
6 Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

6.1 Introduction

Learning and intelligence are intimately related to each other. It is usually agreed

that a system capable of learning deserves to be called intelligent; and conversely,

a system being considered as intelligent is, among other things, usually expected to

be able to learn. Learning always has to do with the self-improvement of future

behavior based on past experience. More precisely, according to the standard

artificial intelligence (AI) point of view learning can be informally defined as follows:

The acquisition of new knowledge and motor and cognitive skills and

the incorporation of the acquired knowledge and skills in future system

activities, provided that this acquisition and incorporation is conducted

by the system itself and leads to an improvement in its performance.

This definition also serves as a basis for this chapter. Machine learning (ML), as

one of the core fields of AI, is concerned with the computational aspects of learning

in natural as well as technical systems. It is beyond the scope and intention of

this chapter to offer an introduction to the broad and well developed field of ML.

Instead, it introduces the reader into learning in multiagent systems and, with that,

into a subfield of both ML and distributed AI (DAI). The chapter is written such

that it can be understood without requiring familiarity with ML.

The intersection of DAI and ML constitutes a young but important area of

research and application. The DAI and the ML communities largely ignored this

area for a long time (there are exceptions on both sides, but they just prove the

rule). On the one hand, work in DAI was mainly concerned with multiagent systems

whose structural organization and functional behavior typically were determined

in detail and therefore were more or less fixed. On the other hand, work in ML

primarily dealt with learning as a centralized and isolated process that occurs in

intelligent stand-alone systems. In the past this mutual ignorance of DAI and ML

has disappeared, and today the area of learning in multiagent systems receives broad

and steadily increasing attention. This is also reflected by the growing number of

publications in this area; see [23, 24, 43, 45, 64, 66, 68] for collections of papers

related to learning in multiagent systems. There are two major reasons for this

attention, both showing the importance of bringing DAI and ML together:

weiss
Text Box
 In: G. Weiß (ed.), Multiagent Systems, Chapter 6, pp. 259-298, MIT Press, 1999.

260 Learning in Multiagent Systems

there is a strong need to equip multiagent systems with learning abilities; and

an extended view of ML that captures not only single-agent learning but also

multiagent learning can lead to an improved understanding of the general

principles underlying learning in both computational and natural systems.

The first reason is grounded in the insight that multiagent systems typically are in-

tended to act in complex—large, open, dynamic, and unpredictable—environments.

For such environments it is extremely difficult and sometimes even impossible to

correctly and completely specify these systems a priori, that is, at the time of their

design and prior to their use. This would require, for instance, that it is known a

priori which environmental conditions will emerge in the future, which agents will

be available at the time of emergence, and how the available agents will have to re-

act and interact in response to these conditions. The only feasible way to cope with

this difficulty is to endow the individual agents with the ability to improve their

own and the overall system performance. The second reason reflects the insight

that learning in multiagent systems is not just a magnification of learning in stand-

alone systems, and not just the sum of isolated learning activities of several agents.

Learning in multiagent systems comprises learning in stand-alone systems because

an agent may learn in a solitary way and completely independent of other agents.

Moreover, learning in multiagent systems extends learning in stand-alone systems.

This is because the learning activities of an individual agent may be considerably

influenced (e.g., delayed, accelerated, redirected, or made possible at all) by other

agents and because several agents may learn in a distributed and interactive way as

a single coherent whole. Such an extended view of learning is qualitatively different

from the view traditionally taken in ML, and has the capacity to provoke valuable

research impulses that lead to novel machine learning techniques and algorithms.

The chapter is organized as follows. First, Section 6.2 presents a general char-

acterization of learning in multiagent systems. Next, Sections 6.3 to 6.5 describe

several concrete learning approaches in detail. These sections offer three major,

overlapping perspectives of learning in multiagent systems, each reflecting a dif-

ferent focus of attention: learning and activity coordination; learning about and

from other agents; and learning and communication. Section 6.6 shows open direc-

tions for future research, and gives some further references to related work in ML,

economics, and psychology.

6.2 A General Characterization

Learning in multiagent systems is a many-faceted phenomenon, and it is therefore

not surprising that many terms can be found in the literature that all refer to

this kind of learning while stressing different facets. Examples of such terms are:

mutual learning, cooperative learning, collaborative learning, co-learning, team

learning, social learning, shared learning, pluralistic learning, and organizational

learning. The purpose of this section is to make the different facets more explicit

6.2 A General Characterization 261

by offering a general characterization of learning in multiagent systems. This

is done by describing, from the point of view of multiagent systems, principal

categories of learning, basic features in which learning approaches may differ,

and the fundamental learning problem known as the credit-assignment problem.

The intention of this section is to enable the reader to basically characterize

algorithms for learning in multiagent systems, and to get an understanding of what

makes this kind of learning different from learning in stand-alone systems. (Further

considerations of how to characterize learning in multiagent systems can be found

in [63].)

6.2.1 Principal Categories

It is useful to distinguish two principal categories of learning in multiagent systems:

centralized learning (or isolated learning) and

decentralized learning (or interactive learning).

In order to make clear what kinds of learning are covered by these two categories

we introduce the notion of a learning process :

The term learning process refers to all activities (e.g., planning, inference

or decision steps) that are executed with the intention to achieve a

particular learning goal.

Learning is said to be centralized if the learning process is executed in all its parts

by a single agent and does not require any interaction with other agents. With

that, centralized learning takes place through an agent completely independent

of other agents—in conducting centralized learning the learner acts as if it were

alone. Learning is said to be decentralized if several agents are engaged in the

same learning process. This means that in decentralized learning the activities

constituting the learning process are executed by different agents. In contrast to

centralized learning, decentralized learning relies on, or even requires, the presence

of several agents capable of carrying out particular activities.

In a multiagent system several centralized learners that try to obtain different

or even the same learning goals may be active at the same time. Similarly, there

may be several groups of agents that are involved in different decentralized learning

processes. Moreover, the learning goals pursued by such groups may be different or

identical. It is also important to see that a single agent may be involved in several

centralized and/or distributed learning processes at the same time. Centralized

and decentralized learning are best interpreted as two appearances of learning in

multiagent systems that span a broad range of possible forms of learning. Learning

features that can be applied to structure this broad range are shown in the next

subsection.

262 Learning in Multiagent Systems

6.2.2 Differencing Features

The two learning categories described above are of a rather general nature, and they

cover a broad variety of forms of learning that can occur in multiagent systems.

In the following, several differencing features are described that are useful for

structuring this variety. The last two features, which are well known in the field of

ML (see, e.g., [6] where several other features are described), are equally well suited

for characterizing centralized and decentralized learning approaches. The others are

particularly or even exclusively useful for characterizing decentralized learning.

(1) The degree of decentralization. The decentralization of a learning process

concerns its

distributedness and

parallelism.

One extreme is that a single agent carries out all learning activities sequentially. The

other extreme is that the learning activities are distributed over and parallelized

through all agents in a multiagent system.

(2) Interaction-specific features. There is a number of features that can be

applied to classifying the interactions required for realizing a decentralized learning

process. Here are some examples:

the level of interaction (ranging from pure observation over simple signal passing

and sophisticated information exchange to complex dialogues and negotiations);

the persistence of interaction (ranging from short-term to long-term);

the frequency of interaction (ranging from low to high);

the pattern of interaction (ranging from completely unstructured to strictly

hierarchical); and

the variability of interaction (ranging from fixed to changeable).

There may be situations in which learning requires only “minimal interaction” (e.g.,

the observation of another agent for a short time interval), whereas other learning

situations require “maximal interaction” (e.g., iterated negotiation over a long time

period).

(3) Involvement-specific features. Examples of features that can be used for

characterizing the involvement of an agent into a learning process are

the relevance of involvement and

role played during involvement.

With respect to relevance, two extremes can be distinguished: the involvement of

an agent is not a condition for goal attainment because its learning activities could

be executed by another available agent as well; and to the contrary, the learning

goal could not be achieved without the involvement of exactly this agent. With

6.2 A General Characterization 263

respect to the role an agent plays in learning, an agent may act as a “generalist”

in so far as it performs all learning activities (in the case of centralized learning),

or it may act as a “specialist” in so far as it is specialized in a particular activity

(in the case of decentralized learning).

(4) Goal-specific features. Two examples of features that characterize learning

in multiagent systems with respect to the learning goals are

the type of improvement that is tried to be achieved by learning and

the compatibility of the learning goals pursued by the agents.

The first feature leads to the important distinction between learning that aims at

an improvement with respect to a single agent (e.g., its motor skills or inference

abilities) and learning that aims at an improvement with respect to several agents

acting as a group (e.g., their communication and negotiation abilities or their

degree of coordination and coherence). The second feature leads to the important

distinction between conflicting and complementary learning goals.

(5) The learning method. The following learning methods or strategies used by

an agent are usually distinguished:

rote learning (i.e., direct implantation of knowledge and skills without requiring

further inference or transformation from the learner);

learning from instruction and by advice taking (i.e., operationalization—

transformation into an internal representation and integration with prior knowl-

edge and skills—of new information like an instruction or advice that is not

directly executable by the learner);

learning from examples and by practice (i.e., extraction and refinement of

knowledge and skills like a general concept or a standardized pattern of motion

from positive and negative examples or from practical experience);

learning by analogy (i.e., solution-preserving transformation of knowledge and

skills from a solved to a similar but unsolved problem);

learning by discovery (i.e., gathering new knowledge and skills by making

observations, conducting experiments, and generating and testing hypotheses

or theories on the basis of the observational and experimental results).

A major difference between these methods lies in the amount of learning efforts

required by them (increasing from top to bottom).

(6) The learning feedback. The learning feedback indicates the performance

level achieved so far. This feature leads to the following distinction:

supervised learning (i.e., the feedback specifies the desired activity of the learner

and the objective of learning is to match this desired action as closely as possible);

reinforcement learning (i.e., the feedback only specifies the utility of the actual

activity of the learner and the objective is to maximize this utility);

264 Learning in Multiagent Systems

unsupervised learning (i.e., no explicit feedback is provided and the objective

is to find out useful and desired activities on the basis of trial-and-error and

self-organization processes).

In all three cases the learning feedback is assumed to be provided by the system

environment or the agents themselves. This means that the environment or an

agent providing feedback acts as a “teacher” in the case of supervised learning, as

a “critic” in the case of reinforcement learning, and just as a passive “observer” in

the case of unsupervised learning.

These features characterize learning in multiagent systems from different points

of view and at different levels. In particular, they have a significant impact on

the requirements on the abilities of the agents involved in learning. Numerous

combinations of different values for these features are possible. It is recommended

that the reader thinks about concrete learning scenarios (e.g., ones known from

everyday life), their characterizing features, and how easy or difficult it would be

to implement them.

6.2.3 The Credit-Assignment Problem

The basic problem any learning system is confronted with is the credit-assignment

problem (CAP), that is, the problem of properly assigning feedback—credit or

blame—for an overall performance change (increase or decrease) to each of the sys-

tem activities that contributed to that change. This problem has been traditionally

considered in the context of stand-alone systems, but it also exists in the context

of multiagent systems. Taking the standard AI view according to which the activi-

ties of an intelligent system are given by the external actions carried out by it and

its internal inferences and decisions implying these actions, the credit-assignment

problem for multiagent systems can be usefully decomposed into two subproblems:

the inter-agent CAP , that is, the assignment of credit or blame for an overall

performance change to the external actions of the agents; and

the intra-agent CAP , that is, the assignment of credit or blame for a particular

external action of an agent to its underlying internal inferences and decisions.

Figures 6.1 and 6.2 illustrate these subproblems. The inter-agent CAP is particu-

larly difficult for multiagent systems, because here an overall performance change

may be caused by external actions of different spatial and/or logically distributed

agents. Solving this subproblem necessitates to operate on the level of the over-

all system, and to answer the question of what action carried out by what agent

contributed to what extent to the performance change. The second subproblem is

equally difficult in single-agent and multiagent systems. Solving this sub-problem

necessitates to operate on the level of the individual agent, and to answer the ques-

tion of what knowledge, what inferences and what decisions led to an action. How

difficult it is to answer these questions and, with that, to solve the CAP, depends

on the concrete learning situation.

6.2 A General Characterization 265

Figure 6.1 Inter-agent CAP. The overall system consists of four agents. The ith

agent is represented by ©i . A feedback F for an overall performance change is

“decomposed” into action-specific portions Fij , where Fij indicates to what degree

the jth external action carried out by the ith agent contributes to F.

Figure 6.2 Intra-agent CAP. Agent 3 carried out three actions, each based on

internal knowledge (2), inferences (�) and decisions (3). The feedback F33 for

action 3, for instance, is divided among an inference and a decision step. Action 1

is assumed to have no influence on the overall performance change.

The above description of the CAP is of a conceptual nature, and aims at a clear

distinction between the inter-agent and intra-agent subproblems. In practice this

distinction is not always obvious. Moreover, typically the available approaches to

learning in multiagent systems do not explicitly differ between the two subproblems,

or just focus on one of them while strongly simplifying the other. In any case, it

is useful to be aware of both subproblems when attacking a multiagent learning

problem.

266 Learning in Multiagent Systems

6.3 Learning and Activity Coordination

This section is centered around the question of how multiple agents can learn to

appropriately coordinate their activities (e.g., in order to optimally share resources

or to maximize one own’s profit). Appropriate activity coordination is much con-

cerned with the development and adaptation of data-flow and control patterns that

improve the interactions among multiple agents (see also Chapters 2, 3, and 7).

Whereas previous research on developing agent coordination mechanisms focused

on off-line design of agent organizations, behavioral rules, negotiation protocols,

etc., it was recognized that agents operating in open, dynamic environments must

be able to adapt to changing demands and opportunities [29, 44, 68]. In particular,

individual agents are forced to engage with other agents that have varying goals,

abilities, composition, and lifespan. To effectively utilize opportunities presented

and avoid pitfalls, agents need to learn about other agents and adapt local behav-

ior based on group composition and dynamics. To represent the basic problems and

approaches used for developing coordination through learning, two of the earliest

research efforts in the area of multiagent learning will be described below. The first

is work by Sen and his students [47] on the use of reinforcement learning techniques

for the purpose of achieving coordination in multiagent situations in which the indi-

vidual agents are not aware of each another. The second approach is work by Weiss

on optimization of environmental reinforcement by a group of cooperating learn-

ers [62]. (Both approaches were developed in the first half of the 1990s, and thus at

a time of intensified interest in reinforcement learning techniques. It is stressed that

several other reinforcement learning methods were described in the literature that

could be also used to demonstrate the scope and benefits of learning to coordinate

in multiagent settings; we choose the two approaches mentioned above because we

are particular familiar with them.) To enable the reader to follow the discussion of

the use of reinforcement learning techniques, a brief overview of the reinforcement

learning problem and a couple of widely used techniques for this problem class is

presented.

6.3.1 Reinforcement Learning

In reinforcement learning problems [3, 26] reactive and adaptive agents are given

a description of the current state and have to choose the next action from a set of

possible actions so as to maximize a scalar reinforcement or feedback received after

each action. The learner’s environment can be modeled by a discrete time, finite

state, Markov decision process that can be represented by a 4-tuple 〈S, A, P, r〉

where S is a set of states, A is a set of actions, P : S × S × A 7→ [0, 1] gives the

probability of moving from state s1 to s2 on performing action a, and r : S×A 7→ <

is a scalar reward function. Each agent maintains a policy, π, that maps the current

state into the desirable action(s) to be performed in that state. The expected

value of a discounted sum of future rewards of a policy π at a state x is given

by V π
γ

def
= E{

∑∞
t=0 γtrπ

s,t}, where rπ
s,t is the random variable corresponding to the

6.3 Learning and Activity Coordination 267

reward received by the learning agent t time steps after if starts using the policy π

in state s, and γ is a discount rate (0 ≤ γ < 1).

Q-Learning

Various reinforcement learning strategies have been proposed that can be used by

agents to develop a policy for maximizing rewards accumulated over time. For

evaluating the classifier system paradigm for multiagent reinforcement learning

described below, it is compared with the Q-learning [59] algorithm, which is

designed to find a policy π∗ that maximizes V π
γ (s) for all states s ∈ S. The

decision policy is represented by a function, Q : S × A 7→ <, which estimates

long-term discounted rewards for each state-action pair. The Q values are defined

as Qπ
γ (s, a) = V a;π

γ (s), where a; π denotes the event sequence of choosing action a

at the current state, followed by choosing actions based on policy π. The action, a,

to perform in a state s is chosen such that it is expected to maximize the reward,

V π∗

γ (s) = max
a∈A

Qπ∗

γ (s, a) for all s ∈ S.

If an action a in state s produces a reinforcement of R and a transition to state s′,

then the corresponding Q value is modified as follows:

Q(s, a)← (1− β) Q(s, a) + β (R + γ max
a′∈A

Q(s′, a′)) ,

where β is a small constant called learning rate.

Learning Classifier Systems

Classifier systems are rule based systems that learn by adjusting rule strengths from

environmental feedback and by discovering better rules using genetic algorithms. In

the following a simplified classifier system is used where all possible message action

pairs are explicitly stored and classifiers have one condition and one action. These

assumptions are similar to those made by Dorigo and Bersini [15]. Following their

notation, a classifier i is described by (ci, ai), where ci and ai are respectively the

condition and action parts of the classifier. St(ci, ai) gives the strength of classifier

i at time step t.

All classifiers are initialized to some default strength. At each time step of problem

solving, an input message is received from the environment and matched with the

classifier rules to form a matchset, M. One of these classifiers is chosen to fire

and, based on its action, a feedback may be received from the environment. Then

the strengths of the classifier rules are adjusted. This cycle is repeated for a given

number of time steps. A series of cycles constitute a trial of the classifier system. In

the bucket brigade algorithm (BBA) for credit allocation, when a classifier is chosen

to fire, its strength is increased by the environmental feedback. But before that, a

fraction α of its strength is removed and added to the strength of the classifier that

fired in the last time cycle. So, if (i) the firing of classifier i at time step t results in

268 Learning in Multiagent Systems

an external feedback R and (ii) classifier j fires at the next time step, the following

equation gives the strength update of classifier i:

St+1(ci, ai) = (1− α) ∗ St(ci, ai) + α ∗ (R + St+1(cj , aj)) .

It is instructive to note that the BBA and Q-learning credit allocation schemes are

similar in nature.

6.3.2 Isolated, Concurrent Reinforcement Learners

Reinforcement learning techniques can be used by agents to develop action selection

policies to optimize environmental feedback by forming a mapping between percep-

tions and actions. A particular advantage of these techniques is the fact that they

can be used in domains in which agents have little or no pre-existing domain ex-

pertise, and have little information about the capabilities and goals of other agents.

The lack of this useful information makes the coordination problem particularly

hard. Almost all currently used coordination mechanisms rely heavily on domain

knowledge and shared information between agents. The position espoused here is

that reinforcement learning approaches can be used as new coordination techniques

for domains where currently available coordination schemes are ineffective.

A related question is: should agents choose not to use communication while learn-

ing to coordinate (see 6.5)? Though communication is often helpful and indispens-

able as an aid to group activity, it does not guarantee coordinated behavior [20], is

time-consuming, and can detract from other problem-solving activity if not care-

fully controlled [16]. Also, agents overly reliant on communication will be severely

affected if the quality of communication is compromised (broken communication

channels, incorrect or deliberately misleading information, etc.). At other times,

communication can be risky or even fatal (as in some combat situations where

the adversary can intercept communicated messages). Even when communication

is feasible and safe, it is prudent to use it only when absolutely necessary. Such

a design philosophy produces systems where agents do not flood communication

channels with unwarranted information. As a result, agents do not have to shift

through a maze of useless data to locate necessary and time-critical information.

In the isolated, concurrent form of learning discussed here, each agent learns to

optimize its reinforcement from the environment. Other agents in the environment

are not explicitly modeled. As such, an interesting research question is whether it is

feasible for such an agent to use the same learning mechanism in both cooperative

and non-cooperative environments.

An underlying assumption of most reinforcement learning techniques is that the

dynamics of the environment is not affected by other agencies. This assumption is

invalid in domains with multiple, concurrent learners. A valid concern, therefore, is

whether standard reinforcement learning techniques will be adequate for concurrent,

isolated learning of coordination. More generally, the following dimensions were

identified to characterize domains amenable to concurrent, isolated, reinforcement

learning (referred to as CIRL henceforth) approach:

6.3 Learning and Activity Coordination 269

Agent coupling: In some domains the actions of one agent strongly and frequently

affect the plans of other agents (tightly coupled system), whereas in other domains

the actions of one agent only weakly and infrequently affect the plans of other

agents (loosely coupled system).

Agent relationships: Agents in a multiagent system can have different kinds of

mutual relationships:

they may act in a group to solve a common problem (cooperative agents),

they may not have any preset disposition towards each other but interact because

they use common resources (indifferent agents),

they may have opposing interests (adversarial agents).

For the discussions in this chapter, the latter two classes of domains are grouped

as non-cooperative domains.

Feedback timing: In some domains, the agents may have immediate knowledge

of the effects of their actions, whereas in others they may get the feedback for their

actions only after a period of delay.

Optimal behavior combinations: How many behavior combinations of partici-

pating agents will optimally solve the task at hand? This value varies from one to

infinity for different domains.

To evaluate these questions, both Q-learning and classifier systems were used in

three different domains:

Block pushing: Two agents individually learn to push a box from a starting loca-

tion to a goal location along a given trajectory. Both cooperative (two agents have

same goal location) and competitive (two agents have distinct goal locations) situ-

ations are studied. Feedback is based on the deviation of box location from desired

path. Domain characteristics are: concurrent learning by two agents with immediate

environmental feedback; strongly coupled system; multiple optimal behaviors.

Resource sharing: Given individual task loads, two agents have to learn to share

a resource over a time period. Domain characteristics are: delayed environmental

feedback; strongly coupled system; single optimal behavior.

Robot navigation: Two robots learn to navigate intersecting paths on a grid

without colliding. Domain characteristics: immediate environmental feedback; vari-

able coupling; multiple optimal behaviors.

The basic conclusion from these series of experiments is that CIRL provides a

novel paradigm for multiagent systems through which both friends and foes can

concurrently acquire useful coordination knowledge. Neither prior knowledge about

domain characteristics nor an explicit model about capabilities of other agents is

required. The limitation of this approach lies in the inability of CIRL to develop

effective coordination when agent actions are strongly coupled, feedback is delayed,

and there is one or only a few optimal behavior combinations. A possible partial

fix to this problem would be to use some form of staggered or lock-step learning. In

270 Learning in Multiagent Systems

this approach, each agent can learn for a period of time, then execute its current

policy without modification for some time, then switch back to learning, etc. Two

agents can synchronize their behavior so that one is learning while the other is

following a fixed policy and vice versa. Even if perfect synchronization is infeasible,

the staggered learning mode is likely to be more effective than the concurrent

learning mode.

Other interesting observations include the following:

In cooperative situations, agents can learn complimentary policies to solve the

problem. This amounts to role specialization rather than developing identical

behavior. This phenomenon has been observed by other researchers when global

reinforcement is used [1].

Agents can transfer learning to similar situations, i.e., once agents learn to

coordinate for a given problem, they can learn to coordinate quickly for a similar

problem.

6.3.3 Interactive Reinforcement Learning of Coordination

In contrast to the above-mentioned work, Weiss [62] investigates agents explicitly

communicating to decide on individual and group actions. The learning approach

used is a modification of the BBA scheme for classifier systems. In this approach,

agents can observe the set of actions being considered by other agents, and ac-

cordingly can eliminate incompatible actions from its local choices. Two variants of

the BBA algorithm, the Action Estimation (ACE) and Action Group Estimation

(AGE) algorithms, are investigated that requires varying degree of involvement and

coordination effort on the part of the group members. The underlying assumption of

this work is that the agents are working to optimize a group goal. Below simplified

versions of the ACE and AGE algorithms are presented. An algorithm called Dis-

solution and Formation of Groups (DFG), which is based on these two algorithms

but explicitly models group development processes, is described in [61].

Action Estimation Algorithm (ACE): Given its perception, Si, of the current

environmental state, S, each agent, ai, in a group first calculates the set of actions,

Ai(S), it can execute in that state. For each such executable action, A
j
i ∈ Ai(S),

an agent calculates the goal relevance, E
j
i (S), of that action. For all actions whose

estimated goal relevance is above a threshold, the agent calculates and announces

to other agents a bid that is proportional to its goal relevance plus a noise term, β

(to prevent convergence to local minima):

B
j
i (S) = (α + β)Ej

i (S) ,

where α is a small constant risk factor .

The action with the highest bid is selected for execution, and incompatible actions

are eliminated from consideration. This process is repeated until all actions for

which bids were submitted are either selected or eliminated. Selected actions form

6.3 Learning and Activity Coordination 271

the activity context, A. Then a BBA type mechanism is used to reduce the estimates

of the selected action, with the total reduced amount being distributed among

actions in the previous activity context. If upon the execution of actions in the

current activity context the system receives external payoff, the latter is equally

distributed among the executed actions. The goal of this estimate reassignment is to

enable successful action sequences to increase in estimate over time and to suppress

the estimates of ineffective actions. The net estimate update for any action selected

for execution is as follows:

E
j
i (S)← E

j
i (S)−B

j
i (S) +

R

|A|
,

where R is the external rewards received. The bid values paid out are then summed

up and redistributed equally between all actions Al
k executed in the immediately

previous activity context, B, corresponding the previous state S ′:

El
k(S′)← El

k(S′) +

∑
A

j

i
∈A B

j
i (S)

|B|
.

Action Group Estimation Algorithm (AGE): In the AGE algorithm, first

the applicable actions from all agents in a given environmental state are collected.

From these action sets, the set of all activity contexts, A(S) is calculated where an

activity context, A, consists of any set of mutually compatible actions:

A(S) = {A : ∀Al
k, A

j
i ∈ A, Al

k and A
j
i are compatible } .

Then, for each activity context, bids are collected from each agent for all of its

actions in that activity context:

B
j
i (S,A) = (α + β)Ej

i (S,A) ,

where E
j
i (S,A) is ai’s estimate of goal relevance of action A

j
i given its perception

Si of state S and the activity context A. The activity context with the highest sum

of bids for the actions contained is selected, and all the actions contained in it are

executed by respective agents.

Let A be the activity context selected as above. Then for each A
j
i ∈ A agent ai

modifies its estimate as follows:

E
j
i (S,A)← E

j
i (S,A)−B

j
i (S,A) +

R

|A|
.

The total bid paid out in the current activity activity context is distributed among

actions executed in the previous activity context in a manner analogous to the ACE

algorithm:

El
k(S′,B)← El

k(S′,B) +

∑
A

j

i
∈A B

j
i (S,A)

|B|
.

272 Learning in Multiagent Systems

From the above descriptions, it is clear that the AGE algorithm requires more

computational effort. The possible gain is the use of a global view in selecting the

activity context. The conjecture is that this will lead to better system performance.

To test this conjecture, a multiagent blocks world domain is used, where each agent

is capable of performing only some of the necessary operations in the environment.

Experiments demonstrated that both the ACE and AGE algorithms enabled

agents to learn coordinated behavior in the sense that the agents were able to

much more effectively solve problems compared to random action selection. AGE

produced more effective coordination compared to ACE but at the cost of increased

higher space and computation costs. Globally optimal performance, however, was

not attained because of the limited local perception and the inability to distinguish

some distinct global states. Though fairly simple in design, ACE and AGE represent

potent designs that can be extended and augmented to enable the use of additional

agent knowledge and reasoning abilities.

Recent work on theoretical and experimental issues in multiagent reinforcement

learning promises new frameworks for isolated and interactive learning of coordi-

nation (e.g., [1, 11, 19, 42, 64]).

6.4 Learning about and from Other Agents

In the last section, scenarios are discussed where agents learned to coordinate

their actions. The primary emphasis there was on learning to better cooperate to

achieve common tasks. In this section scenarios are considered where agents learn to

improve their individual performance. At times such improvement in performance

or increase in environmental reward has to come at the expense of other agents in

the environment. The emphasis in the learning scenarios presented in this section

is on agents trying to learn about other agents in order to better capitalize on

available opportunities, and on the question of how learning conducted by an agent

can be influenced by other agents. This focus is much concerned with the prediction

of the behavior of other agents (including their preferences, strategies, intentions,

etc.), with the improvement and refinement of an agent’s behavior by interacting

with and observing other agents, and with the development of a common view of

the world.

Since space restrictions preclude the possibility of discussing all published re-

search in this area, a few representative samples from literature were chosen for

illustration:

Learning organizational roles: Agents in groups need to learn role assignments

to effectively complement each other. Adapting group structure and individual

member activities in a situation-dependent manner enables a group to enhance

system performance and meet unforeseen challenges. Nagendra Prasad, Lesser,

and Lander [35] present a formalism that combines memory-based reasoning and

6.4 Learning about and from Other Agents 273

reinforcement learning to enable group members to adaptively select organizational

roles.

Learning to benefit from market conditions: Information agents selling and

buying information units in an electronic marketplace need to be adaptive to

their environmental conditions. Vidal and Durfee investigate the advantages of

learning agents that learn models of other agents [58]. They empirically characterize

situations when it is beneficial for agents selling information to model other sellers

and prospective buyers.

Learning to play better against an opponent: In adversarial domains like

board games, classical maximin strategy provides a conservative approach to play-

ing games. If the strategy used by the opponent to choose moves can be approxi-

mated, exploitation of weaknesses in the strategy can lead to better results when

playing against that particular opponent [7, 46].

All of the domains discussed below involve isolated learning in a distributed sense.

One or more agents may be concurrently learning in the environment. The agents

interact frequently, and information from such interactions is used by agents to

develop models about other agents. Since each agent learns separately, every agent

has to execute all learning activities. Most of the learning mechanisms used are

variants of reinforcement learning approaches discussed before.

6.4.1 Learning Organizational Roles

Nagendra Prasad, Lesser, and Lander [35] address the important multiagent learn-

ing problem of agents learning to adopt situation-specific roles in a cooperative

problem-solving domain. Each agent is assumed to have the capability of playing

one of several roles in a situation. The learning goal is for an agent to be able to

select the most appropriate role to play in a problem-solving state that is likely to

lead to better problem solving with less cost.

The basic framework includes the use of Utility, Probability and Cost (UPC)

estimates of a role adopted at a particular situation. World states, S, are mapped

into a smaller set of situations. Utility represents an agent’s estimate of a desired

final state’s worth if the agent adopted the given role in the current situation.

Probability represents the likelihood of reaching a successful final state given the

agent plays the adopted role in the current situation, and cost is the associated

computational cost incurred. In addition, potentials for roles are maintained, which

estimate the usefulness of a role in discovering pertinent global information and

constraints. This measure can be orthogonal to the utility measure.

Let Sk and Rk be the sets of situation vectors and roles for agent k respectively.

An agent maintains up to |Sk|∗ |Rk| vectors of UPC and potential values describing

the estimates of different roles in different situations. During the learning phase,

274 Learning in Multiagent Systems

the probability of selecting a given role r in a situation s is given by

Pr(r) =
f(Urs, Prs, Crs, P otentialrs)∑

j∈Rk
f(Ujs, Pjs, Cjs, P otentialjs)

,

where f is an objective function used to rate a role by combining the different

component measures mentioned before. After the learning phase is over, the role to

be played in situation s is chosen deterministically as follows:

r = arg max
j∈Rk

f(Ujs, Pjs, Cjs, P otentialjs) .

The abstracting of states to situations, and selecting the highest rated role for

the situation is suggestive of a memory based approach. The estimation of role

UPC and potential values, however, is learned using a reinforcement learning

framework. Repeated problem solving is used to incrementally update estimates of

these values. Let Ûn
rs, P̂ n

rs,
̂Potential

n

rs, represent estimates of the utility, probability,

and potential of role r in situation s after n updates. Let S be the situations

encountered between the time of adopting role r in situation s and reaching a final

state F . A learning rate of 0 ≤ α ≤ 1 is used for updating estimates.

If UF is the utility of the final state reached, then the utility values are updated

as follows:

Ûn+1
rs ← (1− α)Ûn

rs + αUF .

This and other updates shown below are performed for all roles chosen in each of

the situations, S, that are encountered on the path to the final state.

Let O : S → [0, 1], be a function which returns 1 if the given state is successful

and 0 otherwise. Then the update rule for probability is as follows:

P̂ n+1
rs ← (1− α)P̂ n

rs + αO(F) .

Let Conf(S) be a function which returns 1 if in the path to the final state,

conflicts between agents are detected followed by information exchange to resolve

these conflicts. Conf(S) returns 0 otherwise. Then the update rule for potential is

̂Potential
n+1

rs ← (1− α) ̂Potential
n

rs + αConf(S) .

The update rules for cost are domain dependent as is the nature of the function

f . Prasad, Lesser, and Lander have successfully used this learning organization role

approach in a steam condenser design domain. The evaluation function used by

them ignores the cost metric: f(U, P, C, Potential) = U ∗ P + Potential.

Related Approaches to Learning Organizational Roles

In a related approach, Haynes and Sen [22] present a multiagent case-based learn-

ing (MCBL) algorithm by which agents can learn complementary behaviors to

6.4 Learning about and from Other Agents 275

improve group performance. The domain of experimentation is the predator-prey

domain [57]. Agents are initialized with hand-crafted behavioral strategies which

are modified based on their interaction with the world. Failures to successfully ex-

ecute actions suggested by default rules trigger learning of negative cases. These

negative cases alter the agent policies, and with experience, team members are

shown to improve problem-solving performance.

Stone and Veloso [55] investigate the effectiveness of teammates learning to

coordinate their actions against opponent teams. The domain of study is a simulated

robotic soccer game. Their approach is interesting in the novel use of a layered

learning methodology, where learning of low-level skills is followed by learning of

higher-level decision making. For example, a neural network–based approach is

used to learn how to shoot the ball towards a chosen direction. After this skill is

acquired, a decision tree–based method is used to select a teammate to pass the

ball to. Higher-level decision making in the context of a team of agents, such as

moving into open positions expecting a pass from the teammate with the ball, is

possible in such a layered learning approach.

6.4.2 Learning in Market Environments

Vidal and Durfee [58] investigate the use of agents to buy and sell information

in electronic marketplaces like digital libraries. They assume such environments

are open in nature as new agents (either buyers or sellers of information) can

enter or leave the marketplace at will. A practical approach to implementing such

systems would be to consider each agent as a self-interested entity with the goal

of maximizing local utility. A market mechanism is used to control the transfer

of information units between agents that can supply the information and agents

that need it. Quality of information available to different sellers may not be the

same, and the pricing and buying decisions are left to individual sellers and buyers

respectively.

It is assumed that information can be reproduced arbitrarily at negligible cost

and agents have uniform access to all other agents in the marketplace. In such

scenarios, a seller needs to provide value-added services to differentiate its products

from other sellers. In such a market, a buyer announces for a good it needs. Sellers

bid with prices for delivering such goods. The buyer then selects from these bids

and pays the corresponding seller the bid price. This seller then provides the good

to the buyer. The buyer can assess the quality of the received good only after it

receives it from the seller, i.e., it cannot examine the quality of the good before

buying. The profit of a seller s in selling a good g at price p is p− cg
s , where cg

s is

its cost of producing that good. If this good was of quality q, its value to a buyer

b is V
g
b (p, q). In a transaction, the goal of the buyer and the seller is to maximize

value and profit respectively.

Three types of agents are investigated in such a market economy:

0-level agents: These are agents that do not model the behavior of other agents.

They set their buying and selling prices based on aggregate past experience.

276 Learning in Multiagent Systems

1-level agents: These are agents that analyze the past behavior of other agents

and try to predict their buying or selling price preferences. Other agents, however,

are just modeled as 0-level agents or agents with no model of other agents. That

is, if an 1-level agent A is modeling a 0-level agent B, A does not consider the

fact that B is also modeling A. Note that 1-level agents have information about

individual agents in the environment, where 0-level agents just use their aggregate

past experience.

2-level agents: These are agents that model other agents as 1-level agents. That

is, these agents view other agents as agents which are modeling others as 0-level

agents or agents having no models of others.

In the following the strategies of 0-level and 1-level agents are only described

concisely. The performance comparison of such agents will be presented next.

Strategy of 0-level Agents

A 0-level buyer chooses the seller s∗ for supplying a good g, such that

s∗ = argmax
s∈S

fg(pg
s) ,

where S is the set of sellers and the function f g(p) returns the expected value to

the buyer of buying g at price p. This value function is incrementally learned in a

reinforcement learning framework:

f
g
t+1 = (1− α)fg

t (p) + αV
g
b (p, q) ,

where α is the learning rate which is decreased over time from a starting value of

1 to a final value close to αmin. The buyer also explores randomly (picks a random

seller) with probability ε, with this probability also decreased over time in a manner

similar to that of α.

A seller s has to sell a good g at a price greater than or equal to its cost, i.e.,

pg
s ≥ cg

s . The actual price p∗s is chosen to maximize expected profit:

p∗s = arg max
p∈P&p≥c

g
s

hg
s(p) ,

where P is the set of prices and the function hg
s(p) returns the expected profit for

the seller if it offers good g at a price p. This expected profit function is learned as

h
g
t+1(p) = (1− α)hg

t (p) + αProfitgs(p) ,

where Profitgs(p) = p− cg
s if it wins the auction and is 0 otherwise.

6.4 Learning about and from Other Agents 277

Strategy of 1-level Agents

A 1-level buyer models each seller by a probability density function, qg
s (x) over the

qualities x returned by s when providing good g in the past. Such a buyer chooses

the seller s∗ for supplying a good g to obtain the highest expected value:

s∗ = arg max
s∈S

E(V g
b (pg

s , q
g
s (x)))

= arg max
s∈S

1

|Q|

∑

x∈Q

qg
s (x)V g

b (pg
s , x),

where Q is the set of possible quality levels. The 1-level buyer does not model other

buyers.

The 1-level seller models each buyer b for good g by a probability density function

m
g
b(p) that returns the probability that b will choose price p for good g. It also

models every seller s for good g by a probability density function ng
s(y), which

gives the probability that s will bid y for good g. With these information, the

1-level seller can determine its bid to maximize expected profits as

p∗ = argmax
p∈P

(p− cg
s)

∏

s′∈s

∑

p′

N(g, b, s, s′, p, p′) ,

where s = S − {s}, and N(g, b, s, s′, p, p′) = n
g
s′(p′) if m

g
b(p

′) ≤ m
g
b(p) and is

0 otherwise. The function chooses the best bid by calculating for each possible

bid the product of the probability of winning the auction with that bid and the

profit from that bid. The probability of winning a bid is obtained by multiplying

the probabilities of bidding lower than each of the other sellers. The probability

of bidding lower than a given seller is calculated by summing the probabilities

corresponding to all bids by that seller for which the buyer will prefer the bid of

the learning agent.

Vidal and Durfee [58] simulated different artificial economies with 5 buyers and

8 sellers with the value function used by buyers being Vb(p, q) = 3q − p for all

goods. The following list shows the major conclusions from the observed behavior

of learning mechanisms described above:

In a group consisting of 0-level agents only, isolated learning produced equilib-

rium prices when all seller agents offered goods of the same quality. If the latter

condition was violated, price fluctuations prevent equilibrium.

If buyers are 0-level agents, 1-level sellers can benefit based on price volatility as

the buyers try to figure out the price-quality correlation. The 1-level sellers can

pretend to be high-quality goods sellers by bidding high prices and thus obtain

substantial profits at the expense of the buyer.

If the buyers are 1-level agents, they learn to buy from sellers who can provide

them with the highest value. Interestingly enough, 1-level sellers suffer, because

they assume buyers are 0-level agents and hence try to over-price their goods.

278 Learning in Multiagent Systems

The above observations suggest that if the model of the other agents is accurate,

an agent can gain substantially from it. But if the model underestimates the true

capability of the other agent, the modeling agent can also lose out.

6.4.3 Learning to Exploit an Opponent

Two player zero-sum games have been studied widely within both the game theory

and artificial intelligence communities. The most prominent approach in AI for

developing game playing programs has been the use of the minimax algorithm

(developed from the maximin strategy espoused in the game theory literature). In

the absence of any knowledge of the opponent’s strategy, the maximin approach

assumes that the opponent will chose a move that is the worst from the player’s

viewpoint.

If an accurate model of the opponent is available, such a model can be used to

predict the exact move the opponent is going to play corresponding to each of the

moves that the player can play from the current board configuration. Carmel and

Markovitch [7] present an M∗ algorithm, a generalization of minimax, that can

use an opponent model to choose a more appropriate move to play against that

player. Given the set of possible game states S, a successor function σ : S → 2S, an

opponent model to specify opponent’s move from any given state, ϕ : S → S, from

a given state s and for a search depth d, the M ∗ algorithm returns the following

value:

M(s, d, f, ϕ) =

f(s) d ≤ 0

max s′ ∈ σ(s)(f(s′)) d = 1

max s′ ∈ σ(s)(M(ϕ(s′), d− 2, f, ϕ)) d > 1

.

If the player is using an evaluation function of f0, the standard minimax algorithm

can be written as a special form of M as

M0
(〈f0〉,d)(s) = M(s, d, f0, M

0
(〈−f0〉,d−1))

which denotes the fact that minimax assumes the opponent is minimizing the

player’s payoff by searching up to a depth of d− 1.

If the player was using an evaluation of f1 and the actual evaluation function,

f0, used by the opponent was known, then another special case of M , the M 1

algorithm, can be defined as

M1
(〈f1,f0〉,d)(s) = M(s, d, f1, M

0
(〈f0〉,d−1)) .

The M1 algorithm first finds the opponents choice move by performing the oppo-

nent’s minimax search to depth d−1. It then evaluates the selected moves by calling

itself recursively to depth d− 2.

6.4 Learning about and from Other Agents 279

In the general case, it is possible to define the Mn algorithm to be the M

algorithm for which ϕ = Mn−1:

Mn
(〈fn,...,f0〉,d)(s) = M(s, fn, d, Mn−1

(〈fn−1,...,f0〉,d−1)) .

For example, The player with the M 1 algorithm assumes that its opponent is a M 0

or minimax player, the M2 player assumes that its opponent is a M 1 player, and

so on.

Carmel and Markovitch use the domain of checkers to show that the M 1 player

performs better than M0 or minimax player against different opponents when the

model of the opponent is accurately known. The problem in approaches like this is

how one gets to know about the evaluation function of the opponent.

In a related work Carmel and Markovitch have developed a learning approach

to approximating the opponent model [8]. Given a set of opponent moves from

specific board configurations, they first present an algorithm to calculate the depth

of search being used by the opponent. If the assumed function model is accurate

then few examples suffice to induce the depth of search.

They also present an algorithm to learn the opponent’s game-playing strategy.

The assumptions made are the following: the opponent’s evaluation function is a

linear combination of known board features, and the opponent does not change its

function while playing (because this would eliminate the possibility of concurrent

learning). A hill-climbing approach is used to select the weight vector on the features

and depth of search. They also experimentally demonstrate the effectiveness of this

learning approach for different opponent strategies.

Related Approaches to Opponent Modeling

In a similar approach to developing game players that can exploit weaknesses

of a particular opponent, Sen and Arora [46] have used a Maximum Expected

Utility (MEU) principle approach to exploiting learned opponent models. In their

approach, conditional probabilities for different opponent moves corresponding to

all moves from the current state are used to compute expected utilities of each of

the possible moves. The move with the maximum expected utility is then played. A

probabilistic model of the opponent strategy is developed by observing moves played

by the opponent in different discrepancy ranges as measured by the evaluation

function of the player.

Let the player and the opponent be required to choose from move sets

{α1, α2, . . .} = α and {β1, β2, . . .} = β respectively, and the utility received by

A for a (αi, βj) pair of moves be u(αi, βj). The MEU principle can be used to

choose a move as follows:

arg max
αi∈α

∑

βj∈β

p(βj |αi) u(αi, βj) ,

where p(βj |αi) is the conditional probability that the opponent chooses the move

280 Learning in Multiagent Systems

White wins Black wins
Figure 6.3 Winning scenarios in the game of Connect-Four.

βj given that the agent plays its move αi. The maximin strategy can be shown to

be a special case of the MEU strategy. If the opponent strategy can be accurately

modeled by the learning mechanism, the MEU player will be able to exploit the

opponent’s weaknesses.

The initial domain of application of this approach involves the two-player zero-

sum game of Connect-Four. Connect-Four is a popular two-player board game. Each

player has several round tokens of a specific color (black or white). The board is

placed vertically and is divided into six slots (the actual game sold in the market

has seven slots, but most of the AI programs use the six-slot version of the game).

Each slot has room for six tokens. Players alternate in making moves. A player

wins if it is able to line up four tokens horizontally, vertically, or diagonally. The

game ends in a draw if the board fills up with neither player winning. Examples of

winning and losing scenarios are shown in Figure 6.3. In this board game, the MEU

player is shown to be able to beat a simple opponent in fewer moves compared to

the maximin player.

Other related work worthy of mention include Carmel and Markovitch’s work

on modeling opponent strategies with a finite automaton [9]; Bui, Kieronska and

Venkatesh’s work on learning probabilistic models of the preferences of other agents

in the meeting scheduling domain [5]; and Zeng and Sycara’s work on using Bayesian

updating by bargainers to learn opponent preferences in sequential decision making

situations [69].

Explanation-Based Learning

Sugawara and Lesser [56] present an explanation-based learning [17] approach to

improving cooperative problem-solving behavior. Their proposed learning frame-

work contains a collection of heuristics for recognizing inefficiencies in coordinated

behavior, identifying control decisions causing such inefficiencies, and rectifying

these decisions.

6.5 Learning and Communication 281

The general procedure is to record problem-solving traces including tasks and

operations executed, relationships existing between tasks, messages communicated

between agents, resource usage logs, domain data, and knowledge and control

knowledge used for problem solving. Local traces and models of problem-solving

activities are exchanged by agents when a coordination inefficiency is detected.

This information is used to construct a global model and to review the problem-

solving activities. A lack-of-information problem is solved by choosing alternative

tasks to satisfy certain goals. An incorrect-control problem requires more elaborate

processing and coordination strategies need to be altered in such cases.

To identify the type of problem confronting the system, agents analyze traces to

identify mainstream tasks and messages. Based on this identification, learning anal-

ysis problem (LAPs) situations are identified which include execution of unnecessary

actions, task processing delays, longer task durations, redundant task processing,

etc. After some LAP is detected, agents try to locally generate the existing task re-

lationships that may have caused the LAP. Information is exchanged incrementally

to form a more comprehensive description of the problem. The purpose of this anal-

ysis is to identify whether the LAP is of lack-of-control or incorrect control problem

type. Problems of the former type can normally be resolved in a relatively straight-

forward manner. For incorrect-control problems, the following solution methods are

applied: changing the rating of specific goals and messages, changing the order of

operations and communications, allocating tasks to idle agents, and using results

calculated by other agents. For both types encountered, the system learns to avoid

similar problems in the future. To accomplish this, the system learns situation-

specific rules using an inductive learning scheme.

The learning approach discussed above relies extensively on domain models

and sophisticated diagnostic reasoning. In contrast, most of the other multiagent

learning approaches that have been studied in literature rely very little on prior

domain knowledge.

6.5 Learning and Communication

The focus of this section is on how learning and communication are related to

each other. This relationship is mainly concerned with requirements on the agents’

ability to effectively exchange useful information. The available work on learning in

multiagent systems allows us to identify two major relationships and research lines:

Learning to communicate: Learning is viewed as a method for reducing the load

of communication among individual agents.

282 Learning in Multiagent Systems

Communication as learning : Communication is viewed as a method for exchang-

ing information that allows agents to continue or refine their learning activities.

Work along the former line starts from the fact that communication usually is very

slow and expensive, and therefore should be avoided or at least reduced whenever

this is possible (see also 6.3.2). Work along the latter line starts from the fact that

learning (as well as, e.g., planning and decision making) is inherently limited in

its potential effects by the information that is available to and can be processed

by an agent. Both lines of research have to do with improving communication and

learning in multiagent systems, and are related to the following issues:

What to communicate (e.g., what information is of interest to the others).

When to communicate (e.g., what efforts should an agent investigate in solving

a problem before asking others for support).

With whom to communicate (e.g., what agent is interested in this information,

what agent should be asked for support).

How to communicate (e.g., at what level should the agents communicate, what

language and protocol should be used, should the exchange of information occur

directly—point-to-point and broadcast—or via a blackboard mechanism).

These issues have to be addressed by the system designer or derived by the system

itself. The following two subsections illustrate the two lines of research by describing

representative approaches to “learning to communicate” and “communication as

learning.”

There is another aspect that is worth stressing when talking about learning and

communication in multiagent systems. A necessary condition for a useful exchange

of information is the existence of a common ontology. Obviously, communication is

not possible if the agents assign different meanings to the same symbols without

being aware of the differences (or without being able to detect and handle them).

The development of a common and shared meaning of symbols therefore can be

considered as an essential learning task in multiagent systems (see [18] for further

considerations). This “shared meaning problem” is closely related to (or may be

considered as the DAI variant of) the symbol grounding problem [21], that is,

the problem of grounding the meaning of symbols in the real world. According to

the physical grounding hypothesis [4], which has received particular attention in

behavior-oriented AI and robotics, the grounding of symbols in the physical world

is a necessary condition for building a system that is intelligent. This hypothesis

was formulated as a counterpart to the symbol system hypothesis [36] upon which

classical knowledge-oriented AI is based and which states that the ability to handle,

manipulate, and operate on symbols is a necessary and sufficient condition for

general intelligence (independent of the symbols’ grounding).

6.5 Learning and Communication 283

6.5.1 Reducing Communication by Learning

Consider the contract-net approach (e.g., [54]) as described in Chapter 2. According

to this approach the process of task distribution consists of three elementary

activities: announcement of tasks by managers (i.e., agents that want to allocate

tasks to other agents); submission of bids by potential contractors (i.e., agents

that could execute announced tasks); and conclusion of contracts among managers

and contractors. In the basic form of the contract net a broadcasting of task

announcements is assumed. This works well in small problem environments, but

runs into problems as the problem size—the number of communicating agents

and the number of tasks announced by them—increases. What therefore is needed

in more complex environments are mechanisms for reducing the communication

load resulting from broadcasting. Smith [53] proposed several such mechanisms like

focused addressing and direct contracting which aim at substituting point-to-point

communication for broadcasting. A drawback of these mechanisms is, however, that

direct communication paths must be known in advance by the system designer,

and that the resulting communication patterns therefore may be too inflexible in

non-static environments. In the following, an alternative and more flexible learning-

based mechanism called addressee learning [37] is described (in a slightly simplified

form).

The primary idea underlying addressee learning is to reduce the communication

efforts for task announcement by enabling the individual agents to acquire and

refine knowledge about the other agents’ task solving abilities. With the help

of the acquired knowledge, tasks can be assign more directly without the need

of broadcasting their announcements to all agents. Case-based reasoning (e.g.,

[27, 60]) is employed as an experience-based mechanism for knowledge acquisition

and refinement. Case-based reasoning is based on the observation that humans often

solve a problem on the basis of solutions that worked well for similar problems

in the past. Case-based reasoning aims at constructing cases, that is, problem-

solution pairs. Whenever a new problem arises, it is checked whether it is completely

unknown or similar to an already known problem (case retrieval). If it is unknown,

a solution must be generated from scratch. If there is some similarity to a known

problem, the solution of this problem can be used as a starting point for solving

the new one (case adaptation). All problems encountered so far, together with their

solutions, are stored as cases in the case base (case storage). This mechanism can

be applied to communication reduction in a contract net as follows. Each agent

maintains its own case base. A case is assumed to consist of (i) a task specification

and (ii) information about which agent already solved this task in the past and

how good or bad the solution was. The specification of a task Ti is of the form

Ti = {Ai1Vi1, . . . , Aimi
Vimi
} ,

where Aij is an attribute of Ti and Vij is the attribute’s value. What is needed

in order to apply case-based reasoning is a measure for the similarity between the

284 Learning in Multiagent Systems

tasks. In the case of addressee learning, this measure is reduced to the similarity

between attributes and attribute values. More precisely, for each two attributes Air

and Ajs the distance between them is defined as

DIST(Air , Ajs) = SIMILAR-ATT(Air, Ajs) · SIMILAR-VAL(Vir , Vjs) ,

where SIMILAR-ATT and SIMILAR-VAL express the similarity between the at-

tributes and the attribute values, respectively. How these two measures are defined

depends on the application domain and on the available knowledge about the task

attributes and their values. In the most simplest form, they are defined as

SIMILAR-ATT(x, y) = SIMILAR-VAL(x, y) =

{
1 if x = y

0 otherwise
,

which means that similarity is equal to identity. With the help of the distance DIST

between attributes, now the similarity between two tasks Ti and Tj can be defined

in an intuitively clear and straightforward way as

SIMILAR(Ti, Tj) =
∑

r

∑

s

DIST(Air , Ajs) .

For every task, Ti, a set of similar tasks, S(Ti), can be defined by specifying the

demands on the similarity between tasks. An example of such a specification is

S(Ti) = {Tj : SIMILAR(Ti, Tj) ≥ 0.85} ,

where the tasks Tj are contained in the case base of the agent searching for similar

cases. Now consider the situation in which a agent N has to decide about assigning

some task Ti to another agent. Instead of broadcasting the announcement of Ti, N

tries to preselect one or several agents which it considers as appropriate for solving

Ti by calculating for each agent M the suitability

SUIT(M, Ti) =
1

|S(Ti)|

∑

Tj∈S(Ti)

PERFORM(M, Tj) ,

where PERFORM(M, Tj) is an experience-based measure indicating how good or

bad Tj has been performed by M in the past. (The specification of PERFORM

again depends on the application domain.) With that, agent N just sends the

announcement of Ti to the most appropriate agent(s), instead of all agents.

6.5.2 Improving Learning by Communication

As an agent usually can not be assumed to be omnipotent, in most problem domains

it also can not be assumed to be omniscient without violating realistic assumptions.

The lack of information an agent suffers from may concern

6.5 Learning and Communication 285

the environment in which it is embedded (e.g., the location of obstacles) and the

problem to be solved (e.g., the specification of the goal state to be reached);

other agents (e.g., their abilities, strategies, and knowledge);

the dependencies among different activities and the effects of one own’s and other

agents’ activities on the environment and on potential future activities (e.g., an

action a carried out by an agent A may prevent an agent B from carrying out

action b and enable an agent C to carry out action c).

Agents having a limited access to relevant information run the risk of failing in

solving a given learning task. This risk may be reduced by enabling the agents

to explicitly exchange information, that is, to communicate with each other. Gen-

erally, the following two forms of improving learning by communication may be

distinguished:

learning based on low-level communication, that is, relatively simple query-and-

answer interactions for the purpose of exchanging missing pieces of information

(knowledge and belief); and

learning based on high-level communication, that is, more complex communica-

tive interactions like negotiation and mutual explanation for the purpose of com-

bining and synthesizing pieces of information.

Whereas the first form of communicative learning results in shared information,

the second form results in shared understanding. Below two communication-based

learning approaches are described which illustrate these two forms.

In both forms communication is used as a means for improving learning. Aside

from this “assisting view” of communication, the reader should keep in mind that

communication as such can be viewed as learning, because it is a multiagent-

specific realization of knowledge acquisition. Whether learning should be enriched

by communication is a very difficult question. In the light of the standard evaluation

criteria for learning algorithms—speed, quality, and complexity—this question can

be decomposed into the following three subquestions:

How fast are the learning results achieved with/without communication?

Are the learning results achieved with/without communication of sufficient

quality?

How complex is the overall learning process with/without communication?

The above considerations should make clear that communication offers numerous

possibilities to improve learning, but that it is not a panacea for solving learning

problems in multiagent systems. Combining them therefore has to be done very

carefully. In particular, it is important to see that communication itself may bring

in incomplete and false information into an agent’s information base (e.g., because

of transmission errors) which then makes it even more difficult to solve a learning

task.

286 Learning in Multiagent Systems

v

u

predator

prey

Figure 6.4 Predator-prey domain: a 10 by 10 grid world (left) and a visual field

of depth 2 (right).

Illustration 1: Let’s Hunt Together!

Many attempts have been made to improve learning in multiagent systems by

allowing low-level communication among the learners. Among them is the work by

Tan [57] which is also well suited for illustrating this form of learning. Related work

that focuses on multirobot learning was presented, e.g., by Matarić [31, 32] and

Parker [38, 39].

Tan investigated learning based on low-level communication in the context of the

predator-prey domain shown in Figure 6.4. The left part of this figure shows a two-

dimensional world in which two types of agents, predators and prey, act and live.

The task to be solved by the predators is to catch a prey by occupying the same

position. Each agent has four possible actions a to choose from: moving up, moving

down, moving left , and moving right . On each time step each prey randomly moves

around and each predator chooses its next move according to the decision policy

it has gained through Q-learning (see Section 6.3.1). Each predator has a limited

visual field of some predefined depth. The sensation of a predator is represented

by s = [u, v], where u and v describe the relative distance to the closest prey

within its visual field. This is illustrated by the right part of Figure 6.4; here the

perceptual state is represented by [2, 1]. Tan identified two kinds of information

that the learners could exchange in order to support each other in their learning:

Sensor data. Here the predators inform each other about their visual input. If

the predators know their relative positions (e.g., by continuously informing each

other about their moves), then they can draw inferences about the prey’s actual

positions. This corresponds to a pooling of sensory resources, and thus aims at

a more centralized control of distributed sensors.

Decision/Activity policies. Here the predators inform each other about what they

have learned so far w.r.t. their decisions/activities (i.e., the values Q(s, a) in the

case of Q-learning). This corresponds to a pooling of motor resources, and thus

aims at a more centralized control of distributed effectors.

6.5 Learning and Communication 287

The experimental investigations reported by Tan show that these kinds of infor-

mation exchange clearly lead to improved learning results. The fact that these two

kinds of information exchange are applicable in most problem domains makes them

essential. It is stressed that it is an important but still unanswered question how

closely a centralized control of sensors and effectors should be approached. It is ob-

vious, however, that an optimal degree of centralization of control depends on the

problem domain under consideration and on the abilities of the individual agents.

Illustration 2: What Will a Cup of Coffee Cost?

Learning based on high-level communication—which is a characteristic of human-

human learning—is rather complex, and so it is not surprising that not many

approaches to this form of learning are available so far. In the following, an idea

of this form of learning is given by describing the approach by Sian [48, 49]

called consensus learning (details omitted and slightly simplified). According to

this approach a number of agents is assumed to interact through a blackboard. The

agents use a simple language for communication that consists of the following nine

operators for hypotheses:

Introduction and removal of hypotheses to/from the blackboard

ASSERT (H) – Introduction of a non-modifiable hypothesis H .

PROPOSE(H, C) – Proposal of a new hypothesis H with confidence

value C.

WITHDRAW (H) – Rejection of a hypothesis H .

Evaluation of hypotheses

CONFIRM(H, C) – Indication of confirmatory evidence for a hypoth-

esis H with confidence value C.

DISAGREE(H, C)– Indication of disagreement with a hypothesis H

with confidence value C.

NOOPINION(H) – Indication that no opinion is available with re-

gards to a hypothesis H .

MODIFY (H, G, C)– Generation of a modified version G (hence, of a

new hypothesis) of H with confidence value C.

Modification of the status of hypotheses and acceptance

AGREED(H, T) – Change of status of a hypothesis H from “pro-

posed” to “agreed” with the resultant confidence

value T (see below).

ACCEPT (H) – Acceptance of a previously agreed hypothesis H .

288 Learning in Multiagent Systems

Adverse Weather Country

Flood Frost Drought Tea Coffee Cocoa Kenya Brazil India

Crop

Figure 6.5 Taxonomies available to the agents.

After an agent introduced a hypothesis H (by means of PROPOSE) and the

other agents responded (by means of CONFIRM , DISAGREE, NOOPINION ,

or MODIFY), the introducing agent can determine the resultant confidence value

T of H . Let {C+
1 , . . . , C+

m} be the confidence values associated with the CONFIRM

and MODIFY responses of the other agents, and {C−
1 , . . . , C−

n } the confidence

values associated with the DISAGREE responses of the other agents. Then

T = SUPPORT (H) · [1−AGAINST (H)]

where SUPPORT (H) = V (C+
m) and AGAINST (H) = V (C−

n) with

V (C+
m) =

{
V (C+

m−1) + C+
m · [1− V (C+

m−1)] if m ≥ 1

0 if m = 0

and

V (C−
n) =

{
V (C−

n−1) + C−
n · [1− V (C−

n−1)] if n ≥ 1

0 if n = 0
.

For instance, V (C+
3) = C+

1 + C+
2 + C+

3 − C+
1 C+

2 − C+
1 C+

3 − C+
2 C+

3 + C+
1 C+

2 C+
3 .

The definition of V aims at adding confidence values (which represent a measure of

belief on the part of an agent) and, at the same time, taking their potential overlaps

into consideration.

For an illustration of consensus learning, consider the case of three agents who

want to find out how the prices for coffee, tea, and cocoa will develop. The common

knowledge available to the three agents is shown in Figure 6.5. In addition, the

agents have the following local domain knowledge:

Agent 1: Major-Producer(Kenya, Coffee)

Major-Producer(Kenya, Tea)

Agent 2: Major-Producer(Brazil, Coffee)

Major-Producer(Brazil, Cocoa)

Agent 3: Major-Producer(India, T ea)

Assume that after a period of time the agents observed the following data and have

constructed the following generalizations:

Agent 1: Weather(Kenya, Drought), Price(Tea, Rising)

Weather(Kenya, Drought), Price(Cocoa, Steady)

6.6 Conclusions 289

Weather(Kenya, Frost), Price(Coffee, Rising)

GEN: Weather(Kenya, Adverse) and

Major-Producer(Kenya, Crop)→ Price(Crop, Rising)

Agent 2: Weather(Brazil, F rost), Price(Coffee, Rising)

Weather(Brazil, F lood), Price(Cocoa, Rising)

GEN: Weather(Brazil, Adverse)→ Price(Crop, Rising)

Agent 3: Weather(India, F lood), Price(Tea, Rising)

GEN: Weather(India, F lood)→ Price(Tea, Rising)

Figure 6.6 shows a potential interaction sequence. The Agent 3 has enough con-

fidence in its generalization, and starts the interaction with the hypothesis H1.

The other agents respond to H1. Agent 2 has no direct evidence for H1, but its

generalization totally subsumes H1. It therefore proposes its generalization as a

modification of H1, leading to the hypothesis H2. The situation is similar with

Agent 3, and this agent proposes the hypothesis H3. At this point, Agent 3 can

calculate the resultant confidence value for its hypothesis H1. In the sequel, the

non-proposing agents respond to the hypotheses H2 and H3, and the proposing

agents calculate the resultant confidence values. Based on the confidence values

Agent 2 and Agent 3 withdraw their hypotheses. After Agent 1 has agreed, the

others accept H3. What has been gained is the broad acceptance of the hypothesis

H3 which is less specific than H1 and less general than H2.

6.6 Conclusions

Summary. This chapter concentrated on the area of learning in multiagent sys-

tems. It was argued that this area is of particular interest to DAI as well as ML.

Two principal categories of learning—centralized and decentralized learning—were

distinguished and characterized from a more general point of view. Several concrete

learning approaches were described that illustrate the current stage of development

in this area. They were chosen because they reflect very well the current method-

ological main streams and research foci in this area: learning and activity coordina-

tion; learning about and from other agents; and learning and communication. It is

very important to see that these foci are not orthogonal, but complementary to each

other. For instance, agents may learn to cooperate by learning about each other’s

abilities, and in order to learn from one another the agents may communicate with

each other. It is stressed that several interesting and elaborated approaches to learn-

ing in multiagent systems other than those described here are available. Space did

not allow us to treat them all, and the reader therefore is referred to the literature

mentioned thoughout this chapter.

Open research issues. Learning in multiagent systems constitutes a relatively

young area that brings up many open questions. The following areas of research

are of particular interest:

290 Learning in Multiagent Systems

MODIFY(H1, H3, 0.55)

MODIFY(H1, H2, 0.5)

[H1 - 0.775]

CONFIRM(H2, 0.6)

CONFIRM(H3, 0.6)

CONFIRM(H3, 0.5)

[H3 - 0.8]

MODIFY(H2, H3, 0.45)

[H2 - 0.78]

WITHDRAW(H1)

WITHDRAW(H2)

AGREED(H3, 0.8)

ACCEPT(H3)

ACCEPT(H3)

BLACKBOARD

Agent 2

Agent 3

Agent 2

Agent 2

Agent 2

Agent 1

Agent 1

Agent 3

Agent 3

Agent 3

Agent 1

Agent 3

PROPOSE(H1, 0.6)

H
1

=
 W

ea
th

er
(I

nd
ia

, F
lo

od
)

 P
ri

ce
(T

ea
, R

is
in

g)

H
2

=
 W

ea
th

er
(C

ou
nt

ry
, A

dv
er

se
)

 P
ri

ce
(C

ro
p,

 R
is

in
g)

P
ri

ce
(C

ro
p,

 R
is

in
g)

H
3

=
 W

ea
th

er
(C

ou
nt

ry
, A

dv
er

se
)

 a
nd

 M
aj

or
-P

ro
du

ce
r(

C
ou

nt
ry

, C
ro

p)

Figure 6.6 An example of an interaction sequence.

The identification of general principles and concepts of multiagent learning.

Along this direction questions arise like What are the unique requirements and

conditions of multiagent learning? and Are there general guidelines for the design

of multiagent learning algorithms?

The investigation of the relationships between single-agent and multiagent learn-

ing. This necessitates to answer questions like Do centralized and decentralized

learning qualitatively differ from each other? and How and under what

conditions can a single-agent learning algorithm be applied in multiagent con-

texts?

The application of multiagent learning in complex real-world environments.

Going in this direction helps to further improve our understanding of the benefits

and limitations of this form of learning.

6.6 Conclusions 291

The development of theoretical foundations of decentralized learning. This

ranges from convergence proofs for particular algorithms to general formal mod-

els of decentralized learning.

An overview of challenges for ML in cooperative information systems is presented in

[51]. In this overview a useful distinction is made between requirements for learning

about passive components (e.g., databases), learning about active components (e.g.,

workflows and agents), and learning about interactive components (e.g., roles and

organizational structures).

Pointers to relevant related work. As already mentioned, this chapter is

restricted to learning in multiagent systems. The reader interested in textbooks on

single-agent learning is referred to [28] and [34]. There is a number of approaches

to distributed reinforcement learning that are not covered by this chapter; see, e.g.,

[12, 30, 41, 65]. Moreover, there is much work in ML that does not directly deal

with learning in multiagent systems, but is closely related to it. There are three

lines of ML research that are of particular interest from the point of view of DAI:

Parallel and distributed inductive learning (e.g., [10, 40, 50]). Here the focus is

on inductive learning algorithms that cope with massive amounts of data.

Multistrategy learning (e.g., [33]). Here the focus is on the development of

learning systems that employ and synthesize different learning strategies (e.g.,

inductive and analogical, or empirical and analytical).

Theory of team learning (e.g., [25, 52]). Here the focus is on teams of independent

machines that learn to identify functions or languages, and on the theoretical

characterization—the limitations and the complexity—of this kind of learning.

Research along these lines is much concerned with the decentralization of learning

processes, and with combining learning results obtained at different times and/or

locations.

Apart from ML, there is a considerable amount of related work in economics.

Learning in organizations like business companies and large-scale institutions con-

stitutes a traditional and well-established subject of study. Organizational learning

is considered as a fundamental requirement for an organization’s competitiveness,

productivity, and innovativeness in uncertain and changing technological and mar-

ket circumstances. With that, organizational learning is essential to the flexibility

and sustained existence of an organization. Part II of the Bibliography provided in

[63] offers a number of pointers to this work.

There is also a large amount of related work in psychology. Whereas economics

mainly concentrates on organizational aspects, psychology mainly focuses on the

cognitive aspects underlying the collaborative learning processes in human groups.

The reader interested in related psychological research is referred to [2] and, in

particular, to [13]. A guide to research on collaborative learning can be found in [14].

Interdisciplinary research that, among other things, is aimed at identifying essential

292 Learning in Multiagent Systems

differences between available approaches to multiagent learning and collaborative

human-human learning is described in [67].

These pointers to related work in ML, economics, and psychology are also

intended to give an idea of the broad spectrum of learning in multiagent systems. In

attacking the open questions and problems sketched above it is likely to be helpful

and inspiring to take this related work into consideration.

6.7 Exercises

1. [Level 1] Consider a group of students who agreed to work together in

preparing an examination in DAI. Their goal is to share the load of learning.

Identify possible forms of interactive learning. How do the forms differ from

each other (e.g., w.r.t. efficiency and robustness) and what are their advantages

and disadvantages? What abilities must the students have in order to be able

to participate in the different forms of learning? Do you think it is possible

to apply the different forms in (technical) multiagent contexts? What are the

main difficulties in such an application?

2. [Level 2] Design domains with varying agent couplings, feedback delays, and

optimal strategy combinations, and run experiments with isolated reinforce-

ment learners. Summarize and explain the success and failures of developing

coordinated behaviors using isolated, concurrent reinforcement learners in the

domains that you have investigated.

3. Consider the algorithms ACE and AGE.

(a) [Level 2] Calculate and compare the computational complexities per

action selection cycle of both algorithms.

(b) [Level 2] Evaluate the scale up in speed of both algorithms with increasing

number of agents in the group.

(c) [Level 3] How could the complexity be reduced? Do you see any possibility

to reduce the number of activity contexts to be considered by the agents?

Implement and test your solution.

4. [Level 2/3] Implement and experiment with 0, 1, and 2-level agents in an

information economy. How does 2-level buyer agent benefit compare to 1-level

buyer agents when the seller agents are 0-level agents? How does 2-level buyer

agent benefit compare to 1-level buyer agents when the seller agents are 1-level

agents?

5. Consider the problem of learning an opponent strategy.

(a) [Level 2] Formulate this problem in a two player zero-sum game as a

reinforcement learning problem.

(b) [Level 3] Implement a reinforcement learning algorithm to learn the

opponent strategy in a simple two-player zero-sum game. Show how

6.7 Exercises 293

the learned opponent model can be used to exploit weaknesses in the

strategies of a weaker player.

6. A popular multiagent learning task is block pushing. As described in this

chapter, this task requires that (at least) two agents learn to work together in

pushing a box from a start to a goal position, where the box chosen is large

enough so that none of the agents can solve this problem alone. This learning

task becomes especially challenging under two reasonable assumptions: each

agent is limited in its sensory abilities (i.e., its sensors provide incomplete

and noisy data), and learning feedback is provided only when the agents are

successful in moving the block into the goal position (i.e., no intermediate

feedback is provided).

(a) [Level 2/3] Assume that both agents are capable of Q-learning and

that they select and perform their actions simultaneously. Furthermore,

assume that (i) the agents do not communicate and (ii) that at each

time each of the agents knows only its own position, the goal position,

and the position of the block. Implement this learning scenario and run

some experiments. What can be observed?

(b) [Level 3/4] Now assume that the agents are able to communicate with

each other. What information should they exchange in order to improve

their overall performance? Implement your ideas and compare the results

with those gained for non-communicating learning agents. Do your ideas

result in faster learning? What about the quality of the learning results

and the complexity of learning?

7. Another popular learning task is multiagent foraging. This task requires

that multiple agents learn to collect food in a confined area (their “living

environment”) and take it to a predefined region (their “home”). An agent

receives positive learning feedback whenever it arrived at home with some food

(each agent is able to collect food without requiring help from the others).

(a) [Level 1] What are the essential differences between this learning task

and the block pushing task?

(b) [Level 2/3] Assume that the agents are capable of Q-learning. Implement

this learning scenario and run some experiments.

(c) [Level 3/4] Additionally assume that that there are two different types of

food: food of type A can be carried by a single agent, while food of type

B must be carried by two agents. Furthermore assume that the learning

feedback for collecting food of type B is four times higher than for type

A, and that some agents are better (e.g., faster) in collecting food of type

A while others are better in collecting (together with others) food of type

B. What information should the agents exchange and what communi-

cation and coordination mechanisms should they use in order to collect

both type-A and type-B food as fast as possible? Think about equipping

the individual agents with the ability to learn about other agents. Im-

294 Learning in Multiagent Systems

plement your ideas, and compare the results with those achieved by the

more primitive non-communicating agents (i.e., agents that do neither

communicate nor learn about each other).

8. [Level 3/4] Consider Exercise 14 of Chapter 1 (vacuum world example).

Instead of implementing chains of sample passing agents, the agents themselves

could learn to form appropriate chains. (Alternatively, the agents could learn

to appropriately divide the vacuum world into smaller sections that are then

occupied by fixed sets or teams of agents.) Identify criteria according to which

the agents can decide when and how to form chains. Run experiments with

the learning agents and analyze, e.g., the orientation and the position of the

chains learned. Identify criteria according to which the agents can decide when

and how to dissolve chains. Again run experiments. Give particular attention

to the learning feedback (immediate vs. delayed) and the communication and

negotiation abilities of the agents.

9. [Level 3/4] Consider Exercise 11 of Chapter 2 (package-moving robots). How

could the robots learn to build appropriate roadways and drop-off points?

(What exactly does appropriate mean in this example? What communication

and negotiation abilities should the robots possess?) Implement your ideas,

and compare the results achieved by learning and non-learning robots.

10. [Level 3/4] Consider Exercise 8 of Chapter 4 (multiagent LRTA* algorithm).

How could the agents learn to coordinate their activities? What activities

should be coordinated at all? What information must be exchanged by the

agents in order to achieve a higher degree of coordination? Choose one of the

search problems described in Chapter 4, and run some experiments.

11. [Level 3/4] Consider Exercise 8 of Chapter 5 (lookahead in contracting).

Choose one of the contracting scenarios described in that chapter; alternatively,

you may choose the multiagent foraging scenario (see Exercise 7 above), the

vacuum world scenario (Exercise 8), or the package-moving domain (Exercise

9). Give examples of criteria for deciding about the depth of lookahead in

contracting. Implement an algorithm for lookahead contracting, where the

depth of lookahead is adapted by the agents themselves.

6.8 References

1. T. Balch. Learning roles: Behavioral diversity in robot teams. In Collected Papers
from the AAAI-97 Workshop on Multiagent Learning, pages 7–12. AAAI, 1997.

2. A. Bandura. Social learning theory. Prentice-Hall, Englewood Cliffs, NJ, 1977.

3. A.B. Barto, R.S. Sutton, and C. Watkins. Sequential decision problems and neural
networks. In Proceedings of 1989 Conference on Neural Information Processing,
1989.

4. R.A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems,

6.8 References 295

6:3–15, 1990.

5. H.H. Bui, D. Kieronska, and S. Venkatesh. Learning other agents’ preferences in
multiagent negotiation. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 114–119, Menlo Park, CA, 1996. AAAI Press.

6. J.G. Carbonell, R.S. Michalski, and T.M. Mitchell. An overview of machine
learning. In J.G. Carbonell and T.M. Mitchell, editors, Machine learning – An
artificial intelligence approach, pages 3–23. Springer-Verlag, Berlin, 1994.

7. D. Carmel and S. Markovitch. Incorporating opponent models into adversary
search. In Thirteenth National Conference on Artificial Intelligence, pages 120–125,
Menlo Park, CA, 1996. AAAI Press/MIT Press.

8. D. Carmel and S. Markovitch. Learning and using opponent models in adversary
search. Technical Report Technical Report 9609, Technion, 1996.

9. D. Carmel and S. Markovitch. Learning models of intelligent agents. In Thirteenth
National Conference on Artificial Intelligence, pages 62–67, Menlo Park, CA, 1996.
AAAI Press/MIT Press.

10. P.K. Chan and S.J. Stolfo. Toward parallel and distributed learning by
meta-learning. In Working Notes of the AAAI Workshop on Know. Disc.
Databases, pages 227–240, 1993.

11. C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In Collected papers from the AAAI-97 Workshop on
Multiagent Learning, pages 13–18. AAAI, 1997.

12. R.H. Crites and A.G. Barto. Improving elevator performances using reinforcement
learning. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in
neural information processing systems 8. MIT Press, Cambridge, MA, 1996.

13. P. Dillenbourg, editor. Collaborative learning: Cognitive and computational
approaches. Pergamon Press, 1998.

14. P. Dillenbourg, M. Baker, A. Blaye, and C. O’Malley. The evolution of research on
collaborative learning. In H. Spada and P. Reimann, editors, Learning in humans
and machines. Elsevier Science Publ., Amsterdam, 1996.

15. M. Dorigo and H. Bersini. A comparison of Q-learning and classifier systems. In
Proceedings of From Animals to Animats, Third International Conference on
Simulation of Adaptive Behavior, 1994.

16. E.H. Durfee, V.R. Lesser, and D.D. Corkill. Coherent cooperation among
communicating problem solvers. IEEE Transactions on Computers,
C-36(11):1275–1291, 1987.

17. T. Ellman. Explanation-based learning: A survey of programs and perspectives.
ACM Computing Surveys, 21(2):163–221, 1989.

18. H. Friedrich, M. Kaiser, O. Rogalla, and R. Dillmann. Learning and
communication in multi-agent systems. In G. Weiß, editor, Distributed artificial
intelligence meets machine learning, Lecture Notes in Artificial in Artificial
Intelligence, Vol. 1221, pages 259–275. Springer-Verlag, Berlin, 1997.

19. P. Gu and A.B. Maddox. A framework for distributed reinforcement learning. In
Gerhard Weiß and Sandip Sen, editors, Adaptation and Learning in Multi–Agent
Systems, Lecture Notes in Artificial Intelligence, pages 97–112. Springer Verlag,
Berlin, 1996.

20. J. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549–587, 1990. A preliminary version

296 Learning in Multiagent Systems

appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

21. S. Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.

22. T. Haynes and S. Sen. Learning cases to compliment rules for conflict resolutions in
multiagent systems. International Journal of Human-Computer Studies, to appear,
1998.

23. M. Huhns and G. Weiß, editors. Special Issue on Multiagent Learning of the
Machine Learning Journal. Vol. 33(2-3), 1998.

24. I.F. Imam. Intelligent adaptive agents. Papers from the 1996 AAAI Workshop.
Technical Report WS-96-04, AAAI Press, 1996.

25. S. Jain and A. Sharma. On aggregating teams of learning machines. Theoretical
Computer Science A, 137(1):85–105, 1982.

26. L.P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of AI Research, 4:237–285, 1996.

27. J.L. Kolonder. Case-based reasoning. Morgan Kaufmann, San Francisco, 1993.

28. P. Langley. Elements of machine learning. Morgan Kaufmann, San Francisco, 1995.

29. V.R. Lesser. Multiagent systems: An emerging subdiscipline of AI. ACM
Computing Surveys, 27(3):340–342, 1995.

30. M.L. Littmann and J.A. Boyan. A distributed reinforcement learning scheme for
network routing. Report CMU-CS-93-165, School of Computer Science, Carnegie
Mellon University, 1993.

31. M. Matarić. Learning in multi-robot systems. In G. Weiß and S. Sen, editors,
Adaption and learning in multi-agent systems, Lecture Notes in Artificial in
Artificial Intelligence, Vol. 1042, pages 152–163. Springer-Verlag, Berlin, 1996.

32. M. Matarić. Using communication to reduce locality in distributed multi-agent
learning. Journal of Experimental and Theoretical Artificial Intelligence, to appear,
1998.

33. R. Michalski and G. Tecuci, editors. Machine learning. A multistrategy approach.
Morgan-Kaufmann, San Francisco, CA, 1995.

34. T. Mitchell. Machine learning. McGraw-Hill, New York, 1997.

35. M.V. Nagendra Prasad, V.R. Lesser, and S.E. Lander. Learning organizational
roles in a heterogeneous multi-agent system. In Proceedings of the Second
International Conference on Multiagent Systems, pages 291–298, 1996.

36. A. Newell and H.A. Simon. Computer science as empirical inquiry: Symbols and
search. Communications of the ACM, 19(3):113–126, 1976.

37. T. Ohko, K. Hiraki, and Y. Anzai. Addressee learning and message interception for
communication load reduction in multiple robot environments. In G. Weiß, editor,
Distributed artificial intelligence meets machine learning, Lecture Notes in Artificial
in Artificial Intelligence, Vol. 1221, pages 242–258. Springer-Verlag, Berlin, 1997.

38. L.E. Parker. Task-oriented multi-robot learning in behavior-based systems. In
Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1478–1487, 1996.

39. L.E. Parker. L-alliance: Task-oriented multi-robot learning in behavior-based
systems. Journal of Advanced Robotics, to appear, 1997.

40. F.J. Provost and J.M. Aronis. Scaling up inductive learning with massive
parallelism. Machine Learning, 23:33f, 1996.

6.8 References 297

41. A. Schaerf, Y. Shoham, and M. Tennenholtz. Adaptive load balancing: a study in
multi-agent learning. Journal of Artificial Intelligence Research, 2:475–500, 1995.

42. J. Schmidhuber. A general method for multi-agent reinforcement learning in
unrestricted environments. In Sandip Sen, editor, Working Notes for the AAAI
Symposium on Adaptation, Co-evolution and Learning in Multiagent Systems, pages
84–87, Stanford University, CA, 1996.

43. S. Sen. Adaptation, coevolution and learning in multiagent systems. Papers from
the 1996 Spring Symposium. Technical Report SS-96-01, AAAI Press, 1996.

44. S. Sen. IJCAI-95 workshop on adaptation and learning in multiagent systems. AI
Magazine, 17(1):87–89, Spring 1996.

45. S. Sen, editor. Special Issue on Evolution and Learning in Multiagent Systems of
the International Journal of Human-Computer Studies. Vol. 48(1), 1998.

46. S. Sen and N. Arora. Learning to take risks. In Collected papers from AAAI-97
workshop on Multiagent Learning, pages 59–64. AAAI, 1997.

47. S. Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing
information. In National Conference on Artificial Intelligence, pages 426–431, 1994.

48. S.S. Sian. Adaptation based on cooperative learning in multi-agent systems. In Y.
Demazeau and J.-P. Müller, editors, Decentralised AI (Vol. 2), pages 257–272.
Elsevier Science Publ., Amsterdam, 1991.

49. S.S. Sian. Extending learning to multiple agents: Issues and a model for
multi-agent machine learning (ma-ml). In Y. Kodratoff, editor, Machine learning –
EWSL-91, pages 440–456. Springer-Verlag, Berlin, 1991.

50. R. Sikora and M.J. Shaw. A distributed problem-solving approach to inductive
learning. Faculty Working Paper 91-0109, College of Commerce and Business
Administration, University of Illinois at Urbana-Champaign, 1991.

51. M.P. Singh and M.N. Huhns. Challenges for machine learning in cooperative
information systems. In G. Weiß, editor, Distributed artificial intelligence meets
machine learning, Lecture Notes in Artificial in Artificial Intelligence, Vol. 1221,
pages 11–24. Springer-Verlag, Berlin, 1997.

52. C. Smith. The power of pluralism for automatic program synthesis. Journal of the
ACM, 29:1144–1165, 1982.

53. R.G. Smith. A framework for problem solving in a distributed processing
environment. Stanford Memo STAN-CS-78-700, Department of Computer Science,
Stanford University, 1978.

54. R.G. Smith. The contract-net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113,
1980.

55. P. Stone and M. Veloso. A layered approach to learning client behaviors in the
robocup soccer. Applied Artificial Intelligence, to appear, 1998.

56. T. Sugawara and V. Lesser. On-line learning of coordination plans. In Working
Papers of the 12th International Workshop on Distributed Artificial Intelligence,
1993.

57. M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages
330–337, 1993.

58. J.M. Vidal and E.H. Durfee. The impact of nested agent models in an information
economy. In Proceedings of the Second International Conference on Multiagent

298 Learning in Multiagent Systems

Systems, pages 377–384, Menlo Park, CA, 1996. AAAI Press.

59. C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge University, 1989.

60. I. Watson and F. Marir. Case-based reasoning: A review. The Knowledge
Engineering Review, 9(4):327–354, 1994.

61. G. Weiß. Action selection and learning in multi-agent environments. In From
animals to animats 2 – Proceedings of the Second International Conference on
Simulation of Adaptive Behavior, pages 502–510, 1993.

62. G. Weiß. Learning to coordinate actions in multi-agent systems. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence, pages 311–316,
1993.

63. G. Weiß. Adaptation and learning in multi-agent systems: Some remarks and a
bibliography. In G. Weiß and S. Sen, editors, Adaption and learning in multiagent
systems, Lecture Notes in Artificial in Artificial Intelligence, Vol. 1042.
Springer-Verlag, Berlin, 1996.

64. G. Weiß, editor. Distributed artificial intelligence meets machine learning. Lecture
Notes in Artificial in Artificial Intelligence, Vol. 1221. Springer-Verlag, Berlin, 1997.

65. G. Weiß. A multiagent perspective of parallel and distributed machine learning. In
Proceedings of the 2nd International Conference on Autonomous Agents, pages
226–230, 1998.

66. G. Weiß, editor. Special Issue on Learning in Distributed Artificial Intelligence
Systems of the Journal of Experimental and Theoretical Artificial Intelligence. Vol.
10(3), 1998.

67. G. Weiß and P. Dillenbourg. What is “multi” in multiagent learning? In P.
Dillenbourg, editor, Collaborative learning: Cognitive and computational approaches.
Pergamon Press, 1998.

68. G. Weiß and S. Sen, editors. Adaption and learning in multiagent systems. Lecture
Notes in Artificial in Artificial Intelligence, Vol. 1042. Springer-Verlag, Berin, 1996.

69. D. Zeng and K. Sycara. Bayesian learning in negotiation. International Journal of
Human Computer Studies (to appear), 1998.

