
Communication Systems: A Unified Model
of Socially Intelligent Systems?

Matthias Nickles, Michael Rovatsos, Wilfried Brauer, and Gerhard Weiß

Department of Informatics, Technical University of Munich
85748 Garching bei München, Germany,

{nickles,rovatsos,brauer,weissg}@cs.tum.edu

Abstract. This paper introduces communication systems (CS) as a unified model
for socially intelligent systems. This model derived from sociological systems
theory, combines the empirical analysis of communication in a social system with
logical processing of social information to provide a general framework for com-
putational components that exploit communication processes in multiagent sys-
tems. We present an elaborate formal model of CS that is based on expectation
networks and their processing. To illustrate how the CS layer can be integrated
with agent-level expectation-based methods, we discuss the conversion between
CS and interaction frames in the InFFrA architecture. A number of CS-based ap-
plications that we envision suggest that this model has the potential to add a new
perspective to Socionics and to multiagent systems research in general.

1 Introduction

Traditional attempts to model the semantics of agent communication languages (ACLs)
are mostly based on describing mental states of communicating agents [2, 3, 7, 19] or
on observable (usually commitment-based) social states [6, 14, 20]. However, both these
views fail to recognise that communication semantics evolve during operation of a mul-
tiagent system (MAS), and that the semantics always depend on the view of an observer
who is tracking the communicative processes in the system. Yet this is a crucial aspect
of inter-agent communication, especially in the context of open systems in which a pre-
determined semantics cannot be assumed, let alone the compliance of agents’ behaviour
with it.

In [8] we have therefore – influenced by sociological systems-theory [9] – intro-
duced expectations regarding observable communications as a universal means for the
modelling of emergent sociality in multiagent systems, and in [15], we have presented –
influenced by actor-oriented, socio-cognitive theories [5, 11] – a formal framework for
the semantics of communicative action that is empirical, constructivist and consequen-
tialist in nature and analysed the implications of this model on social reasoning from
an agent perspective. We suggested that recording observations of message exchange
among agents in a multiagent system (MAS) empirically is the only feasible way to
capture the meaning of communication, if no a priori assumptions about this meaning

? This work is supported by DFG (German National Science Foundation) under contracts
no. Br609/11-2 and MA759/4-2.

can be made. Being empirical about meaning naturally implies that the resulting model
very much depends on the observer’s perspective, and that the semantics would always
be the semantics “assigned” to utterances by that observer, hence this view is inherently
constructivist. Since, ultimately, no more can be said about the meaning of a message
in an open system than that it lies in the set of expected consequences that a message
has, we also adopt a consequentialist outlook on meaning.

In this paper, we integrate and extend upon these views that were strongly influenced
by different sociological views. We present a detailed framework for the formal descrip-
tion of socially intelligent systems based on the universal, systems-theoretical concept
of communication systems, which subsumes structure-oriented expectation modelling
on the one hand, and the modelling of cognitive, goal-oriented social knowledge of
active agents on the other.

In the terminology of sociological systems theory, communication systems are sys-
tems that consist of interrelated communications which “observe” their environment
[9]. For the purposes of this paper, we will use the term “communication system”
(CS) to denote computational entities that process empirical information about observed
communication1 and use this information to influence the behaviour of the underlying
system. Their distinct features are (i) that they only use data about communication for
building models of social processes, the underlying assumption being that all relevant
aspects of social interaction are eventually revealed through communication, and (ii)
that, different from a passive observer, the may take action in the system to influence its
behaviour; in other words, there is a feedback loop between observation and action, so
that a CS becomes an autonomous component in the overall MAS.

Note, however, that CSs need not necessarily be (embedded in) agents. Although
their autonomy presumes some agentification, their objectives need not be tied to
achieving certain goals in the physical (or pseudo-physical simulation) world as is the
case with “ordinary” agents. Thus, they are best characterised as components used to
(trans)form expectations (regardless of how these expectations are employed by agents
in their reasoning) and which are autonomous with respect to how they perform this
generation and modification of expectations.

Our hypothesis regarding the Socionics endeavour [10] is that its main contribution
lies in the construction of appropriate communication systems for complex MAS, or, to
take it to the extreme, we might summarise this insight as

Socionics = empirical communication analysis + rational action

because the CS viewpoint extends the traditional outlook on MAS taken in the field
of distributed artificial intelligence (DAI). Thereby, the “semantics” aspect mentioned
above plays a crucial role, because meaning lies in the sum of communicative expecta-
tions in a system, and CS capture precisely these expectations and how they evolve.

The remaining sections are structured as follows: We start by introducing expec-
tation networks in section 2, which constitute our formal model for describing com-
municative expectations. Then, we formally define communication systems and their

1 I.e., our CS realises some kind of second-order observer in terms of sociological systems
theory.

can(B,X)

reject(B,A,X)

[X/deliver_goods]

price>0

[A/agent_1], [B/agent_2]

[A/agent_1],[B/agent_3]

can(A,Y)
can(C,Y)

request(A,B,X) [Y/pay_price]

accept−proposal(A,B,Y)

reject−proposal(A,B,Y)

0.5
0.5

propose(B,A,Y)

do(B,X)

0.2

can(B,X)

0.1

0.5

accept(B,A,X)

n=100
0.5

?

delegate(A,C,Y)

do(C,Y)

can(A,Y)

do(A,Y)

0.3
0.8

0.7

do(B,X)

0.9

price=0

[C/agent_3]

P7

P5

P6

P4

P3

P8

P1’

P2
P1

[A/C],[B,A],[C,B]
−0.5

+0.3

[A/agent_3], [B/agent_2]

Fig. 1. An expectation network. Nodes are labelled with message templates in typewriter
font and the special symbols “.”, “⊥” and “?”; they are connected by (solid) cognitive edges
labelled with numerical expectabilities in italic font, or (dashed) normative edges with round
circles containing a numerical “force” value in bold face. Substitution lists/conditions belonging
to edges appear in rounded/edged boxes near the edge. If neighbouring edges share a condition
this is indicated by a drawn angle between these edges. The path labels P1 to P8 do not make
part of the notation and are simply used to refer to paths in the text.

semantics (section 3). As an example of how CS can be used to model socially in-
telligent systems, we discuss the conversion between the social reasoning architecture
InFFrA and CS in section 4. Section 5 discusses possible applications of the CS, and
section 6 concludes.

2 Expectation Networks

Expectation networks (ENs) [8] are the data structures on which communication sys-
tems operate. They capture regularities in the flow of communication between agents in
a system by connecting message templates (nodes) that stand for utterances with each
other via links (edges) which are labelled with (i) weights (ii) a logical condition and
(iii) lists of variable substitutions. Roughly speaking, the semantics of such a labelled
edge is that “if the variables in the messages have any of the values in the substitution
lists, and the logical condition is currently satisfied, then the weight of the edge re-
flects the frequency with which a message matching the label of the target node follows
utterance of a message matching the label of the source node of the edge.” Before pre-
senting a full definition of ENs, we have to introduce some basic notions and notation
we use, and to make certain auxiliary definitions and assumptions. The example net-
work in figure 1 will be used throughout the discussion of ENs to illustrate the purpose
of definitions and assumptions.

2.1 Basics

A central assumption that is made in ENs is that observed messages may be categorised
as continuations of other communications, or may be considered the start of a new in-
teraction that is not related to previous experience. So an edge leading from m to m′ is
thought to reflect the transition probability, i.e. the frequency of communication being
“continued” from the observer’s point of view. Usually, continuation depends on tem-
poral and spatial proximity between messages, but it might also be identified through a
connection about “subject”, or, for example, though the use of the same communication
media (m′ was shown on TV after m was shown some time earlier on).

Apart from “ordinary” node labels, we use three distinct symbols “.”, “⊥”, and “?”.
“.” is the label occurring only at the root node of the EN. Whenever a message is con-
sidered a “non-continuation” of previous sequences (i.e. the start of a new interaction),
it is appended to this “.”-node. Nodes labelled with “⊥” denote that a communication
ended after the label of the predecessor of this node was observed. The label “?”, finally,
indicates that there exists no expectation regarding future messages at this node. Nodes
with such “don’t know” semantics are usually messages that occur for the first time –
the observer noes nothing about what will happen after them being uttered. To define
the syntactic details of EN, we have to introduce formal languages L andM used for
logical expressions and for message templates, respectively.L is a simple propositional
language consisting of atomic propositions Statement = {p, q(X, s), . . .} potentially
containing (implicitly universally quantified) variables (for which we use capitalised
letters, e.g. X), of the usual connectives ∨, ∧, ⇒ and ¬, the logical constants “true”
and “false”, and braces () for grouping sub-expressions together (the language is for-
mally given by the grammar in table 1). We write |= ϕ ifϕ. A knowledge base KB ∈ 2L

can be any finite set of formulae from L. For simplicity, we will often write KB |= ϕ
to express |= (∧ϕ′∈KBϕ

′)⇒ ϕ.
As forM, this is a formal language that defines the message patterns used for la-

belling nodes in expectation networks. Its syntax is given by the grammar in table 1.
Messages observed in the system (we write Mc for the language of these concrete
messages) can be either physical messages of the format do(a, ac) where a is the exe-
cuting agent and ac is a symbol used for a physical action, or a non-physical message
performative(a, b, c) sent from a to b with content c. (Note that the terminal sym-
bols used in the Agent and PhysicalAction rules are domain-dependent, and that we
take the existence of such symbols for granted.) However, the message labels of type
MsgPattern used in expectation networks may also contain variables for agents and
physical actions (though not for performatives). As we will soon show, this is useful to
generalise over different observed messages by adding a variable substitution to each
node. The content c of a non-physical action, finally, is given by type LogicalExpr . It
can either be (i) an atomic proposition, a (ii) message pattern or physical action term,
(iii) an expectation network, or (iv) a logical formula formed out of these elements. Syn-
tactically, expectation networks (Graph) are represented as lists of edges (m, p, n, c, l)
where m and n are message patterns, p is a transition probability from m to n, c is
a logical condition, l is a list of variable substitutions. The meaning of these will be
clarified once the full definition of expectation networks has been presented.

Var → X | Y | Z | . . .

AgentVar → A1 | A2 | . . .

PhysicalActVar → X1 | X2 | . . .

Expect ∈ [0; 1]

Agent → agent_1 | . . . | agent_n

Head → it_rains | loves | . . .

Performative → accept | propose | reject | inform | . . .

PhysicalAction → move_object | pay_price | deliver_goods | . . .

Message → Performative(Agent ,Agent ,LogicalExpr)

| do(Agent ,Agent ,PhysicalAction)

MsgPattern → Performative(AgentTerm ,AgentTerm ,LogicalExpr)

| do(AgentTerm ,AgentTerm ,PhysicalActTerm)

| . | ⊥ | ?

PhysicalActTerm → PhysicalActVar | PhysicalAction

AgentTerm → AgentVar | Agent

LogicalExpr → (LogicalExpr ⇒ LogicalExpr) | (LogicalExpr ∨ LogicalExpr)

| (LogicalExpr ∧ LogicalExpr) | ¬LogicalExpr

| Statement

Statement → Head | Head (TermList) | true | false

TermList → TermList ,Term | Term

Term → Var | AgentTerm | MsgPattern | Graph

EdgeList → (MsgPattern ,Expect ,MsgPattern ,LogicalExpr , SubstList) EdgeList | ε

Graph → 〈EdgeList〉
SubstList ′ → SubstList ′ Subst | ε

SubstList → 〈SubstList ′〉
Subst → [AgentV ar/Agent] | [PhysicalActV ar/PhysicalAction]

| [V ar/Term]

Table 1. A grammar for messages, generating the languages M (the language of message pat-
terns, using MsgPattern as starting symbol), Mc (the language of concrete messages, using
Message as starting symbol) and the logical language L (using LogicalExpr as starting symbol.

2.2 Normative and Cognitive Edges

A distinct feature of ENs is that their edges fall into two categories, cognitive and nor-
mative edges. A cognitive edge e (also called observation edge) denotes a correlation in
observed communication sequences. Usually, its expectability Exp(e) ∈ [0; 1] reflects
the probability of target(e) occurring shortly after source(e) in the same communica-
tive context (i.e. in spatial proximity, between the same agents, etc.). Although ex-
pectability values need not directly reflect the frequency of a continuation that matches

the source and target node labels (in the context of the path leading to the source node),
they should somehow correlate with it.

Normative edges, on the other hand, represent knowledge about correlations be-
tween messages that does not have its origins in observation2. In particular, normative
edges may link messages together that do not occur successively, and therefore the EN
is not a tree if we include normative edges in the edge set. Therefore, they are not an-
notated with degrees of expectation, but with a numerical assessment of the “normative
force” they exert. This value Fc(e, n) ∈ R is thought to increase or decrease the prob-
ability of target(e) whenever source(e) occurs regardless of any observed correlation
between source(e) and target(e). The second argument n used to compute this force is
the time that passed since last observing a message that matched source(e). Obviously,
its absolute value should decrease with time passing, and it should become zero after
some time, i.e.

∀n1, n2 ∈ N.n2 > n1 ⇒ |Fc(e, n2)| < |Fc(e, n1)| (1)
∃n0 ∈ N.∀n > n0.Fc(e, n) = 0 (2)

Computation of changes in the impact of a normative edge necessitates, of course, keep-
ing track of the time τ(v) that has passed since a message was observed that matched
the label of node v. Note that, usually, the function definition for Fc will be identical for
all normative edges in a EN except for initial values Fc(e, 0). Computation of changes
in the impact of a normative edge necessitates, of course, keeping track of the time
τ(v) that has passed since a message was observed that matched the label of node v. To
illustrate the usefulness of normative links, consider the following paths in the EN of
figure 1:

P2 : request(A,B,X)→ accept(B,A,X)→ do(B,X)

P1’ : request(A,B,X)→ accept(B,A,X)→ ⊥
These represent two possible runs in a conversation in which A wants B to perform
some physical action X . In the first case, B executes the promised action X , in the
second he does not. What normative edges would be reasonable to add? Possible sug-
gestions would be

e1 = (do(B,X), request(A,B,X)),Fc(e1, n) > 0

e2 = (⊥, request(A,B,X)),Fc(e2, n) < 0

e3 = (accept(B,A,X), do(B,X)),Fc(e3, n) > 0

e4 = (do(B,X), request(A,B,X)),Fc(e4, n) > 0,

subst(e4) = 〈[A/C], [B/A], [C/B]〉
e1/e2 would increase/decrease the probability of future requests from the same agent A
to B depending on whether the conversation “worked out” for him or not.

2 In practice, normative edges can be the product of “very long term” observation of communi-
cation. However, we will uphold this clear distinction between cognitive and normative here
because normative knowledge can probably not be derived in the scope of observation we
assume here. Introducing a gradual sense of normativity and cognitivity for edges would be
another option that might be investigated in the future.

Note that e2 (which is actually present in the EN of figure 1) will only have neg-
ative consequences for the “reputation” of B if he promised to perform X – if he
used reject instead (path P8), he would not be sanctioned, and this would effec-
tively strengthen the normative character of accept. Edge e3 induces an increase on
the probability of do once an agent has accepted, i.e. it suggests some semantic rela-
tionship between accepting to do something and then actually doing it. If an observer is
using e3, this means he is implementing a norm which does not depend on how often
actually agents were observed to perform some task that they had previously accepted
to take over. Finally, e4 represents a relationship between messages more complex still:
it suggests that if agent B does what A requested of him, this increases the probability
ofB asking something fromA in reverse (subst(e) being the list of substitutions stored
with edge e). This example nicely illustrates the different uses of normative edges in
particular in their different functions as “expectability manipulators” in prospective and
retrospective ways.

2.3 Edge Conditions

As a final ingredient to network edges, we briefly discuss edge conditions. The idea is
that this condition should further define the scope of validity to cases in which a formula
can be shown to hold using the observer’s knowledge base. So, if ϕ = cond(e), then
e is only relevant iff KB |= ϕ. Although this idea is straightforward, we have to make
some additional assumptions regarding these conditions to facilitate the definition of
EN semantics.

First of all, the sum of expectabilities of all cognitive out-edges of a node should be
one for any state (i.e. set of believed facts) of the knowledge base. In other words, the
condition

∀v
∑

e∈out(v),KB |=cond(e)

Expect(e) = 1 (3)

should hold. This can be ensured, for example, by guaranteeing that the following con-
dition holds through appropriate construction rules for the EN. Assume the outgoing
links out(V) of every node v are partitioned into sets O1, O2, . . . Ok where the links’
expectabilities in each Oi are non-negative and sum to one3. Now let all edges in Oi
share the same edge condition, i.e. ∀i∃ϕ∀o ∈ Oi.(cond(o) = ϕ) and define cond(Oi)
as precisely this shared condition ϕ. (TheOi sets are precisely those sub-sets of out(v)
connected by a drawn angle in figure 1.)

If we make sure that the outgoing links of every node are partitioned in this way, we
can assign mutually exclusive conditions to them, i.e. ensure that

∀i 6= j.cond(Oi) ∧ cond(Oj) ≡ false and ∨i cond(Oi) ≡ true (4)

This way, it is not only guaranteed that we can derive unambiguous probabilities directly
from the Expect values, but also that we can do so for any knowledge base contents.4

3 Formally, out(v) = ∪1≤i≤kOi and ∀1 ≤ i < j ≤ k.Oi ∩ Oj = ∅, and ∀i ≤ k.(∀o ∈
Oi.Expect (o) ≥ 0 ∧Po∈Oi Expect (o) = 1).

4 This comes at the price of having to insert redundant edges in some situations. For example,
insertion of a new edge e with cond(e) = ϕ if out(v) = ∅ necessitates insertion of another
edge e′ with cond (e) = ¬ϕ.

2.4 Formal Definition

Having discussed all the prerequisites, we can now define ENs formally:

Definition 1. An expectation network is a structure

EN = (V,C,N,M,L, H,n,mesg , τ, cond , subst ,Expect ,Fc)

where

– |V | > 1 is the set of nodes,
– C ⊆ V × V are the cognitive edges of EN , N ⊆ V × V are its normative edges,
– G = (V,C) is a tree called expectation tree,G = (V,C]N) is a graph,N∩C = ∅,
– M is a message pattern language, L is a logical language, cond : C]N → L,
– mesg : V →M is the message label function for nodes with

- mesg(v) = . exactly for the root node of (V,C),
- ∀v ∈ V.∀e, f ∈ out(v).¬unify(mesg(target(e)),mesg(target(f))) (target

node labels of outgoing links never match),
– H ∈ N is a finite communication horizon,
– n ∈ N is the total number of non-continuations,
– Expect : C → [0; 1], τ : V → N, Fc : N × N→ R,
– subst : C]N → SubstList (with SubstList as in table 1).

Through this definition, all elements discussed above are included: networks contain
cognitive edges (labelled with expectabilities) and normative edges (labelled with nor-
mative force values); cond returns their conditions, and subst their substitution lists.
Nodes are labelled with message templates through the mesg mapping, so that “.” oc-
curs only at the root node, and neighbouring nodes’ labels never match (otherwise the
expectability condition in equation 3 would be corrupted).

The only two elements of this definition that have not been discussed so far are the
horizon constant H , which denotes the scope of maximal message sequence length for
which the EN is relevant, and the total number of “non-continuations” n. Usually, this
will be incremented each time a node (1) is appended to the root node, (2) matches one
of the children nodes of the root node. Both are necessary for defining the semantics of
the EN, which are discussed in detail in the following section.

2.5 Formal Semantics

For an arbitrary set S, let ∆(S) be the set of all (discrete) probability distributions
over S with finite support. We define the semantics IEN (KB,w) in a network EN
as a mapping from knowledge base states and current message sequence prefixes to
the posterior probability distributions over all possible postfixes (conclusions) of the
communication. Formally,

IEN (KB , w) = f, f ∈ ∆(M∗c) (5)

where

f(w′) =
g(w′⊥)∑
v∈M∗c g(v⊥)

(6)

is defined as the normalised value of g(w′⊥), which represents the probability that w
will be concluded by message sequence w′, for any w,w′ ∈ M∗. We compute the
probability for w′⊥ to make sure w′ is followed by a node with label ⊥ in the network,
because the probability ofw′ is the probability with which the communication sequence
will end after w′|w′| (and not that w′ will simply be the prefix of some longer sequence).
Also note that the sum in the denominator is not, as it may seem, infinite, because f has
finite support.

Informally, the probability of w′ should be inferred from multiplying all the ex-
pectability weights along the cognitive path that matches w′ (if any), and increas-
ing/decreasing these values with current force values from normative edges, if such
edges end in nodes on this matching path. Before presenting the top-level formula for
g(w′), we need some auxiliary definitions:

Firstly, we need to determine the node in a network EN that corresponds to a word
w, which we denote by mesg−1:

mesg−1(ε) = v :⇔ mesg(v) = .

mesg−1(wm) =

v′ if ∃(v, v′) ∈ C(KB(w)).∃ϑ ∈ subst(v, v′).

(mesg(v′) · subst(w)ϑ = m ∧mesg−1(w) = v)

⊥ if no such v′ exists
(7)

if w ∈ M∗c , m ∈ Mc. The first case states that the node corresponding to the empty
sequence ε is the unique root node of (V,C) labelled with .. According to the second
case, we obtain the node v′ that corresponds to a sequence wm if we take v′ to be
the successor of v (the node reached after w) whose label matches m under certain
conditions:

– Edge (v, v′) has to be a cognitive edge that is available in EN (KB), where the ele-
ments of prefix w have already been executed. Since these can be physical actions,
we must capture the restriction imposed on possible successors by having executed
physical actions. Let m→ a function that modifies the knowledge base after message
m is uttered. For a knowledge base KB , we can define

KB(w) = KB ′ :⇔ KB
w1→ . . .

w|w|→ KB ′

so that the successors considered in each step for determining mesg−1(w) always
take into account the consequences of previous actions5. Therefore, (v, v′) has to
be in the set of cognitive edges C(KB(w)) still feasible after w.

– There has to be a substitution ϑ ∈ subst(v, v′) which, when composed with the
substitution subst(w) applied so far to obtain the messages in w1 to w|w| from the
respective nodes in EN , will yield m if applied to mesg(v′). This is expressed by
mesg(v′) · subst(w)ϑ = m. In other words, there is at least one combined (and
non-contradictory) variable substitution that will make the node labels along the

5 Note also that mesg−1(w) can only be determined unambiguously, if for any knowledge base
content, a unique cognitive successor can be determined (e.g. by ensuring that equations 3 and
4 hold). This is another reason for the constraint regarding non-unifying out-links of nodes in
definition 1.

path mesg−1(wm) yield wm if it is applied to them (concatenating substitutions
is performed in a standard fashion). Thereby, the following inductive definition can
be used to derive the substitution subst(w) for an entire word w:

w = ε : subst(w) = 〈〉
w = w′m : subst(w) = subst(w′) · unifier(mesg(mesg−1(wm)),m)

where · is a concatenation operator for lists and unifier(·, ·) returns the most gen-
eral unifier for two terms (in a standard fashion). Thus, subst(w) can be obtained
by recursively appending the unifying substitution of the message label of each
node encountered on the path w to the overall substitution.

With all this, we are able to compute g(w′) as follows:

g(w′) =

{
| ∪Hi=1Mi

c|−1 if ∃v ∈ out(mesg−1(w)).mesg(v) =?
∏
i

(∑
e∈pred(ww′,i) S(e)

)
else

(8)

which distinguishes between two cases: if the path to node mesg−1(w) whose labels
matchw (and which is unique, because the labels of sibling nodes in the EN never unify)
ends in a “?” label, the probability of a w′ is simply one over the size of all words with
length up to the horizon constant H (hence its name). This is because the semantics
of “?” nodes is “don’t know”, so that all possible conclusions to w are uniformly dis-
tributed. Note that this case actually only occurs when new paths are generated and it is
not known where they will lead, and also that if an outgoing link of a node points to a
node with label “?”, then this node will have no other outgoing links.

In the second case, i.e. if there is no “?” label on the path p from mesg−1(w)
to mesg−1(ww′), then the probability of w′ is the product of weights S(e) of all
edges e on p. Thereby, S(e) is just a generalised notation for expectability or nor-
mative force depending on the typed edge, i.e. S(e) = Expect(e) if e ∈ C and
S(e) = Fc(e, τ(source(e))) if e ∈ N . The sum of these S-values is computed for
all ingoing edges pred(ww′, i) of the node that represents the ith element of w′, for-
mally defined as

∀w ∈M∗c .pred(w, i) =

{
in(mesg−1(w1 · · ·wi)) if mesg−1(w1 · · ·wi) 6= ⊥
∅ (9)

Note that summing over edges pred(w) we calculate the sum of the (unique) cogni-
tive predecessor of the node corresponding to w|w| and of all ingoing normative edges
ending in that node. Finally, we compute the product of the probabilities along the w′

path to obtain its overall probability. Looking back at the definition of mesg−1, if no
appropriate successor exists for m, the function returns ⊥ (and pred returns ∅, so that
the probability g(w′) becomes 0 for continuations w′ for which there is no path in the
network). It is important to understand that condition

if ∃(v, v′) ∈ C(KB(w)).∃ϑ ∈ subst(v, v′)
(mesg(v′) · subst(w)ϑ = m ∧mesg−1(w) = v)

of equation 7 implies that only those continuationsw′ of a prefixw will have a non-zero
probability that are identical to the result of substituting a message label by one of the
existing substitutions. Using this definition, the generalisation aspect of the EN is quite
weak, as it only allows for generating “lists” of concrete cases.

Of course, alternatives to this can be applied, e.g.

. . . ∃ϑ ∈ SubstList . . .

which would allow any substitution to be applied to the node labels (and render edge
substitution lists useless), or

. . . ∃ϑ ∈
(

subst(v, v′) ∪
(
SubstList −⋃e6=(v,v′),e∈out(v) subst(e)

))
. . . (10)

which would allow any substitution that (i) either pertains to the substitution list of
(v, v′) or (ii) that makes not part of one of the substitution lists of outgoing links of v
other than (v, v′). The intuition here is that “unless the substitution in question indicates
following a different path, it may be applied”. In fact, we will use condition 10 unless
stated otherwise, because we assume a maximally general interpretation useful, which
can of course be further restricted by semantic constraints in the edge conditions to
yield arbitrary criteria for message pattern matching.

This concludes the definition of the semantics of a message (sequence) in a given
expectation network. Essentially, all the formalisms introduced above allow for captur-
ing statistical as well as normative knowledge about possible communication behaviour
in a system in a compact fashion: each edge is tagged with logical constraints, and each
potential path can be interpreted in an adjustably general sense by using appropriate
variable substitution lists for the edges. Then, we defined the meaning of a message
(sequence) as an estimate of its potential consequences in terms of concrete message
sequences.

A final remark should be made about the use of performatives in this model. Their
use should by no means imply that we expect them to have fixed semantics or induce
reliable mentalistic properties on the parties involved. Much more, we employ them
as “markers” for paths in the ENs, that can – unlike all other parts of the messages –
not be replaced by variables. The intuition behind this is that there should be a non-
generalisable part of each message that forces the observer to make a distinction. Next,
we define communication systems as mathematical structures that operate on ENs.

3 Communication Systems

A communication system describes the evolutionary dynamics of an expectation net-
work. The main purpose of a CS is to capture changes to the generalised meaning of
communicative action sequences in the course of interaction in a multiagent system, in
contrast to expectation networks themselves, which model meaning changes of certain
messages in dependence of the message context (i.e., its preceding message sequences
within the EN) only. These changes, which can be expressed in terms of expectations
about future behaviour, are derived from statistical observation. However, they may be
biased by the beliefs and belief transformation functions of the CS, i.e. the CS is an

autonomous observer that may have its own goals according to which it biases the ex-
pectations it computes. In contrast to agents who reason about expectations (such as
InFFrA agents, cf. section 4), though, a CS need not necessarily be an active agent who
takes action in the MAS itself, as described in section 1. Describing how communica-
tion systems work should involve (at least) clarifying:

– which communicative actions to select for inclusion in an EN,
– where to add them and with which expectability (in particular, when to consider

them as “non-continuations” that follow “.”),
– when to delete existing nodes and edges (e.g. to “forget” obsolete structures), and

how to ensure integrity constraints regarding the remaining EN,
– when to spawn insertion/deletion of normative edges and with which normative

force/content/condition/substitutions.

A formal framework for specifying the details of the above is given by the following,
very general, definition:

Definition 2. A communication system is a structure

CS = (L,M, f, κ)

where

– L,M are the formal languages used for logical expressions and messages (cf. ta-
ble 1),

– f : EN (L,M)×Mc → EN (L,M) is the expectation update function that trans-
forms any expectation network EN to a new network upon experience of a message
m ∈ Mc,

– κ : 2L×Mc → 2L is a knowledge base update function that transforms knowledge
base contents after a message accordingly,

and EN (L,M) is the set of all possible expectation networks over L andM.

The intuition is that a communication system can be characterised by how it would up-
date a given knowledge base and an existing expectation network upon newly observed
messages m ∈ Mc. This definition is very general, as it does not prescribe how the EN
is modified by the CS. However, some assumptions are reasonable to make (although
not mandatory):

– If EN is converted by f via EN ′ to EN ′′ if m and m′ are observed successively
(with τ ′ and τ ′′ the respective times since the last observation of a label),

τ ′′(v) =

0 if (∃v′ ∈ pred(v).τ ′(v′) = 0 ∧ unify(m′,mesg(v))

0 if pred(v) = {v0} ∧mesg(v0) = . ∧ unify(m′,mesg(v))

τ ′(v) + 1 else

So, the τ -value is reset to 0 if v is a successor of the root node, or if its predecessor’s
τ -value was just reset to 0 and the node in question matches the current message
m′. Effectively, this means that the duration since the last occurrence of a node is
incremented for all those nodes who have not occurred as successors of nodes that
occurred in the previous step.

– If KB is the current knowledge base, κ(KB ,m) |= KB(m) should hold, so that all
facts resulting form execution of m are consistent with the result of the κ-function.

– If any message sequence w′ has occurred with frequency Pr(ww′) as a continu-
ation of w in the past, and EN C is the same as EN reduced to cognitive edges,
IENC

(KB , w)(w′) = Pr(ww′) should be the case, i.e. any bias toward certain
message sequences not based on empirical observation should stem from normative
edges. Note that this requirement says nothing about the probabilities of sequences
never experienced before which result from applying the criterion in equation 7.

Normative edges left aside, an EN should predict the future of the respective observable
communication sequences as accurately as possible. To achieve this, the respective CS
is supposed to provide at least the following functionality:

Message Filtering and Syntax Recognition. Depending on its personal goals and the
application domain, the observer might not be interested in all observable messages.
Since ENs may not provide for a priori expectations, the discarding of such “uninter-
esting” messages can only take place after the semantics (i.e., the expected outcome) of
the respective messages has already been derived from previous observation. Because
discarding messages bears the risk that these messages become interesting afterwards,
as a rule of thumb, message filtering should be reduced to a minimum. More particu-
larly, messages should only be filtered out in cases of more or less settled expectations.
Paying attention to every message and filtering uninteresting or obsolete information
later by means of structure reweighting and filtering (cf. below) is presumably the more
robust approach.

A very important feature of communication languages is their ability to effectively
encode the generalised meaning of utterances by means of syntax. Our computationally
tractable approach [13] to this phenomenon relies on the assumption that the syntax of
messages somehow reflects expectation structures which have already been assembled.

Structure Expansion. Structure expansion is concerned with the growth of an EN in
case a message sequence is observed which has no semantics defined by this EN yet.
In theory, such an expansion would never be necessary, if we could initially generate
a complete EN which contains dedicated paths for all possible message sequences. In
this case, the observer would just have to keep track of the perceived messages and
to identify this sequence within the EN to derive its semantics (provided there is no
“semantic bias” in form of observer predispositions or norms).

For obvious reasons, such a complete EN cannot be constructed in practice. In con-
trast, the most general minimal EN would yield “?” for every message sequence, thus
being of no practical use. As a solution, we could start with the minimal EN and incre-
mentally add a node for each newly observed message. This is still not smart enough,
because it does not take advantage of generalisable message sequences, i.e. different
sequences that have the same approximate meaning. In general, such a generalisation
requires a relation which comprises “similar” sequences. The properties of this relation
of course depend on domain- and observer-specific factors. A simple way of generalis-
ing is to group messages which can be unified syntactically.

Garbage Collection. Several further methods of EN processing can be conceived of
that aid in keeping the computation of (approximate) EN semantics tractable. This can
be achieved by continuously modifying expectation structures using certain meta-rules,
for example:

1. “fading out” obsolete observations by levelling their edge weights;
2. replacing (approximately) uniform continuation probability edges with “?”;
3. removal of “?”s that are not leafs;
4. keeping the EN depth constant through removal of one old node for each new node;
5. removal of very unlikely paths.

4 Integrating the Agent Perspective

In this section, we will explain how the Interaction Frames and Framing Architecture
InFFrA [16, 17] fits into the communication systems view. Interestingly enough, despite
the fact that this architecture was developed independently from the CS framework us-
ing interactionist theories (yet also based on the socionic principles discussed in section
1), it soon proved to be very similar to it. As a result, we have tried to adapt the notation
of both CS and InFFrA so as to minimise variations between them. The re-interpretation
of framing-based systems as communication systems is useful, because it

– explains how InFFrA is a “special case” of CS, specifically designed for practical,
agent-level social learning and decision-making;

– points at strengths and limitations of InFFrA that result directly from making spe-
cific design choices in the communication systems framework;

– is an example for agent-level use of CS (recall, though, that embedding CS in agents
is just one possibility);

– illustrates how information can be exchanged between InFFrA agents and other
system components that follow the communication systems paradigm by using ENs
as an interface.

To achieve this re-interpretation, we will use the formal m2InFFrA model introduced
in [16] (in this volume), based upon which we will discuss how CS might be mapped
to InFFrA agents and vice versa. A brief overview of m2InFFrA shall suffice for this
purpose. For the full m2InFFrA notation and definitions, please refer to [16].

4.1 Overview of m2InFFrA

m2InFFrA agents are agents that engage in discrete, turn-taking conversations (so-
called encounters) between two parties, and maintain a frame repository F =
{F1, . . . , Fn} in which they record knowledge about past interactions to apply it strate-
gically in future encounters. Any such frame is a structure F = (T,C,Θ, h) that con-
sists of a trajectory T , lists of conditions/substitutions C/Θ and an occurrence counter
vector (we write T (F), C(F), Θ(F) and h(F) for the respective elements of frame F).

The meaning of such a frame is best explained by an example:

F =
〈〈 5→ propose(A,B,X)

3→ accept(B,A,X)
2→ do(A,X)

〉
,

〈
{self (A), other (B), can(A,X)},
{agent(A), agent(B), action(X)}

〉
,

〈
〈[A/agent_1], [B/agent_2], [X/pay_price]〉,
〈[A/agent_1], [B/agent_3], [X/pay_price]〉

〉〉

This frame states that five encounters started with a message matching
propose(A,B,X), three of them continued with accept(B,A,X), and two
were concluded by agent A performing physical action X (we use the abbreviated
syntax Th(F) =

h1→ p1
h2→ p2 · · · hn→ pn (where hn = h(pn)) to combine T (F) and

h(F) in one expression). The remaining two observations might be due to encounter
termination after the first message or were continued with a message that does not
match accept(B,A,X), and one encounter either finished after accept(B,A,X) or
continued with something different from do(A,X). Also, the agent stored the two sets
of conditions (and respective substitutions) under which this frame occurred (where
the ith substitution applies for the ith condition).

m2InFFrA agents who use such frames are defined as structures

a = (L,M, E ,n, u, f, κ, σ)

with logical/message pattern languages L, M (deliberately identical to the languages
introduced in table 1), a set of encounter names E , a count n of all encounters perceived
so far, a utility function u, functions f and κ that transform frame repository and knowl-
edge base when an encounter is perceived. Finally, they employ a similarity measure σ
for message pattern sequences which they use to derive a probability distribution for po-
tential message sequences given their similarities to those stored in interaction frames
in the repository.

Such a probability distribution is called a framing state [a](F ,KB , w) ∈ ∆(M∗c)
that maps any frame repository and knowledge base contents F and KB to a probabil-
ity distribution over message sequences. For any two message sequencesw and w′, this
distribution assigns a probability that an encounter which started with w will be con-
cluded with w′ (e.g. if [a](F ,KB , w)(w′) = 0.3, then an encounter that started with w
will be concluded by w′ with a probability of 30%).

4.2 Communication Systems and m2InFFrA

At first glance, quite some similarities between CS and m2InFFrA become obvious.
Most prominently, these are

1. the use of message patterns to generalise from concrete instances of messages and
the recording of past cases in the form of variable substitutions;

2. the conditioning of message sequences with logical constraints to restrict the scope
of certain expectations;

3. the evolutionary semantics of messages, updated with new observations;
4. the formalisation of a social reasoning component (CS/agent) as an “expectation

transformer” (cf. functions f and κ in both definitions).

However, there are also distinct differences, which shall be made concrete by discussing
the possibility of converting expectation networks to frame repositories and vice versa,
the central question being whether an m2InFFrA agent can be built for an arbitrary CS
and vice versa.

Converting Frames to Expectation Networks. Up to minor difficulties, this conver-
sion is quite straightforward. We sketch the most important steps while leaving out
certain formal details. Any frame can be transformed to a set of so-called “singular”
frames with only one condition set and no substitutions. For a frame F , this is achieved
by generating the set

Fs =
{

(T (F)ϑ,C[i]ϑ, 〈〉,1)
∣∣ ϑ = Θ(F)[i], 1 ≤ i ≤ |Θ(F)|

}

Thus, any frame in Fs covers exactly one of the cases previously represented by the
substitutions in Θ(F) (and its trajectory is variable-free up to variables in logical con-
tent expressions). To build an EN incrementally from a repository F that consists of
singular frames only, we proceed as follows.

1. Add a root node v0 with label “.” to the new network EN . Let i = 1.
2. For each F ∈ F :

(a) If T (F) does not end with “?”, set T (F)← .T (F)⊥, else T (F)← .T (F).
(b) Set c =

∧
j cj where C(F) = 〈{c1, . . . , cm}〉.

(c) Search EN for the longest path p whose node labels match a prefix of T (F).
Let v be the last node of p (potentially the root node of EN).

(d) If |p| ≥ |T (F)|−1 (i.e. pmatches the trajectory at least up to the last symbol),
then:

– Let c′ the condition list of the last edge of p.
– If p ends in a “?” label, erase its last node and edge.

(e) Construct a new path p′ consisting of nodes for the postfix of T (F) that does
not appear on p. Append p′ to v. Let v′ the first node of p′, and e′ the edge
connecting v with v′.

(f) Set cond(f) = c ∨ c′ where f is the last edge on the new path p′.
(g) Update Expect(e′) ← ((i − 1)Expect(e′) + 1)/i and Expect(e) ← ((i −

1)Expect(e) + 1)/i for other outgoing edges out(v) of v.
(h) Set Expect(e) = 1 for all other new edges on p′.
(i) Increment i.

The idea behind this conversion is to construct a single path for each distinct frame,
where shared prefixes have to be merged. Each singular frame covers a single case that
has occurred exactly once, and whose trajectory contains no variables (for which reason
it has no substitution). Two cases can occur: either the frame ends in “?” or not. We
prepend a . to the trajectory, and append a ⊥ symbol if “?” is not the last symbol (step
2a). Then, we look for the longest prefix of T (F) that is already in the network (step 2c)

and append new nodes and edges for the remaining postfix. If (case 2d) the trajectory
is already contained but possibly with previous “don’t know” ending, we delete the
last edge and node (step 2d) and memorise its condition c′, so that we can add it in a
disjunctive fashion to c in step 2f. Thus, if F itself has “don’t know” semantics, two “?”
nodes become one, and if it ends with ⊥, the previous “don’t know” semantics are not
valid anymore. Also, in step 2f the new condition is “moved” to the very last edge of
the new path. Expectability update (step 2g) is a matter of straightforward counting.

Thus, we obtain a very simple EN without normative edges and substitution lists,
where all conditions (which summarise the frames with identical trajectories) only oc-
cur at the very last edge of any path (leading to ⊥ or “?”)6.

Of course, it is not possible to prove that a CS can be constructed using this EN
whose continuation estimates will be identical to the agent state of any m2InFFrA
agent, especially because agents might apply arbitrary similarity measures σ. This is
because there is no equivalent notion for this measure in CS (equation 7 is used instead
to estimate the probability of new cases). However, if a very simple σ is used, which
assigns similarity 1 to identical message patterns and 0 to all other comparisons, the
construction of an equivalent CS is straightforward. The CS would simply generate a
new singular frame for any encounter, and call the procedure sketched above after each
newly observed message. Whenever the m2InFFrA agent starts a new encounter, this
would be considered a non-continuation in the CS sense. This CS would compute the
same probabilities as the original agent if the conditions in frames fulfil the conditions
3 and 4.

Converting Expectation Networks to Frames. In an attempt to convert ENs to
frames, we might proceed in a similar manner by trying to generate a frame for ev-
ery distinct path. This would imply

– substituting sender/receiver variables by new variables so that a turn-taking, two-
party trajectory is obtained; this involves adding extra conditions that state which
agent may hold which of these two roles in which step;

– joining all edge conditions on the path to obtain frame condition lists; however,
conditions in ENs need only hold after the edge on which they appear, so a notion
of time has to be introduced;

– generating a list with all possible substitutions occurring on the path to be used as
a frame substitution list.

For lack of space, we cannot introduce all of these steps formally. Let us look at an
example of a frame generated from path P6 in figure 1 called F6 shown in table 2:
Variables A and B have been replaced by I(nitiator) and R(esponder), and the re-
verse substitutions have been pre-pended to the substitutions in Θ. Although this is
not necessary in this frame, frames for paths P2 or P3 would require introduction of
these new variables, as they involve messages subsequently sent by the same agent
(P2) or more than two parties (P3). Also, by adding the statements current(E) and

6 For EN semantics, the edge on which conditions occur on a path do not matter, but, of course,
this EN would be very inefficient for computing continuation probabilities because all paths
have to be followed to the end before their logical validity can be checked.

F6 =
D˙ 100→ request(I,R,X)

50→ propose(R, I, Y)
25→ accept−proposal(I, R, Y)

¸
,

˙
{current (E),message(M,E, 1)⇒ price > 0},
〈{current (E),message(M,E, 1)⇒ price > 0}

¸
,

˙
〈[I/A], [R/B], [X/deliver_goods], [Y/pay_price], [A/agent_1], [B/agent_2]〉,

〈[I/A], [R/B], [X/deliver_goods], [Y/pay_price], [A/agent_1], [B/agent_3]〉
¸E

Table 2. A frame for path P6.

message(M,E, 1) as preconditions to price > 0, where current(E) means that E
is the current encounter, price > 0 need only hold after the first message, as in
the EN. This “contextualisation” of conditions has to be performed for each original
edge condition. Thirdly, we need to generate all feasible substitution list combinations
along all edges, as is shown by the substitution lists in F6 which contain both cases
[A/agent_1], [B/agent_2] and [A/agent_1], [B/agent_3]. However, a problem ap-
pears here, which is that we cannot discriminate whether [A/agent_1], [B/agent_3]
is an actual case of P6: looking at P2, we can see that [C/agent_3] contradicts
[B/agent_3], so it seems logical that [A/agent_1], [B/agent_3] yields P6. But
which conclusion of the encounter does [A/agent_1], [B/agent_2] belong to? We
simply cannot tell.

There are several further reasons for which ENs cannot be converted into m2InFFrA
frames by a generic procedure that will ensure equivalence of semantics:

1. Normative links may link non-subsequent messages statistically with each other.
Such links exceed the expressiveness of frame trajectories, and although there may
be ways to treat certain normative links by meta-rules in the agent’s knowledge
base, there is no generic procedure of generating frames with these conditions,
because the effects of normative links are non-local to frames.

2. Cognitive links may link messages that do not represent continuations occurring
within encounters. These cannot be included in frame trajectories, because trajec-
tories end whenever encounters end.

3. Even if we know the total number of non-continuations n, no frame counters can
be reconstructed for edges with different conditions. For example, in figure 1, the
distribution of outgoing edges of request(A,B,X) between cases price = 0
and price > 0 is not available, so that some hypothetical (say 50/50) distribution
between would have to be made up.

4. The computation of continuation probabilities in ENs proceeds by “identifica-
tion with previous cases and exclusion of cases on different paths” as reflected
by condition 7. For example, after request(agent_3, agent_2, X), the pos-
sibility of propose(agent_3, agent_2, X) (continuation with P3–P7) is ruled
out by [A/agent_3], [B/agent_2] appearing on P8. There is no way a sim-
ilarity measure σ can be conceived that can reflect this solely by comparing

[A/agent_3], [B/agent_2] to the previous cases [A/agent_1], [B/agent_2] and
[A/agent_1], [B/agent_3] without any non-local information.

All these nicely illustrates what we would expect of a sociological comparison between
systems theory and interactionism, namely that the general theory of communication
systems obviously subsumes interactionist approaches, since interaction systems are
specific kinds of communication systems tied to a number of particular assumptions.
These are: (i) co-presence and spatial/temporal proximity of context-generating com-
munication, (ii) ego/alter distinctions, (iii) locality of processing of social knowledge
(“blindness” to expectations relevant in other contexts during involvement in a par-
ticular encounter), (iv) expectation formation by analogy (rather than possibility) and
(v) simplicity in the representation of expectations (to ensure efficient processing with
bounded cognitive resources).

The fact that these elements have been made concrete and that distinctions between
several socio-theoretical approaches have been mapped to formal computational models
constitutes a major advance in Socionics as it not only furthers the understanding of the
underlying theories, but is also instructive in the identification of how to apply CS and
frame-based agents in different applications. Some of these potential applications will
be discussed in the following section.

5 Discussion: Applications and Extensions

The modelling of social structures on the basis of expectation networks and commu-
nication systems allows for novel approaches to a variety of DAI themes. We review
(i) identification of ontologies for inter-agent communication and – closely related –
the finding of verifiable and flexible semantics for agent communication languages; (ii)
mirror holons as a new model for holonic theories of agency and software engineering
methods based on expectation-oriented modelling and analysis of multiagent systems.

5.1 Social Ontologies

In DAI, an ontology is a set of definitions as a means to provide a common ground in the
conceptual description of a domain for communication purposes. Ontologies are usu-
ally represented as graphical hierarchies or networks of concepts, topics or classes, and
either top-down imposed on the agents or generated in a bottom-up fashion by means
of ontology negotiation. In a similar way, expectation networks are descriptions of the
social world in which the agents exist. But ENs do not only describe social (i.e. com-
munication) structures, but indirectly also the communication-external environment the
message content informs about. Thus, communication systems can be used, in princi-
ple, for an incremental collection of ontological descriptions from different autonomous
sources, resulting in stochastically weighted, possibly conflicting, competitive and re-
visable propositions about environmental objects. The crucial difference to traditional
mechanisms is that such a social ontology represents expectations about how a certain
object will be described in future communication. This opposes the “imposed ontolo-
gies” view somewhat, where the ontology provides an a priori grounding for com-
munication, and makes this approach appear particularly suitable for open multiagent

systems with a highly dynamic environment, where homogenous perception among
agents cannot be assumed. Also, it is appropriate whenever descriptions are influenced
by individual preferences such that a consensus cannot be achieved (think, e.g., about
“politically” biased resource descriptions in the context of the Semantic Web [12]).
In the following, we will sketch two approaches for extracting social ontologies from
expectation networks.

Extraction of Speech Act Types. The current version of FIPA-ACL [4] provides an
extensible set of speech-act performative types with semantics defined in a mentalistic
fashion. In our approach, we can imagine some system component (e.g., a so-called
multiagent system mirror [13, 8]) that provides the agents with a set of performatives
without any predefined semantics and wait for the semantics of such “blank” performa-
tives to emerge. To become predictable, it is rational for an agent to stick to the meaning
(i.e., the consequences) of performatives, at least to a certain extent. This meaning has
been previously (more or less arbitrarily) “suggested” for a certain performative by
some agent performing demonstrative actions after uttering it.

Of course, a single agent is not able to define a precise and stable public mean-
ing for these performatives, but at least the intentional attitude associated with the re-
spective performative needs to become common ground to facilitate non-nonsensical,
non-entropic communication [15]. A particular performative usually appears at mul-
tiple nodes within the EN, with different consequences at each position, depending on
context (especially on the preceding path), message content and involved sender and re-
ceiver. To build up an ontology consisting of performative types, we have to continually
identify and combine the occurrences of a certain performative within the current EN
to obtain a general meaning for this performative (i.e. a “type” meaning). Afterwards,
we can communicate this meaning to all agents using some technical facility within the
multiagent system, like a middle agent, a MAS mirror or an “ACL semantics server”.
Of course, such a facility cannot impose meaning in a normative way as the agents are
still free to use or ignore public meaning as they like, but it can help to spread language
data like a dictionary or a grammar does for natural languages. The criteria for the iden-
tification and extraction of performative meaning from ENs are basically the same as
the criteria we proposed in section 3 for the generalisation over message sequences.

Extraction of Domain Descriptions. While a set of emergent speech act types con-
stitutes a social ontology for communication events, classical ontologies provide a de-
scription of an application domain. To obtain a social version of this sort of ontology
from an EN, two different approaches appear to be reasonable: (1) Inclusion of envi-
ronment events within the EN and (2) probabilistic weighting of assertions.

The former approach treats “physical” events basically as utterances. Similar to
the communicative reflection of agent actions by means of do, a special performative
happen(event) would allow EN nodes that reflect events occurring in the environment.
These events will be put in the EN either by a special CS which is able to perceive
the agents’ common environment, or by the agents themselves as a communicative re-
flection of their own perceptions. A subset of event is assumed to denote events with
consensual semantics (think of physical laws), i.e., the agents are not free to perform

any course of action after such an event has occurred, whereas the remainder of event
consists of event tags with open semantics that has to be derived empirically from com-
munications observation just as for “normal” utterances. If such an event appears the
first time, the CS does not know its meaning in terms of its consequences. Its mean-
ing has thus to be derived a posteriori from the communicational reflection of how
the agents react to its occurrence. In contrast, approach (2), which we proposed for the
agent-based competitive rating of web resources [12], exploits the propositional attitude
of utterances. The idea is to interpret certain terms within LogicalExpr as domain de-
scriptions and to weight these descriptions according to the amount of consent/dissent
(using predefined performatives like Assert and Deny). The weighted propositions are
collected within a knowledge base (e.g.,KB) and are communicated to the agents in the
same way as the emergent speech act types before. Unlike approach (1), ontologies are
constructed “by description” not “by doing” in this way. The advantage of approach (1)
lies in its seamless integration of “physical” events into the EN, whereas (2) is probably
more easy to apply in practice.

5.2 Mirror Holons: Multi-Stage Observation and Reflection

In [1, 8], we have introduced the social system mirror architecture for open MAS. The
main component of this architecture is a so-called social system mirror (or “mirror”
for short), a middle agent which continually observes communications, empirically de-
rives emergent expectation structures (represented as an expectation network, which
might also contain normative structures) from these observations, and “reflects” these
structures back to the agents. Its goals are to influence agent behaviour by means of
system-wide propagation of social structures and norms to achieve quicker structure
evolution and higher coherence of social structures without restricting agent auton-
omy, and the provision of a representation of a dynamic communication system for
the MAS designer. While a mirror only models a single communication system, and,
except for the propagation of expectations, is a purely passive observer, the successor
architecture HoloMAS [13] is able to model multiple communication systems at the
same time through multiple mirror holons in order to model large, heterogenous sys-
tems. In addition, a mirror holon can take action itself by means of the execution of
social programs which are generated from emergent expectation structures. “Ordinary
agents” (and other mirror holons) can optionally be involved in this execution process
as effectors, which realise holon commands within their physical or virtual application
domain (unless they deny the respective command). In any case they can influence the
social programs within a mirror holon through the irritation of expectation structures by
means of communication. A mirror holon thus represents and (at least to some extent)
replaces the functionality of the ordinary agents that contribute to the emergence of the
respective expectation structures, but it does not disregard the autonomy of his adjoint
actors. Another difference between mirror holons and traditional agent holons [18] is
that a mirror holon does not represent or contain groups of agents, but instead a certain
functionality which is identified in form of regularities in the observed communications.
This functionality is extracted and continually adopted from dynamic expectation struc-
tures regarding criteria like consistency, coherence and stability, corresponding to the
criteria sociological systems theory ascribes to social programs [9]. Mirror holons pave

the way for applications in which agent autonomy should not (or cannot) be restricted
on the one hand, while reliable, time-critical system behaviour is desired. They can also
be used as representants for entire communication systems (e.g., virtual organisations)
that behave smoothly towards third parties whenever the communication system itself
lacks coherence due to, for example, inner conflicts.

Expectation-Oriented Software Development. It has been long recognised that due
to new requirements arising from the complex and distributed nature of modern soft-
ware systems the modularity and flexibility provided by object orientation is often in-
adequate and that there is a need for encapsulation of robust functionality at the level
of software components. Agent-oriented approaches are expected to offer interesting
prospectives in this respect, because they introduce interaction and autonomy as the
primary abstractions the developer deals with.

However, although interaction among autonomous agents offers great flexibility, it
also brings with it contingencies in behaviour. In the most general case, neither peer
agents nor designer can “read the mind” of an autonomous agent, let alone change it.
While the usual strategy to cope with this problem is to restrict oneself to closed sys-
tems, this means loosing the power of autonomous decentralised control in favour of
a top-down imposition of social regulation to ensure predictable behaviour. The EX-
PAND method (Expectation-oriented Analysis and Design) [1] follows a different ap-
proach. EXPAND is based on expectation networks as a primary modelling abstraction
which both system designer and agents use to manage the social level of their activities.
This novel abstraction level is made available to them through a special version of the
social system mirror very similar to a CASE tool. For the designer, this mirror acts as
an interface he uses to propagate his desired expectations regarding agent interaction to
the agents and as a means for monitoring runtime agent activity and deviance from ex-
pected behaviour. For agents, this mirror represents a valuable “system resource” they
can use to reduce contingency about each other’s behaviour. EXPAND also describes
an evolutionary process for MAS development which consists of multiples cycles: the
modelling of the system level, the derivation of appropriate expectation structures, the
monitoring of expectation structure evolution and the refinement of expectation struc-
tures given the observations made in the system. For a lack of space, we have to refer
the interested reader to [1] for details.

6 Conclusion

This paper introduced communication systems as a unified model for socially intelligent
systems based on recording and transforming communicative expectations. We pre-
sented formalisms for describing expectations in terms of expectation networks, the for-
mal semantics of these networks, and a general framework for transforming them with
incoming observation. Then, we exemplified the generic character of CS by analysing
its relationship to micro-level social reasoning architecture using the InFFrA architec-
ture as an example. Finally, a number of interesting applications of CS were discussed,
some of which have already been addressed by our past research, while others are cur-
rently being worked on.

While a lot of work still lies ahead, we strongly believe that, by virtue of their
general character, CS have the potential of becoming a unified model for speaking about
methods and applications relevant to Socionics. Also, we hope that they can contribute
to bringing key insights of socionic research to the attention of the mainstream DAI
audience, as they put emphasis on certain aspects of MAS that are often neglected in
non-socionic approaches.

References

1. W. Brauer, M. Nickles, M. Rovatsos, G. Weiß, and K. F. Lorentzen. Expectation-Oriented
Analysis and Design. In Procs. AOSE-2001, LNAI 2222, Springer-Verlag, Berlin, 2001.

2. P. R. Cohen and H. J. Levesque. Performatives in a Rationally Based Speech Act Theory. In
Procs. 28th Annual Meeting of the ACL, 1990.

3. P. R. Cohen and H. J. Levesque. Communicative actions for artificial agents. In
Procs. ICMAS-95, 1995.

4. FIPA, Foundation for Intelligent Agents, http://www.fipa.org.
5. E. Goffman. Frame Analysis: An Essay on the Organisation of Experience. Harper and Row,

New York, NY, 1974.
6. F. Guerin and J. Pitt. Denotational Semantics for Agent Communication Languages. In

Procs. Agents’01, ACM Press, 2001.
7. Y. Labrou and T. Finin. Semantics and conversations for an agent communication language.

In Procs. IJCAI-97, 1997.
8. K. F. Lorentzen and M. Nickles. Ordnung aus Chaos – Prolegomena zu einer Luhmann’schen

Modellierung deentropisierender Strukturbildung in Multiagentensystemen. In T. Kron, ed-
itor, Luhmann modelliert. Ansätze zur Simulation von Kommunikationssystemen. Leske &
Budrich, 2002.

9. N. Luhmann. Social Systems. Stanford University Press, Palo Alto, CA, 1995.
10. Th. Malsch. Naming the Unnamable: Socionics or the Sociological Turn of/to Distributed

Artificial Intelligence. Autonomous Agents and Multi-Agent Systems, 4(3):155–186, 2001.
11. G. H. Mead. Mind, Self, and Society. University of Chicago Press, Chicago, IL, 1934.
12. M. Nickles. Multiagent Systems for the Social Competition Among Website Ratings. In

Procs. ACM SIGIR Workshop on Recommender Systems, 2001.
13. M. Nickles et al. Multiagent Systems without Agents – Mirror-Holons for the Derivation

and Enactment of Functional Communication Structures. In this volume.
14. J. Pitt and A. Mamdani. A protocol-based semantics for an agent communication language.

In Procs. IJCAI-99, 1999.
15. M. Rovatsos, M. Nickles, and G. Weiß. Interaction is Meaning: A New Model for Commu-

nication in Open Systems. In Procs. AAMAS’03, Melbourne, Australia, to appear, 2003.
16. M. Rovatsos and K. Paetow. On the Organisation of Social Experience: Scaling up Social

Cognition. In this volume.
17. M. Rovatsos, G. Weiß, and M. Wolf. An Approach to the Analysis and Design of Multiagent

Systems based on Interaction Frames. In Procs. AAMAS’02, Bologna, Italy, 2002.
18. M. Schillo and D. Spresny. Organization: The Central Concept of Qualitative and Quantita-

tive Scalability. In this volume.
19. M. P. Singh. A semantics for speech acts. Annals of Mathematics and Artificial Intelligence,

8(1–2):47–71, 1993.
20. M. P. Singh. A social semantics for agent communication languages. In Procs. IJCAI Work-

shop on Agent Communication Languages, 2000.

