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Abstract. Communication in multi-agent systems (MASs) is usually governed
by agent communication languages (ACLs) and communicationprotocols car-
rying a clear cut semantics. With an increasing degree ofopenness, however, the
need arises for more flexible models of communication that can handle the uncer-
tainty associated with the fact that adherence to a supposedly agreed specification
of possible conversations cannot be ensured on the side of other agents.
In this paper, we argue foradaptivenessin agent communication. We present
a particular approach that combinesconversation patternsas a generic way of
describing the available means of communication in a MAS with a decision-
theoretic framework and various different machine learning techniques forap-
plying these patterns in andadaptingthem from actual conversations.

1 Introduction

Traditional approaches to agent communication, with theirroots in speech act theory
[1], do not respect theautonomyof individual agents in that they suppose effects of
communication on agent’s mental states [25, 3] or a normative quality of publicly visi-
ble commitments [7, 26]. In environments involving some degree ofopennesslike, for
example, design heterogeneity or dynamically changing populations, such a “norma-
tive” attitude is put into question by the fact that adherence to supposedly agreed modes
of communication cannot be ensured on the side of other agents. While this can be seen
as a witness of a fundamental conflict between agent autonomyand the need for coop-
eration (and communication) with other agents toward a joint goal, there is also a more
practical side to this problem.

Compared to the long-established areas of interaction protocol and agent communi-
cation language (ACL) research (see, e.g., [12, 9]), the development of agent archi-
tectures suitable for dealing with provided communicationmechanisms in practical
terms has received fairly little attention. As yet, there exists no uniform framework
for defining the interface between the inter-agent communication layer and intra-agent
reasoning, i.e. how specifications of interaction protocols and communication seman-
tics influence agent rationality or, in turn, are influenced themselves by agents’ rational



decision-making processes. Moreover, there is a growing concern that most specifica-
tion methods for ACLs and interaction protocols do not provide sufficient guidance as
to which part of the semantics of communication should be specified at a supra-agent
level and which part of them is only a result of agents’ mentalprocessing and cannot be
captured without knowledge of their internal design. Clearly, concentrating on one of
these two sides may either overly constrain agent autonomy (i.e., agents would merely
“execute” centralised communication procedures that modify their internal states) or
lead to uncertainty about the consequences of communication (e.g. in terms of adher-
ence to previously created commitments) and loss of social structure altogether. This
poses two central questions:

1. If strict adherence to communication languages and protocols cannot be taken for
granted, how can meaningful and coherent communication be ensured?

2. Observing the course of conversations that take place in aMAS, how can agents
effectively organise this kind of knowledge and relate it toexisting specifications,
so that they can actually benefit from it?

An obvious answer to these questions would be to devise aprobabilisticmodel of agent
conversation, and update it in order to maximise communicative success. There are
two problems, though. Firstly, generic “purely” probabilistic models are not very well
suited to describe intelligent agents (including symbolicagent communication), since
their behaviour is not at all “random”. Instead, one would rather like to identify patterns
and relational properties of communication (like communication protocols containing
variables, for example). The resulting view resembles decision-theoretic learning and
reasoning, where the classical paradigm of direct control exerted on an uncertain en-
vironment is replaced by a more indirect influence via communication between (and
hence via the allegedly rational reasoning processes of) intelligent agents. Secondly,
agent communication cannot exist on its own, but is only a means to the end of coor-
dinating or cooperating with respect to some “physical” actions (i.e., communication
works as a kind of mediator between actions). Hence, success(or optimality) in com-
munication will somehow have to be defined in terms of the actions it entails.

This view is in line withempirical communication semantics[21], where the mean-
ing of an utterance (or sequence thereof) is defined solely interms of its expected con-
sequences as given by past experience (to say it in terms of speech act theory [1], the
meaning of illocutions is defined solely in terms of their expected perlocutions). Cur-
rently two different “flavours” of empirical communicationsemantics exist, borrowing
from two different sociological schools of thought. Interaction frames [23] view empir-
ical semantics from the perspective of symbolic interactionism (particularly [8]), thus
focusing on how an individual deals with the communication mechanisms available in
a given social system, while expectation networks [14] takethe (more global) point of
view of social systems theory (see, e.g., [13]) to develop methods to analyse the evolv-
ing semantics of communication across an entire society of agents.

In this paper, we focus on a particular instance of the interaction frame approach,
which is formally defined in section 2. In section 3, we introduce a formal framework
for decision-theoretic reasoning about communication, using interaction frames to rep-
resent different classes of conversation and thus to structure the reasoning process hier-
archically. In section 4, we further use methods from the fields of case-based reasoning,



inductive logic programming and cluster analysis to devisea formal scheme for the
adaptation of interaction frames from the actual conversations conducted in a MAS, en-
abling agents to autonomously (i.e., independent of users and system designers) create
and maintain a concise model of the different classes of conversation on the basis of an
initial set of ACL and protocol specifications. To our knowledge, the work described
in this paper constitutes the first approach to adaptive communication management for
deliberative, knowledge-based agents, which is an important prerequisite for building
agents that communicate and act in full appreciation of the autonomy of their respective
peer.

2 Conversation Patterns

The greatest common denominator of the multitude of different methods for specify-
ing ACL semantics and interaction protocols (see, e.g., [15, 27] for examples in this
volume) is that they describe thesurface structureof possible dialogues and logical
constraintsfor the applicability of these. The former corresponds to a set of admissible
message sequences, the latter may include statements aboutenvironmental conditions,
mental states of the participating agents, the state of commitment stores, etc. In the
most simplistic case, these structure/constraint pairs can be represented as a set ofcon-
versation patterns, i.e. combinations of a conversation trace and a set of conditions. For
example,

〈
request(a,b,pay($100))→ do(b,pay($100)), {can(b,pay($100))}

〉

expresses that a request of agenta is followed by an action if the requesteeb is able
to execute the action, i.e. paya an amount of $100. The question serving as a point of
departure for the research presented in this paper is how we can build agents that are ca-
pable of processing a set of such (conditioned) conversation patterns in a goal-oriented
and adaptive fashion, given that the reliability of these specification is contingent on
others’ (and the agent’s own) adherence to their prescriptive content.

Before turning to practical reasoning with and adaptation of conversation patterns,
though, we introduce interactions frames as a slightly morecomplex form of conversa-
tion pattern, quoting [4] for a formal definition of a particular instance of the interaction
frame data structure. This definition uses a languageM of speech-act [1] like message
and action patterns of the formperf(A,B,X) ordo(A,Ac). In the case of messages (i.e.,
exchanged textual signals),perf is a performative symbol (e.g.request, inform), A
andB are agent identifiers or agent variables andX is the content of the message taken
from a first-order languageL. In the case of physical actions (i.e., actions that ma-
nipulate the physical environment) with the pseudo-performativedo, Ac is the action
executed byA (a physical action has no recipient as it is assumed to be observable by
any agent in the system). BothX andAcmay contain non-logical substitution variables
used for generalisation purposes (as opposed to logical “content” variables used by
agents to indicate quantification or to ask for a valid binding). We further useMc⊂M

to denote the language of “concrete” messages that agents use in communication (and
that do not contain variables other than content variables). Frames are then defined as
follows:



Definition 1 (Interaction frame). An interaction frameis a tuple F= (T,Θ,C,hT ,hΘ),
where

– T = 〈p1, p2, . . . , pn〉 is a sequence of message and action patterns pi ∈ M , the
trajectory,

– Θ = 〈ϑ1, . . . ,ϑm〉 is an ordered list ofvariable substitutions,
– C = 〈c1, . . . ,cm〉 is an ordered list ofcondition sets, such that cj ∈ 2L is the condi-

tion set relevant under substitutionϑ j ,

– hT ∈ N
|T| is a trajectory occurrence counterlist counting the occurrence of each

prefix of the trajectory T in previous conversations, and

– hΘ ∈ N
|Θ| is a substitution occurrence counterlist counting the occurrence of each

member of the substitution listΘ in previous conversations.

While the trajectoryT(F) models the surface structure of message sequences that are
admissible according to frameF , each element ofΘ(F) resembles a past binding of the
variables inT(F), and the corresponding element ofC(F) lists the conditions required
for or precipitated by the execution ofF in this particular case.hT(F) finally indicates
how oftenF has been executed completely or just in part,hΘ(F) is used to avoid dupli-
cates inΘ(F) andC(F). What hence distinguishes interaction frames from the methods
commonly used for the specification of ACL and protocol semantics is that they allow
for an explicit representation ofexperienceregarding their practical use.

The semantics of frames has been defined accordingly as a probability distribution
over the possible continuations of an interaction that has started withw ∈Mc and is
computed by summing up over a setF of known frames:

P(w′|w) = ∑
F∈F

ww′=T(F)ϑ

P(ϑ|F,w)P(F |w) (1)

This equation viewsF as a compact yet concise representation of the interactionsthat
have taken place so far and projects past regularities into the future. This global view,
however, will hardly be computationally feasible in realistic domains, and it also con-
tradicts the way conversation patterns are used in practice. One would rather expect
different protocols for different purposes, and not all of them need to be reasoned over
at the same time while engaging in a particular kind of interaction.

In the following section, we will instead introduce a framework for conducting
decision-theoretic reasoning about frame selection, as well as action selection within
a single frame. For this hierarchical approach to be reasonable as well as successful, it
is required that the different frames concisely capture thedifferent classes of conver-
sations that can take place. This requirement has to hold as well for frames used by
external observers to model, analyse or describe the interactions in a MAS. Particular
emphasis will hence have to be put on the acquisition and adaptation of communication
patterns from the actual interactions in a MAS, such that theresulting set of patterns
corresponds to the different classes of interactions as perceived by the agent or external
observer. Methods for the adaptation of interaction frameswill be explored in section 4.



3 Reasoning with Conversation Patterns

The distinguishing feature of interaction frames as compared to (the methods commonly
used for the specification of) interaction protocols is their ability to capture instance in-
formation, i.e. information about how particular conversation patterns have been used
in the past according to the agent’s experience. This additional information provides
agents with a facility to reason about the semantics of communication in an adaptive
fashion. In accordance with the empirical semantics view that considers the meaning
of communication as a function of its consequences as experienced through the eyes
of a subjective observer, agents can adapt existing frame conceptions with new obser-
vations of encounters and project past regularities into the future. Inopen systems, in
which agents may or may not obey a set of pre-defined conversation patterns, this can
be expected to improve agents’ communication abilities significantly, particularly with
respect to a strategic use of communication.

3.1 Frame Semantics

To gain deeper insight into adaptive agent communication ingeneral and reasoning
about communication patterns in particular, we will now take a procedural view on the
probabilistic semantics of interaction frames defined by equation 1.

The semantics of a setF = {F1, . . . ,Fn} of frames is as follows: Given anencounter
prefix w∈ M ∗

c , i.e. a sequence of messages already uttered in the current encounter
(possibly the empty sequence) and aknowledge base KB∈ 2L of beliefs currently held
by the reasoning agent4, F defines a set of possiblecontinuations w′ ∈M ∗

c , which can
be computed as follows:

1. Filter out those frames whose trajectories do not prefix-matchw.
2. For each remaining frameF, consider the possible postfixes ofT(F) for prefix

w, each of them corresponding to a particular variable substitution (wherew has
already committed certain variables to concrete values).

3. Only consider those substitutions for which at least one of the context conditions
in C(F) is satisfied underKB.

For each of these possible continuations, we can then compute acontinuation prob-
ability by virtue of similarity, frequency and relevance considerations. The resulting
probability distribution over continuationsw′ is thesemanticsof w underF .

Definition 2. Let ϑ f (F,w) = unifier(w,T(F)[1:|w|]) be the most general unifier of w
and the corresponding trajectory prefix T(F)[1:|w|] of F. Then, theset of possible sub-
stitutionsunder frame F, beliefs KB, and conversation prefix w is definedas

Θposs(F,KB,w) =
{

ϑ
∣
∣∃ϑ′.ϑ = ϑ f (F,w)ϑ′ ∧∃i.KB |= C[i]ϑ

}
.

4 In equation 1, the agent’s knowledge is implicit in the termsP(ϑ|F,w) and P(F |w). More
precisely, we could have writtenP(ϑ|F,w,KB) andP(F|w,KB). For notational convenience,
we further assume that knowledge bases use the same logical language as is used in the content
language of messages.



In this definition,unifier(v,w) denotes the most general unifier of two message pattern
sequencesv andw, Sϑ denotes application of substitutionϑ to a (set or list of) logical
formula(e) or message(s)S (depending on the context). In other words,Θpossis the set
of substitutions that are extensions ofϑ f for which at least one condition inC(F) is
satisfied. Accordingly, the continuationsw′ of w that should be expected to occur with
non-zero probability (according toF and underKB) are exactly those that result from
the application of a substitution inΘpossto the postfix ofT(F).

In order to conduct (quantitative) decision-theoretic reasoning about frames, how-
ever, the exact quantities of the probabilitiesP(ϑ|F,w) have to be determined. In order
to obtain well-defined probabilities even for substitutions ϑ that have never occurred
before in actual interactions, we avail ourselves of a method commonly used in the area
of case-based reasoning[11]. Starting from asimilarity measureσ defined on message
pattern sequences, we compute the similarity of any possible substitution to a frame by
taking into account the frequencies of previous cases and the relevance of their corre-
sponding condition sets in a single frame.

Definition 3. Let σ : M ∗×M ∗ → [0,1] be a similarity measure on message pattern
sequences. Let ci(F,ϑ,KB) denote the relevance of the ith condition of F underϑ and
KB. Then, the similarity of substitutionϑ to frame F is defined as

σ(ϑ,F) =
|Θ(F)|

∑
i=1

(
similarity

︷ ︸︸ ︷

σ(T(F)ϑ,T(F)Θ(F)[i]) ·

frequency
︷ ︸︸ ︷

hΘ(F)[i] ·

relevance
︷ ︸︸ ︷

ci(F,ϑ,KB)
)

In other words,σ(ϑ,F) assesses to which extentϑ is “applicable” toF . Definition 4 in
section 4.1 will introduce a distance metricd∗ on the setM ∗

c of finite-length message
sequences, such thatd∗(v,w) is the distance between message sequencesv andw. Using
this metric, we can defineσ(v,w) = 1−d∗(v,w). A possible way to defineci would be to
let ci(F,ϑ,KB) = 1 if KB |=C(F)[i]ϑ and 0 otherwise, such that only those substitutions
of F contribute to the similarity whose corresponding conditions are satisfied underϑ
and under current beliefKB.

The conditional probabilityP(ϑ|F,w) in equation 1 can be computed by assigning
a probability

P(ϑ|F,w) ∝ σ(ϑ,F) (2)

to all ϑ ∈ Θposs(F,KB,w) and a probability of zero to any other substitution.P(F|w)
simply corresponds to the numberhT(F)[|hT(F)|] of successful completions ofF nor-
malised over all frames that prefix-matchw.

3.2 Decision Making with Frames

In the introductory section, we have argued for the integration of agent communication
with decision-theoretic reasoning, by which agents strivefor long-term maximisation
of expected utility. We hence assume that agents are equipped with a utility function
u : M ∗

c × 2L → R, such thatu(w,KB) denotes the utility associated with executing a
message (and action) sequencew in belief stateKB. As we have pointed out, substantial
positive or negative utility can only be assigned to physical actions in the environment



(though messages may be given a small negative utility to express the communication
cost incurred by them).

In principle, such a utility function could be combined directly with the continuation
probabilities of equation 1 to derive utility-maximising decisions in communication.
However, it will hardly be feasible to compute the continuation probabilities directly,
and this approach would also contradict the role usually played by conversation pat-
terns. As we have said, we will instead use a hierarchical approach based on selecting
the appropriate frame for a given situation and then optimising behaviour within this
frame. The former activity is referred to asframingand will be described in the follow-
ing section. The latter is standard expected utility maximisation using frames and can
be described by the following abstract decision-making procedure:

1. If no encounter is running, consider starting one. If a messagem is received, update
the encounter prefix:w←wm.

2. If no frameF has been selected, go to 10.
3. Validity check:If |T(F)|= w, go to 9; ifunifier(T(F)[1 : |w|],w) =⊥, go to 10.
4. Adequacy check:If Θposs(F,w,KB) = /0, go to 10
5. Compute the expected utility for eachown substitutionϑs:

E[u(ϑs,F,w,KB)] = ∑
ϑp

(

u
(
postfix(T(F),w)ϑsϑp,KB

)
·P

(
ϑp|ϑs,F,w

))

6. Determine the optimal substitutionϑ∗ = argmaxϑs E[u(ϑs,F,w,KB)].
7. Desirability check:If u(postfix(T(F),w)ϑ∗ϑp,KB) < b, go to 10.
8. Performm∗ = T(F)[|w|+1]ϑ∗; update the encounter prefix:w← wm∗

9. If no message arrives until deadline, terminate the encounter; go to 1.
10. Framing:SelectF , go to 3.

The actual (framing) reasoning cycle is bracketed by steps 1and 9 which cater for
initiating encounters and ending them if no more messages are received (i.e., if the
other agent does not reply when expected to, and to make sure we heed additional
messages sent by the other party after we considered the encounter completed). We
assume encounter initiation on the side of the agent to be spawned by some sub-social
reasoning layer, e.g. a BDI [19] engine, which determines whether and about what
to converse with whom, depending on the possibility of furthering some private goal
through interaction.

Steps 3, 4 and 7 are used to evaluate the usefulness of the currently active frame
F . The former two cases are straightforward: If the frame has been completed, if it
does not match the encounter prefixw, or if Θposs(F,w,KB) is empty,F cannot be used
any longer. For the latter case, we have to assess the expected utility E[u(ϑs,F,w,KB)]
of any “own” substitutionϑs. To this end, we have to conduct an adversarial search
over substitutions jointly determined by the agent and her peer, as each of the two
agents commits certain variables to concrete values in their turn-taking moves. Using
definition 3 and equation 2, the probability for an opponent’s substitutionϑp in the
remaining steps ofT(F) can be computed as

P(ϑp|ϑs,F,w) =
P(ϑp∧ϑs|F,w)

P(ϑs|F,w)
=

σ(ϑ f (F,w)ϑsϑp,F)

∑ϑ σ(ϑ f (F,w)ϑsϑ,F)
,



whereϑp∧ϑs denotes the event of the peer choosingϑp and the reasoning agent choos-
ing ϑp after having committed to the fixed substitutionϑ f (F,w), so that the final “joint”
substitution will beϑ f (F,w)ϑsϑp.

With this, u can be used to compute the utility of the postfix ofT(F) for prefix w
(corresponding to application ofϑ f (F,w)), with ϑp andϑs applied to obtain a ground
message (and action) sequence still to be executed alongT(F). If the utility of the post-
fix under the optimal substitutionϑ∗ is below some thresholdb, the frame is discarded.
Otherwise, the next stepm∗ along the trajectory ofF is performed.

So far, we have said nothing about the process of updating theframe repositoryF
upon encounter termination (whether after successful completion or failure of selecting
an appropriate frame). This will be done in detail in section4. What now remains to be
specified is a search strategy to decide between different candidate frames in step 10.
Effectively, it is this search strategy that determines thedegree of complexity reduction
achieved by restricting the search space to a single active frame while looking for the
optimal next message or action.

3.3 Framing

Given that the frames inF concisely capture the different classes of conversations that
can take place in a MAS,hierarchical reinforcement learning(HRL) techniques [2]
can be used learn an optimal strategy for frame selection. InHRL, actions available in
a “generic” Markov Decision Process (MDP) are combined intomacro-operators that
can be applied over an extended number of decision steps, thegeneral idea being that
compound time-extended policies, which (hopefully) optimally solve sub-problems of
the original MDP, help to reduce the overall size of the statespace. Using such macro-
actions, an agent can use S(emi-)MDP (i.e., state history dependent) variants of learning
methods such as Q-learning [28] to optimise its long-term “meta”-strategy over these
macro-policies.

An intuitive HRL approach that lends itself to an application to interaction frames
particularly well is the options framework [17]. In this framework, anoption is a triple
o = (I ,π,β) consisting of an input setI ⊆ S of MDP states, a (stationary, stochastic)
policy π : S×A→ [0,1] over primitive actionsA and statesS , and a stochastic termina-
tion conditionβ : S→ [0,1]. Optiono is admissible in a states iff s∈ I . If invoked,o will
behave according toπ until it terminates stochastically according toβ. This definition
can be used to re-interpret interaction frames as options, whereπ is the (deterministic)
strategy defined by determiningm∗, andI andβ are defined by the validity, adequacy
and desirability checks performed during the reasoning process of the previous section.

Let s: M ∗
c ×2L→ S be some state abstraction function5 that returns a state for each

pair (w,KB) of perceived encounter prefixw and beliefKB. If we regard each frame
F ∈ F as an option in the above sense, we can apply the SMDP Q-learning update rule

Q(s,F)← (1−α)Q(s,F)+ α
[

R̂(s,F)+ γτ max
F ′∈F

Q(s′,F ′)

]

,

5 It is unrealistic to assume thatM ∗
c ×2L itself could be used as state space due to its unman-

ageable size.



wheres = s(w,KB) ands′ = s(ww′,KB′) are the states resulting from the encounter
sequencesw andww′ and the corresponding knowledge base contentsKB andKB′ as
perceived between two re-framing decisions,α is an appropriately decreasing learning
rate andτ is the number of steps during whichF was the active frame (i.e.,τ = |w′|).
Further,R̂(s,F) is the discounted reward accumulated in stepst +1, . . .t +(τ−1).

Using the long-term utility estimates represented byQ, we can determine the opti-
mal frame to select as

F∗(w,KB) = argmax
F∈F

Q(s(w,KB),F),

while applying a “greedy in the limit” infinite exploration strategy to avoid running into
local minima. It should be noted that this way of learning a frame selection strategy al-
lows for optimising framing decisionswithin encounters as well asbetweensubsequent
encounters, at least if there is some utility-relevant connection between them.

4 Adaptation of Conversation Patterns

As we have already said, the need for its acquisition and adaptation from actual inter-
actions is an inherent property of empirical semantics. Using a set of interaction frames
for representation, we have further argued that these frames need to model different
classes of interactions within a MAS. In particular, this feature is critical with respect
to the reasoning framework described in the previous section.

In this section, we will present a method for the adaptation and acquisition of models
of empirical semantics using the formalisation of interaction frames given in section 2.
For this, we will introduce a metric on the spaceM ∗

c of finite-length message sequences
and then extend it to a metric between frames. This allows us to interpret a frame repos-
itory (i.e., a set of known frames) as a (possibly fuzzy) clustering in the “conversation
space”, and hence to measure the quality of a frame acquisition and adaptation method
in terms of the quality of the clustering it produces (referred to as “cluster validity”
in [10]). According to this interpretation, adaptation from a new conversation either
introduces a new cluster (viz frame) or it adds to an existingone with or without mod-
ifying the trajectory of the respective frame. The different alternatives can be judged
heuristically in terms of the corresponding cluster validities, which we will use to de-
vise an algorithm for the adaptation of frame repositories.To perform the necessary
frame modifications in any of the above cases, we will also present a generic algorithm
for merging two frames into one.

Due to lack of space, proofs and examples have largely been omitted from this
description. The interested reader is referred to [6] for a more detailed description.

4.1 A Distance Metric on Message Sequences

As a basis of our interpretation of interaction frames as clusters, we will start by intro-
ducing a distance metric on the set of possible messages and then extend it to finite-
length message sequences. Since messages as defined above are essentially first-order
objects, we could simply use a general purpose first-order distance like the one proposed



in [24]. In [6], we have instead introduced a family of mappings on messages that are
parametrised on two functionsds andDs and allow us to add a “semantic” flavour in
the form of domain-specific knowledge. The most basic (and domain-independent) in-
stance of this family is in fact a metric on messages (in particular, it satisfies the triangle
inequality), and can easily be extended to message sequences.

Definition 4 (Distance between message sequences).Let d : Mc×Mc→ [0,1] be a
mapping on messages with

d(m,n) =

{
1

|m|+1 ∑|m|i=1d(mi ,ni) if m = n

1 otherwise.

Further, let|v| and vi denote the length and ith element of sequence v. We define

d∗(v,w) =

{
1
|v| ∑

|v|
i=1d(vi ,wi) if |v|= |w|

1 otherwise.

As we haven shown in [6],d∗ is indeed a metric on the setM ∗
c of finite-length message

sequences.

4.2 A Metric on Frames

Having defined a metricd∗ on the set of finite-length message sequences, we will now
extend this metric (a metric onpoints, so to speak) to a metric on frames by interpreting
these as sets of the message sequences they represent (i.e.,pointsets).

[18] proposes a general formalism to define a distance metricbetween finite sets
of points in a metric space. The distance between two setsA andB is computed as the
weight of the maximal flow minimal weight flow through a special distance network
N[X,d,M,W,A,B] between the elements of the two sets.

Definition 5 (Netflow distance).Let X be a set with metric d and weighting function
W, M a constant. Then for all A,B ∈ 2X, thenetflow distancebetween A and B in X,
denoted dNX,d,M,W(A,B), is defined as the weight of the maximal flow minimal weight
flow from s to t in N[X,d,M,W,A,B].

As further shown in [18],dN
X,d,M,W(A,B) is a metric on 2X and can be computed in

polynomial time (insizeW(A) and sizeW(B) and in the time needed to compute the
distance between two points) if all weights are integers. Also, this metric is claimed to
be much better suited for applications where there is likelya point with a high distance
to any other point than, for example, the Hausdorff metric (which only regards the
maximum distance of any point in one set to the closest point in the other set).

Additionally, one can assign weights to the elements ofA andB in order to allevi-
ate the difference in cardinalities between the two sets. Interpreting (integer) weights
as element counts yields a metric onmultisets, which is ideally suited to measure the
distance between interaction frames in which multiple instances of a particular mes-
sage sequence have been stored (corresponding to a substitution count larger than one).
Mapping each frame to the set of messages it represents and weighting each element
with the respective substitution count, we directly obtaina metricdf on frames.



Definition 6 (Distance between frames).Let

mf (F) = {m∈M ∗
c |∃ϑ ∈Θ(F). m= T(F)ϑ}

be the set of message sequences stored in frame F. Let

W(mf (F))(m) = hΘ(F)[i] iff m = T(F)Θ(F)[i]

be a weighting function for elements of mf (F). Then, thedistance between two frames
F andG, denoted df (F,G), is defined as the maximal flow minimal weight flow from s
to t in the transport network N[M ∗

c ,d∗,1,W,mf (F),mf (G)].

As shown in [6],df is a metric on the set of frames, anddf (F,G) can be computed
in polynomial time in∑i<|Θ(F)|hΘ(F)[i], ∑i<|Θ(G)|hΘ(G)[i] and the time required to
computed∗.

4.3 Validity of Frame Modifications

Based on the metrics defined in the previous sections, we can interpret interaction
frames as clusters of points in the space of message sequences, which in particular
allows us to define the quality of a set of frames as a model for actual interactions in
terms of the quality of the corresponding clustering.

[10] refers to this quality ascluster validityand defines the validity of a particular
cluster as the ratio between its compactness, i.e. average distance between points within
this cluster, and its isolation, i.e. minimum distance to any other cluster. Accordingly,
we define the compactness and isolation of a frame using the metrics d∗ and df on
message sequences and frames, respectively.

Definition 7 (Frame compactness and isolation).Let F be a set of frames, F∈ F a
single frame. Thecompactnessof F is then defined as the (normalised) average distance
between the individual messages stored in it, weighed by their respective occurrence
counts:

c(F) =
( |Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j

)−1
·
|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·d∗
(
T(F)ϑi ,T(F)ϑ j

)

whereϑi = Θ(F)[i] and hi = hΘ[i] denote the ith substitution of F and the corresponding
count. Theisolationof F in F is defined as the minimal distance to any other frame in
F :

i(F,F ) = min
G∈F \{F}

df (F,G)

Sincec(F) usesd∗ for distances within a single frameF only, there exists a more
efficient way of computing it. If we writew(v,m) to denote theweightof a variablev
in a message patternm (i.e., the sum of coefficients ofd(v, ·) in d∗(m,mϑ) for some
substitutionϑ), then we can precomputew(v,T(F)) for any variablev in the trajectory
of F , and rewritec(F) to

c(F) ∝
|Θ(F)|

∑
i=1

|Θ(F)|

∑
j=i+1

hi ·h j ·∑
v

w
(
v,T(F)

)
·d∗

(
vϑi ,vϑ j

)



According to definition 7,c(F) is zero for frames with only one distinct substitution,
so defining overall validity as the sum or product of individual validitiesi(F,F )/c(F)
is not a good idea. Instead, we define the validity of a frame repositoryF as the ratio
between average isolation and average compactness for all the frames inF , taking
special care of situations where only frames with a single substitution exist.

Definition 8 (Frame validity). Let F be a set of frames. Thevalidity of F is defined
as

v(F ) =

{∑F∈F i(F,F )

∑F∈F c(F)
if ∃F ∈ F . |Θ(F)|> 1

1
|F | ∑F∈F i(F,F ) otherwise

In analogy to cluster analysis we conjecture that the higherthe validityv(F ) of a
frame repositoryF built from a particular set of concrete interactions, the better it mod-
els the different classes of conversation in a MAS. Facing different alternatives for the
incorporation of an interaction that has just been perceived, each of them corresponding
to a specific modification ofF , we can judge their quality simply by measuringv(F )
before and after this modification and hence devise an algorithm that tries to maintain a
frame repository with the highest possible validity.

4.4 Frame Abstraction and Merging

Before we can apply the results of the previous section to an algorithm for the acquisi-
tion and adaptation of interaction frames from actual interactions, we will first have to
make explicit the actual modifications that can be performedon interaction frames and
sets thereof in order to adapt them to newly observed interactions. We do so by pro-
viding a general algorithm for merging two interaction frames into one. This algorithm
can then be used to simply add a new message to an existing frame (by interpreting the
message as a “singular” frame with ground trajectory and only the empty substitution)
or to reorganise a whole repository. In order to distinguishthese two activities, and ac-
cording to the point in time they are performed relative to the actual interactions, we
might refer to them as online and offline merging.

Starting with frame trajectories and following Occam’s Razor, the trajectory of the
frame obtained by mergingF andG should be the least abstract message pattern se-
quence that can be unified with both trajectoriesT(F) andT(G) using standard first-
order unification, i.e. theleast general generalisation(lgg) [16] of the two, denoted
lgg(T(F),T(G)). The following inductive definition of least general generalisation for
message sequences can be turned into a simple algorithm for its computation.

Definition 9 (Least general generalisation).The least general generalisation (lgg) of
two terms is given by

lgg( f (s1, . . . ,sk),g(t1, . . . ,tl )) =

{

f (lgg(s1,t1), . . . , lgg(sk,tk)) if f = g and k= l

x otherwise,

where x is a new variable (i.e., one that does not occur in any si or ti) such that
lgg(s,t) is unique for any subterms s and t throughout the lgg (i.e., equal terms are



replaced with the same variable). The lgg of two messages with the same performative
is given by lgg(p(a,b,x), p(c,d,y)) = p(lgg(a,c), lgg(b,d), lgg(x,y)). It is undefined if
the performatives differ. The lgg of two message sequences of equal length is given by
lgg((m1, . . . ,mk),(n1, . . . ,nk)) = (lgg(m1,n1), . . . , lgg(mk,nk)). As before, it has to be
ensured that lgg(s,t) is unique throughout the lgg for any two subterms s and t.

In an algorithm, uniqueness of the lgg is usually achieved bymeans of a table that holds
the lggs computed so far for any pair of arguments.

Along with the lgg, definition 9 also yields two substitutions, namely the most gen-
eral unifier (mgu) of the lgg with each of its arguments, and weuse the abbreviation
ϑm(m,n) = mgu(m, lgg(m,n)). To obtain the substitutions and conditions of the merged
frame, theϑm have to be applied to the substitutions and conditions of therespective
frame. For this, letF be one of the frames to merge, lett denote the trajectory of the
resulting frame andc j andϑ j the condition and substitution of the resulting frame that
correspond toC(F)[ j] andΘ(F)[ j]. If the new frame is to hold all the conversations of
F , thentϑi = T(F)Θ(F)[i] has to hold for 1≤ i ≤ |Θ(F)|. The definition ofϑm implies
thatT(F) = tϑm(T(F), ·) and thustϑm(T(F), ·)Θ(F)[i] = tϑi .

If accordinglyϑi is computed asϑi = ϑm(T(F), ·)Θ(F)[i], however, information
might be lost about correlations between multiple conversations originating from the
same frame. To retain this kind of information, substitutions should be concatenated
rather than applied unless the right side ofϑm(T(F), ·) is a variable (which is quite
common, as it results from the introduction of a new variablefor a variable in the course
of computing the lgg). The following definition formalises this concept of selective
application of a substitution.

Definition 10. Let ϑ = [v1/t1, . . . ,vn/tn] be a single variable substitution andΘ =
〈s1, . . . ,sm〉 a list of substitutions. Then,ϑ ⋊ Θ denotes the list of substitutions that
results fromselectively prependingϑ to each element ofΘ and is given byϑ ⋊ Θ =
〈r1, . . . , rm〉 where ri = [v1/r i1, . . . ,vn/r in] ·si and

r i j =

{

t jsi if t j is a variable

t j otherwise

As for the conditions of the merged frame,ciϑi =C(F)Θ(F)[i] has to hold analogously.
Replacingϑi with the above result yieldsciϑmΘ(F)[i] = C(F)Θ(F)[i] and thusciϑm =
C(F). Writing ϑ−1 for the “inverse” of a substitutionϑ (replacing terms by variables),ci

can hence be defined asci = C(F)ϑ−1
m . This finally leads us to the following definition

of a merging operation on frames:

Definition 11 (frame merging).Let F and G be two interaction frames with|T(F)|=
|T(G)|. Then, the result ofmergingF and G, denoted by M(F,G), is given by

M(F,G) =
〈
lgg

(
T(F),T(G)

)
,

C(F)ϑm
(
T(F),T(G)

)−1
·C(G)ϑm

(
T(G),T(F)

)−1
,

ϑm
(
T(F),T(G)

)
⋊ Θ(F) ·ϑm

(
T(G),T(F)

)
⋊ Θ(G),

hmax(F,G),

hΘ(F) ·hΘ(G)
〉
,



where hmax(F,G) = 〈h1,h2, . . . 〉 with

hi =







max
{

hT(F)[i],hT(G)[i],∑
k

hΘ(M(F,G))[k]
}

if i = |T(F)|

max
{

hT(F)[i],hT(G)[i],hi+1
}

if i < |T(F)|.

The rather complex definition of the step counter values for the merged frame stems
from the fact that it is impossible to determine the valuehT(merge(F,G)) would have
taken if merge(F,G) had been in the repository during all the conversations stored in
F and G just from the information provided byF and G. On the other hand, it is
also impossible to determine which additional conversations would have been stored
in merge(F,G) if this had been the case, so it seems fair to approximatehT based
on the following observations: Obviously, max(hT(F),hT(G)) is a lower bound for
hT(merge(F,G)). In addition to that, the sum of the values ofhΘ is a lower bound for
the value ofhT [|T|], since it resembles the exact number of past conversations stored
in the frame. Finally, for eachi, hT [i] is a lower bound forhT [ j] with j < i. Hence, as
we cannot infer any upper bounds from the counter values alone, we simply choose
the values ofhT(merge(F,G)) such that the bounds are tight. If only online merging is
used, this approximation always yields accurate values forhT .

4.5 An Algorithm for Learning Frames

Based on the formal notion of validity of a set of frames presented in section 4.3, which
extends cluster validity to the space of multi-agent conversations, and on the frame
merging procedure given in section 4.4, the following simple algorithm computes the
best way to incorporate a newly observed message sequencem into a frame repository
F :

function flea(F ,m) returns a frame repository

inputs: frame repositoryF , message sequencem
/* compute the singular frameF for m */
F :=

(
m,Cm,{},〈1, . . . ,1〉,〈1〉

)

/* compute the setF of alternatives for inclusion ofm */
F :=

{
F ∪{F}

}
∪

S

F ′∈F

{
F \ {F ′}∪M(F ′,F)

}

/* return the most valid frame repository*/
return argmaxF ′∈F v(F ′)

While the surface structure of a particular message sequence equals the message
sequence itself, identification of a setCm of logical conditions that held during a con-
versation (according to the observer’s world model) and that wererelevantor crucial
is clearly a nontrivial task. If frames exist, however, the execution of which was hin-
dered due to reasons of context (especially if pre-specified“protocol” frames are used),
these can be used to identify conditions other than those (physically) required for the
execution of the individual messages.

Since the above algorithm only considers a single frame at a time for inclusion into
the repository, it is unable to detect structures in the space of interactions that develop



over time. This corresponds to a more general problem oforder dependencein incre-
mental unsupervised learning and might in practice result in several frames actually
modelling the same class of interactions. This problem can be handled, though, by sup-
plementing the above online merging algorithm with one thatperiodically checks if two
frames in the repository can be merged to increase its overall validity.

5 Conclusion

In this paper, we have presented a novel approach toadaptive agent communication.
Agents in open environments that communicate according to high-level pre-specified
conversational patterns can use the approach to augment these patterns with empiri-
cal observation of actual conversations, and conduct decision-theoretic reasoning about
them in the framework of empirical semantics. Interaction frames have been used as the
central data structure, allowing for the integration with our previous work on interaction
frames [4, 5, 20]. The basic principles of the approach, however, could also be applied
to other, possibly more complex, forms of representation.

Our current work focuses on an experimental exploration of the benefits and limita-
tions of our approach in real-world “communication learning” tasks. An experimental
evaluation in the context of proposal-based and argumentation-based negotiation can
be found in [22]. Further applications include performancemeasurement of a MAS or
of individual agents with respect to communication or the design of new interaction
protocols. An open issue that will have to be dealt with in future work to allow for
the acquisition of conversation patterns from scratch is the discovery of conditions that
were relevant or crucial for a particular class of conversation. While inductive logic
programming techniques may again be the appropriate means to attack this problem,
the transition to relative least general generalisation (which might be required to handle
background knowledge already available for a particular class of conversation) would
make this one disproportionately harder to solve.
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