFERENCES 37

Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, Gauthier Pi-
card (2002). ADELFE, a methodology for adaptive multi-agent sys-
tems engineering. In Tolksdorf, P. Petta R. and Zambonelli, F., ed-
itors, Engineering Societies in the Agents World III: Third Interna-
tional Workshop, ESAW 2002, number 2577 in LNCS, pages 156 –
169, Madrid, Spain. Springer Verlag.

Carriero, Nicholas and Gelernter, David (1989). Linda in context. Com-
munications of the ACM, Volume 32(Issue 4):444–458.

Castelfranchi, C. and Falcone, R. (1998). Towards a theory of delegation
for agent-based systems. Robotics and Autonomous Systems, 24:141.

Chung, L. Nixon, B. A. Yu, E. and Mylopoulos, J. (2000). Non-functional
requirements in software engineering. Kluwer Academic Press, Boston
et al.

Clements, Paul C. (1996). A survey of architecture description languages.
In Eighth International Workshop on Software Specification and De-
sign.

CMU (2003). CMU artificial intelligence repository. http://www-2.cs.
cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/0.html.

Coffman, E. G., Elphick, M., and Shoshani, A. (1971). System deadlocks.
ACM Computing Surveys (CSUR), 3(2):67–78.

Cognitive Robotics Group (03). Concurrent GOLOG. http://www.cs.
toronto.edu/cogrobo/systems.html.

Cohen, Jacques (1988). A view of the origins and development of prolog.
Communications of the ACM, 31(1):26–36.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with com-
mitment. Artificial Intelligence, 42:213–261.

Collis, J. C. and Ndumu, D. T. (1999). The Role Modelling Guide. Ap-
plied Research and Technology, BT Labs.

Conte, R., Gilbert, N., and Simao Sichman, J. (1998). MAS and social
simulation: A suitable commitment. In Sichman, Jaime S., Conte,
Rosaria, and Gilbert, Nigel, editors, First International Workshop on
Multi Agent Based Simulation ’98, volume 1534 of Lecture Notes in
Computer Science, pages 1–9. Springer Verlag.

CONTE, Rosaria and SICHMAN, Jaime Simao (1995). Depnet: How to
benefit from social dependence. Journal of Mathematical Sociology,
20(2-3):161–177.

CSAI LAB (03). a Process for Agents Societies Specification and Imple-
mentation (PASSI). http://www.csai.unipa.it/passi.

D., D. Walshe, Kennedy, J., Corley, S., Koudouridis, G., Laenen, F.V.,
Ouzounis, V., Garijo, F., and Gomez-Sanz, J. (2000). Eurescom p815:
An interoperable architecture for agent-oriented management. In Arab-



38

nia, Hamid R., editor, IC-AI’2000 Proceedings, volume I. International
Conference on Artificial Intelligence 2000, CSREA Press.

Dardenne, A. van Lamsweerde, A. and Fickas, S. (1993). Goal-directed
requirements acquisition. Science of Computer Programming, 20:3–50.

Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A. (1997).
GRAIL/KAOS: an environment for goal-driven requirements engi-
neering. In Proceedings of the 19th international conference on Soft-
ware engineering, pages 612–613. ACM Press.

DARPA (2001). Darpa agent markup language. http://www.daml.org/
language.

DARPA (2003). Cognitive agent architecture. http://www.cougaar.

org.
de Boer, Frank S. (2003). An abstract agent programming language

(3apl). http://www.cs.uu.nl/3apl.
Decker, K. S. Durfee, E. H. and Lesser, V. R. (1989). Evaluating re-

search in cooperative distributed problem solving. In Huhns, M. N.
and Gasser, L. editors, Distributed Artificial Intelligence, Volume 2,
pages 487–519. Pitman/Morgan Kaufmann, Cambridge, MA.

Decker, Keith S. (1996). Task environment centered simulation. In Simu-
lating Organizations: Computational Models of Institutions and Groups.
AAAI Press/MIT Press.

Decker, S. K. (1995). Environment Centered Analysis and Design of Co-
ordination Mechanisms. Ph.d. thesis, Department of Computer Sci-
ence, University of Massachusetts.

DeLoach, S. (2001). Analysis and Design using MaSE and agenTool.
In Proceedings of the 12th Midwest Artificial Intelligence and Cogni-
tive Science Conferece (MAICS), Miami University. Miami University
Press.

Demazeau, Y. (1995). From cognitive interactions to collective behaviour
in agent-based systems. In Proc. European Conference on Cognitive
Science, pages 117–132, Saint-Malo, France.

Depke, Ralph, Heckel, Reiko, and Kuster, Jochen M. (2001). Improving
the agent-oriented modeling process by roles. In Proceedings of the
fifth international conference on Autonomous agents, pages 640–647.
ACM Press.

Devedzic, V. (1999). A survey of modern knowledge modeling techniques.
Expert Systems with Applications, 17:275.

Dietterich, Thomas G. (1998). Machine-learning research: Four current
directions. The AI Magazine, 18(4):97–136.

d’Inverno, M. and Luck, M. (1996). A formal view of social dependence
networks. In Zhang and Lukose, editors, Distributed Artificial Intelli-
gence Architecture and Modelling: Proceedings of the First Australian



REFERENCES 39

Workshop on Distributed Artificial Intelligence, volume 1087 of LNAI,
pages 115–129. Springer-Verlag.

d’Inverno, M., Hindriks, K. and Luck, M. (2000). A formal architecture
for the 3APL agent programming language. In ZB2000: Formal Spec-
ification and Development in Z and B - 1st International Conference
of B and Z Users, volume 1878 of LNCS, pages 168–187. Springer
Verlag.

Dubois, E. Du Bois, P. Dubru, F. and Petit, M. (1994). Agent-oriented
requirements engineering: A case study using the albert language.
In Proceedings of the Fourth International Working Conference on
Dynamic Modelling and Information Systems (DYNMOD’94), pages
205–238.

Dubois, P. Heymans E. (1998). Scenario-based techniques for supporting
the elaboration and the validation of formal requirements. Technical
Report CREWS Report 98-15, Universite de Namur, Belgium.

Dulay, Naranker, Damianou, Nicodemos, Lupu, Emil, and Sloman, Mor-
ris (2001). A Policy Language for the Management of Distributed
Agents. In M. J. Wooldridge, G. Weiß, P. Ciancarini, editor, Agent-
Oriented Software Engineering II, volume 2222 of LNCS, pages 84–
100, Second International Workshop, AOSE 2001, Montreal, Canada.
Springer Verlag.

Durfee, Edmund H., Lesser, Victor R., and Corkill, Daniel D. (1989).
Trends in cooperative distributed problem solving. IEEE Transactions
on Knowledge and Data Engineering, 1(1):63–83.

Emorphia (2000). FIPA-OS. http://fipa-os.sourceforge.net.
ESOA (2003). Working group engineering self-organising applications of

the agentcities project. http://gaper.swi.psy.uva.nl/esoa/content/
main.php.

Esteva, Marc, de la Cruz, David, and Sierra, Carles (2002). Islander: an
electronic institutions editor. In Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pages
1045–1052. ACM Press.

EURESCOM P907 consortium (03). MESSAGE/UML website. http://
www.eurescom.de/∼public-webspace/P900-series/P907/index.htm.

Fensel, Dieter and Motta, Enrico (2001). Structured development of
problem solving methods. Knowledge and Data Engineering, 13(6):913–
932.

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and
design of organizations in multi-agent systems. In Proceedings of the
3nd International Conference on Multi-Agent Systems (ICMAS-98),
pages 128–135.

Ferber, Jacques (1999). Multi-Agent Systems. Addison-Wesley.



40

Fikes, R. and Nilsson, J. (1971). STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence,
2(3/4).

FIPA (2003a). FIPA-ACL Specifications. http://www.fipa.org/repository/
aclspecs.html.

FIPA (2003b). FIPA compliant software. http://www.fipa.org/resources/
livesystems.html.

Fisher, M. (1994). A survey of concurrent METATEM – the language
and its applications. In Gabbay, D. M. and Ohlbach, H. J., editors,
Temporal Logic - Proceedings of the First Intemational Conference,
volume 827 of LNAI, pages 480–505. Springer-Verlag.

Fisher, M. (1995a). Representing and executing agent-based systems.
In Wooldridge, M. and Jennings, N. R., editors, Intelligent Agents:
Theories, Architectures, and Languages, volume 890 of LNAI, pages
307–323. Springer-Verlag.

Fisher, M. (1995b). Representing and executing agent-based systems.
In Wooldridge, M. J. and Jennings, N. R. editors, Intelligent Agents,
volume 890 of LNAI, pages 307–323. Springer-Verlag.

Fox, M.S. and Gruninger, M. (Fall 1998). Enterprise modelling. AI Mag-
azine, 19(3):109–121.

Friedman-Hill, E. (2003). Java expert system shell (JESS). http://

herzberg.ca.sandia.gov/jess.
Garcia-Molina, H., Germano, F. (1984). Debugging a distributed com-

puter system. IEEE Transactions on Software Engineering, SE-10(2):210–
219.

Garijo, Francisco, Tous, Juan, Matias, Jose M., Corley, Stephen, and
Tesselaar, Marius (1998). Development of a multi-agent system for
cooperative work with network negotiation capabilities. In Albayrak,
Sahin, editor, Intelligent Agents for Telecommunication Applications,
volume 1437 of LNCS, pages 204–219. Springer Verlag.

Gelernter, David and Carriero, Nicholas (1992). Coordination languages
and their significance. Communications of the ACM, 25(2):97–107.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of
Artificial Intelligence. Morgan Kaufmann Publisher, Los Altos, CA.

Genesereth, Michael R. and Ketchpel, Steven P. (1997). Software agents.
Communications of the ACM, 37(7).

Gervais, Marie-Pierre (2003). ODAC : an agent-oriented methodology
based on ODP. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 7(3):199–228.

Gervais, Marie-Pierre and Muscutariu, Florin (2001). Towards an ADL
for designing agent-based systems. In Wooldridge, M.J., Weiß, G.,
and Cianciarini, P., editors, Agent-Oriented Software Engineering II.



REFERENCES 41

Second International Workshop, AOSE 2001, Montreal, Canada, May
29, 2001. Revised Papers and Invited Contributions, volume 2222 of
LNCS, pages 263–277. Springer Verlag.

Giacomo, G. De, Lesperance, Y., and Levesque, Hector J. (2000). Con-
golog, a concurrent programming language based on the situation cal-
culus. Artificial Intelligence, 121:109–169.

Gomez-Sanz, J. and Pavon, J. (2003). Agent oriented software engineer-
ing with INGENIAS. In Vladimı́r Maŕık and Jörg Müller and Michal
Pechoucek, editor, Multi-Agent Systems and Applications III, volume
2691 of LNCS, pages 394–403, Prague, Czech Republic. 3rd Inter-
national Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2003, Springer Verlag.

Gomez-Sanz, Jorge J., Pavon, Juan, and Garijo, Francisco (2002). Meta-
models for building multi-agent systems. In Proceedings of the 2002
ACM symposium on Applied computing, pages 37–41. ACM Press.

GRASIA! research group (2003). Ingenias ide. http://ingenias.sourceforge.
net.

Gulyas, Tamas Kozsik Laszlo and Corliss, John. B. (1999). The multi-
agent modelling language and the model design interface. The Journal
of Artificial Societies and Social Simulation, 2(4).

Gurevich, Yuri (1984). Toward logic tailored for computational complex-
ity. Computation and Proof Theory, 1104:175–216.

Gutknecht, O.,Ferber J., Michel, F. (2001). Integrating tools and in-
frastructures for generic multi-agent systems. In AGENTS01, pages
441–448.

H. Hexmoor, C. Castelfranchi, R. Falcone (2003). A prospectus on agent
autonomy. Agent Autonomy, 1(1):1–8.

Hexmoor, H. (2001). A cognitive model of situated autonomy. In Ad-
vances in Artificial Intelligence, volume 2112 of LNAI, pages 325–334.
Springer Verlag.

Hindriks, Koen V., Boer, Frank S. De, der Hoek, Wiebe Van, and Meyer,
John-Jules Ch. (1999). Agent programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2(4):357–401.

Holzmann, G. J. (1991). Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, New Jersey.

Huhns, M. and Singh, M., editors (1997). Reading in Agents, chapter 1,
pages 1–23. Morgan Kaufmann Publishers.

Huhns, Michael N. and Stephens, Larry M. (1999). Multiagent systems
and societies of agents. In Weiß, G. editor, Multiagent Systems, pages
79–120. The MIT Press, Cambridge et al.

IBM (2002). Agent building and learning environment (ABLE). Elec-
tronic Citation.



42

Iglesias, C. (1998). Definicion de una Metodologia para el Desarrollo de
Sistemas Multi-Agente. Thesis/dissertation, Departamento de inge-
niera de Sistemas Telemticos, Universidad Politecnica de Madrid.

Iglesias, C. Garijo, M. Gonzales, J. C. and Velasco, J. R. (1998a). Analy-
sis and design of multi-agent systems using MAS-CommonKADS.
In Singh, M. P. Rao, A. and Wooldridge, M. J. editors, Intelli-
gent Agents IV. Proceedings of the Fourth International Workshop
on Agent Theories, Architectures, and Languages (ATAL-97), volume
1365 of LNAI, pages 313–326. Springer-Verlag.

Iglesias, C., Garijo, M. Mercedes, Gonzalez, J. C., and Velasco, J. R.
(1998b). Analysis and design of multiagent systems using MAS-commonKADS.
In Singh, M. P., Rao, A., and Wooldridge, M. J., editors, Intelligent
Agents IV, volume 1365 of LNAI. SpringerVerlag.

IIDS (2003). Intelligent Interactive Distributed Systems group. http:
//www.iids.org.

IKV++ Technologies AG (1998). Grasshopper. http://www.grasshopper.
de/index.html.

IntelliOne Technologies (1999). AgentBuilder. http://www.agentbuilder.
com.

Jennings, N. R. (2000). On agent-based software engineering. Artificial
Intelligence, 117(2):277–296.

Jennings, N. R., Sycara, K., and Wooldridge, M. J. (1998). A roadmap
of agent research and development. Autonomous Agents and Multi-
Agent Systems, 1:7–38.

Joseph Y. Halpern, Ronald Fagin, Yoram Moses and Vardi, Moshe Y.
(1995). Reasoning About Knowledge. MIT Press.

Joyce, Jeffrey, Lomow, Greg, Slind, Konrad, and Unger, Brian (1987).
Monitoring distributed systems. ACM Transactions on Computer Sys-
tems (TOCS), 5(2):121–150.

Judge, D. W., Odgers, B. R., Shepherdson, J. W., and Cui, Z. (1998).
Agent-enhanced workflow. BT Technology Journal, 16(3):79–85.

Kendall, E. A. (1998). Agent roles and role models: New abstractions
for multiagent system analysis and design. In International Workshop
on Intelligent Agents in Information and Process Management.

Kendall, E. A. and Malkoun, M. T. (1996). The layered agent patterns.
In Pattern Languages of Programs (PLoP’96).

Kinny, D. Georgeff, M. and Rao, A. (1996). A methodology and mod-
elling technique for systems of BDI agents. In van der Velde, W. and
Perram, J. editors, Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-96), volume 1038 of LNAI, pages 56–71.
Springer-Verlag.



REFERENCES 43

Kinny, D., Georgeff, M., and Rao, A. (1997). A methodology and mod-
elling technique for systems of BDI agents. Tech Report 55, Australian
Artificial Intelligence Institute, Melbourne, Australia.

Knublauch, H. Holger and Rose, T. (2002). Tool-supported process analy-
sis and design for the development of multi-agent systems. In AOSE
2002, LNAI. Springer Verlag.

KQML (1999). The UMBC KQML Web. http://www.cs.umbc.edu/

kqml.
Labrou, Yannis and Finin, Tim (1997). A proposal for a new kqml

specification. Technical Report TR CS-97-03, Computer Science and
Electrical Engineering Department, University of Maryland Baltimore
County.

Labs, Fujitsu (03). April programming language. http://www.nar.fujitsulabs.
com.

Laird, J. E., Congdom, C. Bates, and Coulter, K. J. (1999). The SOAR’s
users manual v.8.2. The Soar Group, Artificial Intelligence Labora-
tory, University of Michigan.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). SOAR: an archi-
tecture for general intelligence. Artificial Intelligence, 33(1):1–64.

LISA (2003). Lisp-based intelligent software agents. http://lisa.sourceforge.
net.

Luck, Michael and d’Inverno, Mark (1995). A formal framework for
agency and autonomy. In Lesser, Victor and Gasser, Les, editors, Pro-
ceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 254–260, San Francisco, CA, USA. AAAI Press.

Machado, R. and Bordini, R. H. (2001). Running agentspeak(l) agents
on SIM AGENT. In Meyer, J.J. and Tambe, M., editors, Intelligent
Agents VIII, volume 2333 of LNAI, pages 158–174. Proceedings of the
Eighth International Workshop on Agent Theories, Architectures, and
Languages (ATAL-2001), Springer Verlag.

Machado, Rodrigo (2003). SIM Speak. http://www.inf.ufrgs.br/∼bordini/
SIM Speak.

MADKIT (1999). Multi-Agent Development KIT.
MAML (2003). Multi-agent systems modeling language. http://www.

maml.hu.
Mangina, Eleni (2002). Review of software products for multi-agent sys-

tems. survey, AgentLink.
Massonet, Philippe, Deville, Yves, and Neve, Cedric (2002). From AOSE

methodology to agent implementation. In Proceedings of the first in-
ternational joint conference on Autonomous agents and multiagent
systems, pages 27–34. ACM Press.



44

McCabe, F. G. and Clark, K. L. (1995). April - agent PRocess interac-
tion language. In M., Wooldridge and N., Jennings, editors, Intelligent
Agents, volume 890 of LNCS. Springer Verlag.

McCarthy, J. and Hayes, P. J. (1981). Some philosophical problems from
the standpoint of artificial intelligence. In Webber, B. L. and Nilsson,
N. J., editors, Readings in Artificial Intelligence, pages 431–450. Kauf-
mann, Los Altos, CA.

McCarthy, John (1978). History of LISP. In The first ACM SIGPLAN
conference on History of programming languages, pages 217–223.

Medvidovic, Nenad and Taylor, Richard N. (1997). A framework for
classifying and comparing architecture description languages. In Pro-
ceedings of the 6th European conference held jointly with the 5th ACM
SIGSOFT international symposium on Foundations of software engi-
neering, pages 60–76. Springer-Verlag New York, Inc.

Meyer, B. (1992). Applying design by contract. IEEE Computer, 25(10):40–
51.

Microsoft (2002). Distributed component object model. http://www.

microsoft.com.
Moss, Scott (2000). Editorial Introduction: Messy Systems The Target

for Multi Agent Based Simulation, volume 1979 of Lecture Notes in
Artificial Intelligence. Springer Verlag.

MOZART (2003). The mozart programming system. http://www.mozart-oz.
org.

Muller, J. P. (2003). The right agent (architecture) to do the right thing.
In Intelligent Agents V, volume LNCS 1555, pages 105–112. Springer-
Verlag.

Muller, Jorg P. (1996). The Design of Intelligent Agents, a layered ap-
proach, volume 1177 of LNCS. Springer Verlag.

Multi-Agent Systems Lab (03). Multi-agent systems lab. http://dis.
cs.umass.edu.

Multiagent and Cooperative Robotics Lab (2000). The agentool project.
http://www.cis.ksu.edu/\∼{}sdeloach/ai/agentool.htm.

Mylopoulos, J. and Castro, J. (2000). Tropos: A framework for requirements-
driven software development. In Proceedings of 12th Conference on
Advanced Information Systems Engineering (CAISE).

NASA (2003). C language integrated production system (CLIPS). http:
//www.ghgcorp.com/clips/CLIPS.html.

Ndumu, Divine T., Nwana, Hyacinth S., Lee, Lyndon C., and Collis,
Jaron C. (1999). Visualising and debugging distributed multi-agent
systems. In Proceedings of the third annual conference on Autonomous
Agents, pages 326–333. ACM Press.



REFERENCES 45

Nuseibeh, B. A. and Easterbrook, S. M. (2000). Requirements engineer-
ing: A roadmap. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE’00), pages 35–46.

Nwana, H. S. (1996). Software agents: An overview. The Knowledge En-
gineering Review, 11(3):205–244.

Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C. (1999). ZEUS:
A toolkit for building distributed multi-agent systems. Applied Arti-
ficial Intelligence Journal, 1(13):129–185.

Nwana, Hyacinth S. and Ndumu, Divine T. (1999). A perspective on soft-
ware agents research. The Knowledge Engineering Review, 14(2):1–18.

Odell, J., Parunak, H., and Bauer, B. (2000). Extending UML for agents.
Odell, J. Parunak, V. and Bauer, B. (2001). Representing agent inter-

action protocols in UML. In Ciancarini, P. and Wooldridge, M. J.
editors, Agent-oriented software engineering. Proceedings of the First
International Workshop (AOSE-2000), volume 1957 of LNAI, pages
121–140. Springer-Verlag.

OMG (03). XML metadata interchange version 1.1. http://www.omg.
org.

OMG (1999). Mobile Agent System Interoperability Facility (MASIF).
http://www.fokus.gmd.de/research/cc/ecco/masif.

OMG (2000a). CORBA 2.4.2 specification. http://www.omg.org.
OMG (2000b). Meta Object Facility (MOF). http://www.omg.org.
OMG (2000c). Unified Modeling Language Specification. Version 1.3.

http://www.omg.org.
OMG (2003). OMG Agent Platform Special Interest Group. http://

www.objs.com/agent/index.html.
Papadopoulos, George A. and Arbab, Farhad (1998). Coordination mod-

els and languages. In The Engineering of Large Systems, volume 46
of Advances In Computers. Elsevier.

Plosch, R.; Pichler, J.; (1999). Contracts: from analysis to C++ imple-
mentation. In Technology of Object-Oriented Languages and Systems,
pages 248–257. IEEE Computer.

Pollock, John L. (03). OSCAR. http://oscarhome.soc-sci.arizona.
edu/ftp/OSCAR-web-page/oscar.html.

Poutakidis, David, Padgham, Lin, and Winikoff, Michael (2002). Debug-
ging multi-agent systems using design artifacts: the case of interaction
protocols. In Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 960–967. ACM
Press.

Pree, W. (1995). State-of-the-art design pattern approaches: An overview.
In Technology of Object-Oriented Languages and Systems (TOOLS
95).



46

Pressman, Roger S. (1982). Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Series in Software Engineering and Technology.
McGraw-Hill, New York, 6th edition.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical com-
putable language. In van der Velde, W. and Perram, J. editors, Agents
Breaking Away: Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-
96), volume 1038 of LNAI, pages 42–55. Springer-Verlag.

Rao, Anand S. and Georgeff, Michael P. (1991). Modeling rational agents
within a BDI-architecture. In Allen, James, Fikes, Richard, and Sande-
wall, Erik, editors, Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning (KR’91),
pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA.

Rich, E. and Knight, K. (1990). Artificial Intelligence. McGraw-Hill.
Ricordel, P.-M. and Demazeau, Y. (2000). From analysis to deployment:

A multi-agent platform survey. In Working Notes of the First In-
ternational Workshop on Engineering Societies in the Agents’ World
(ESAW-00), pages 93–105.

Roli, F. Zambonelli A. (2002). Emergent behaviors in dissipative cellular
automata. In 5th International Conference on Cellular Automata for
Research and Industry (ACRI 2002), Geneva.

Rosenschein, S. J. and Kaelbling, L. P. (1995). A situated view of rep-
resentation and control. Artificial Intelligence, 73(1/2):149–173.

Russell, S. J. and Norvig, P. (1995a). Artificial Intelligence. A Modern
Approach, chapter AI: Present and Future, pages 842–849. Prentice
Hall, Englewood Cliffs, New Jersey.

Russell, S. J. and Norvig, P. (1995b). Artificial Intelligence. A Modern
Approach. Prentice Hall, Englewood Cliffs, New Jersey.

Sadri, F. and Toni, F. (1999). Computational logic and multiagent sys-
tems: a roadmap. Tech report, Compulog Net at DFKI SB.

Schobbens, Pierre-Yves (2003). The ALBERT requirements engineering
research group homepage. http://www.info.fundp.ac.be/albert/.

Sen, Sandip and Weiß, Gerhard (1999). Learning in multiagent systems.
In Weiß, G. editor, Multiagent Systems, pages 259–299. The MIT
Press, Cambridge et al.

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence,
60(1):51–92.

Shoham, Y. and M., Tennenholtz (1995). On social laws for artificial
agent societies: off-line design. Artificial Intelligence, 73(1-2):231–252.



REFERENCES 47

Sichman, J. S., Conte, R., Demazeau, Y., and Castelfranchi, C. (1994). A
social reasoning mechanism based on dependence networks. In Proc.
European Conference on Cognitive Science.

Sichman, Jaime Simao (1998). Depint: Dependence-based coalition for-
mation in an open multi-agent scenario. Journal of Artificial Societies
and Social Simulation, 1(2).

Sichman, Jaime Simao and Demazeau, Yves (2001). On social reasoning
in multi-agent systems. Revista Iberoamericana de Inteligencia Arti-
ficial, 3(13):68–84.

Singh, M. (1997). Formal methods in DAI: logic based representation and
reasoning. Multiagent Systems - A Modern Approach to Distributed
Artificial Intelligence, pages 331–376.

SOFAQ (2003). Self-organisation FAQ. http://www.calresco.org/sos.
Sommerville, Ian (2001). Software Engineering. International Computer

Sciences Series. Addison-Wesley, Harlow, UK, 6th edition.
Spivey, J. M. (1992a). The Z Notation. Prentice Hall, Hempstead, 2nd

edition.
Spivey, J. M. (1992b). The Z Notation: a reference manual. Prentice

Hall.
Stanford Medical Informatics (2003). Protegè. http://protege.stanford.

edu.
Stohr, Edward A. and Zhao, J. Leon (2001). Workflow automation:

Overview and research issues. Information Systems Frontiers, 3(3):281–
296.

Stone, Peter and Veloso, Manuela (2000). Multiagent systems: A survey
from a machine learning perspective. Autonomous Robots, 8(3):345–
383.

Swarm (2000). Swarm Development Group, http://www.swarm.org/.
Sycara, K, Klusch, M., idof, S., and Lu, J (1999). Dynamic service

matchmaking among agents in open information environments. Jour-
nal ACM SIGMOD Record , Special Issue on Semantic Interoperability
in Global Information Systems.

Telecomm Italia LAB (1999). Java Agent DEvelopment framework (JADE).
http://sharon.cselt.it/projects/jade/.

The Intelligent Software Agents Lab (2000). Reusable environment for
task-structured intelligent networked agents (RETSINA). http://

www-2.cs.cmu.edu/\∼softagents/.
Thomas, S. R. (1995). The PLACA agent programming language. In

Wooldridge, M. J. and Jennings, N. R. editors, Intelligent Agents,
volume 890 of LNAI, pages 355–370. Springer-Verlag, Berlin et al.



48

Union, International Telecommunication (99 A.D.). ITU 100:formal de-
scription techniques (FDT)- specification and description language
(SDL). Report.

van der Hoek, Wiebe (2001). Logical foundations of agent-based com-
puting. In Luck, Michael, Maŕık, Vladimı́r, Stepánková, Olga, and
Trappl, Robert, editors, Multi-Agent Systems and Applications, 9th
ECCAI Advanced Course ACAI 2001 and Agent Link’s 3rd European
Agent Systems Summer School, volume 2086 of LNCS. Springer.

van Lamsweerde, A. (2000). Requirements engineering in the year 00: A
research perspective. In Proceedings of the 22nd International Con-
ference on Software Engineering (ICSE’00), pages 5–19.

van Lamsweerde, R. Darimont A. and Massonet, Ph. (1995). Goal-directed
elaboration of requirements for a meting scheduler: Problems and
lessons learnt. In Proceedings RE’95 - Second International Confer-
ence on Requirements Engineering, pages 194–203. IEEE Computer
Society Press.

Van Roy, Peter and Haridi, Seif (1999). Mozart: A programming system
for agent applications. In International Workshop on Distributed and
Internet Programming with Logic and Constraint Languages.

Visser, William, Park, SeungJoon, and Penix, John (2000). Using predi-
cate abstraction to reduce object-oriented programs for model check-
ing. In Proceedings of the third workshop on Formal methods in soft-
ware practice, pages 3–182. ACM Press.

W3C (03). W3C resource description framework (RDF) activity page.
http://www.w3.org/RDF/.

Weiß, G. editor (1999). Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence. The MIT Press, Cambridge, MA.

Weiß, Gerhard (2003). Agent orientation in software engineering. Knowl-
edge Engineering Review, 16(4):349–373.

Weiß, Gerhard, Rovatsos, Michael, and Nickles, Matthias (2003). Cap-
turing agent autonomy in roles and XML. In Proceedings of the second
international joint conference on Autonomous agents and multiagent
systems, pages 105–112. ACM Press.

Whitaker, Randall (2003). ACM SIGGROUP: Self-organization, autopoiesis,
and enterprises. http://www.acm.org/sigois/auto/Main.html.

Wood, M. and DeLoach, S. A. (2001). An overview of the multiagent
systems engineering methodology. In Ciancarini, P. and Wooldridge,
M. J. editors, Agent-oriented software engineering. Proceedings of the
First International Workshop (AOSE-2000), volume 1957 of LNAI,
pages 207–222. Springer-Verlag.

Wooldridge, M. (1997). Agent-based software engineering. IEE Proceed-
ings Software Engineering, 144(1):26–37.



REFERENCES 49

Wooldridge, M., Jennings, Nicholas R., and Kinny, D. (2000). The gaia
methodology for agent-oriented analysis and design. Journal of Au-
tonomous Agents and Multi-Agent Systems, 15.

Wooldridge, M. J. (1992). The Logical Modelling of computational Multi-
Agent Systems. PhD thesis, Department of Computation, UMIST,
Manchester, UK.

Wooldridge, M. J. and Jennings, N. R. (1995a). Agent theories, architec-
tures, and languages: A survey. In Wooldridge, M. J. and Jennings,
N. R. editors, Intelligent Agents, volume 890 of LNAI, pages 1–39.
Springer-Verlag, Berlin et al.

Wooldridge, Michael, Fisher, Michael, Huget, Marc-Philippe, and Par-
sons, Simon (2002). Model checking multi-agent systems with MABLE.
In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 952–959. ACM Press.

Wooldridge, Michael J. and Jennings, Nicholas R. (1995b). Intelligent
Agents: Theory and Practice. Knowledge Engineering Review, 10(2):115–
152.

Wooldridge, Mike and Ciancarini, P. (2000). Agent-Oriented Software
Engineering: The State of the Art. In Ciancarini, P. and Wooldridge,
M., editors, First Int. Workshop on Agent-Oriented Software Engi-
neering, volume 1957, pages 1–28. Springer-Verlag, Berlin.

Xu, Dianxiang, Volz, Richard, Ioerger, Thomas, and Yen, John (2002).
Modeling and verifying multi-agent behaviors using predicate/transition
nets. In Proceedings of the 14th international conference on Software
engineering and knowledge engineering, pages 193–200. ACM Press.

Yu, E. (1999). Strategic modelling for enterprise integration. In Chen,
Han-Fu, Cheng, Dai-Zhan, and Zhang, Ji-Feng, editors, Proceedings
14 th World Congress of the International Federation of Automatic
Control, IFAC Proceedings Volumes. Elsevier Science Ltd.

Yu, E. S. K. (1997a). Towards modelling and reasoning support for early-
phase requirements engineering. In Proceedings of 3rd International
Symposium on Requirements Engineering, pages 226–235. IEEE.

Yu, E. S. K. (1997b). Why agent-oriented requirements engineering?
In Proceedings of 3rd International Workshop on Requirements Engi-
neering: Foundations for Software Quality.

Yu, E. S. K. and Mylopoulos, J. (1998). Why goal-oriented requirements
engineering? In Proceedings of the 4th International Workshop on Re-
quirements Engineering, pages 15–22. IEEE.

Yu, Eric (03a). Eric yu home page. http://www.cs.toronto.edu/∼eric.
Yu, Eric (03b). GRL web site. http://www.cs.toronto.edu/km/GRL.
Yu, Eric and Liu, Lin (03). Organization modelling environment. http:

//www.cs.toronto.edu/km/ome.



50

Yu, Eric and Liu, Lin (2002). Designing web-based systems in social con-
text: A goal and scenario based approach. In Advanced Information
Systems Engineering, volume 2348 of LNCS, pages 37–51. Interna-
tional Conference, CAiSE 2002 Toronto, Canada, Springer Verlag.

Yu, Eric, Liu, Lin, and Li, Ying (2001). Modelling strategic actor rela-
tionships to support intellectual property management. In Conceptual
Modeling - ER 2001, volume 2224 of LNCS, pages 164–178. Springer
Verlag.

Yves Lesperance, Todd G. Kelley, John Mylopoulos and Yu, Eric S. K.
(1999). Modeling dynamic domains with congolog. In Jarke, A. Ober-
weis M., editor, CAiSE’99, volume 1626 of LNCS, pages 365–380.
Springer Verlag.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2000). Organi-
sational abstractions for the analysis and design of multi-agent sys-
tems. In Ciancarini, P. and Wooldridge, M. J. editors, Agent-oriented
software engineering. Proceedings of the First International Workshop
(AOSE-2000), volume 1957 of LNCS, pages 127–141. Springer-Verlag.

Zave, Pamela (1997). Classification of research efforts in requirements
engineering. ACM Computing Surveys (CSUR), 29(4):315–321.


