
The Job Assignment Problem: A Study in

Parallel and Distributed Machine Learning

Gerhard Weiß

Institut für Informatik, Technische Universität München D-80290 München, Germany
weissg@informatik.tu-muenchen.de

Abstract. This article describes a parallel and distributed machine
learning approach to a basic variant of the job assignment problem. The
approach is in the line of the multiagent learning paradigm as investi-
gated in distributed artificial intelligence. The job assignment problem
requires to solve the task of assigning a given set of jobs to a given
set of executing nodes in such a way that the overall execution time is
reduced, where the individual jobs may depend on each other and the
individual nodes may differ from each other in their execution abilities.
Experimental results are presented that illustrate this approach.

1 Introduction

The past years have witnessed a steadily growing interest in parallel and dis-
tributed information processing systems in artificial intelligence and computer
science. This interest has led to new research and application activities in areas
like parallel and distributed algorithms, concurrent programming, distributed
database systems, and parallel and distributed hardware architectures. Three
basic, interrelated reasons for this interest can be identified. First, the will-
ingness and tendency in artificial intelligence and computer science to attack
increasingly difficult problems and application domains which often require, for
instance, to process very large amounts of data or data arising at different ge-
ographcial locations, and which are therefore often to difficult to be handled
by more traditional, sequential and centralized systems. Second, the fact that
these systems have the capacity to offer several useful properties like robust-
ness, fault tolerance, scalability, and speed-up. Third, the fact that today the
computer and network technology required for building such systems is avail-
able. A difficulty with parallel and distributed information processing systems
is that they typically are rather complex and hard to specify in their dynamics
and behavior. It is therefore broadly agreed that these systems should be able,
at least to some extent, to self-improve their future performance, that is, to
learn. Not surprisingly, today a broad range of work on learning in parallel and
distributed information processing systems, or parallel and distributed machine
learning for short, is available. Much of this work is centered around large-scale
inductive learning (e.g., [1, 3, 7, 9]) and multiagent learning (e.g., [8, 10, 11]).
What should be also mentioned here is the theory of team learning, which might
be considered as an important contribution on the way toward a general theory

of parallel and distributed machine learning (e.g., [2, 5, 6]). The major property
of this kind of learning is that the learning process itself is logically or geograph-
ically distributed over several components of the overall system and that these
components conduct their learning activities in parallel. The field of parallel and
distributed machine learning is of considerable importance, but also is rather
young and still searching for its defining boundaries and shape. The work de-
scribed in this article may be considered as an attempt to contribute to this
search.

A problem being well suited for studying parallel and distributed learning
is the job assignment problem (JAP). The basic variant of the JAP studied
here requires to assign jobs to executing nodes such that the overall completion
time is reduced, where there may be dependencies among the individual jobs
and differencies in the execution abilities of the individual nodes. Obviously, the
JAP inherently allows for parallelism and distributedness, simply because the
jobs to be executed can be distributed over several nodes and because the nodes
can execute different jobs in parallel. In addition to that, there are two further
reasons why the JAP is an interesting and challenging subject of research not
only from the point of view of machine learning. One reason is the complexity
of this problem. The JAP is non-trivial and known to be a member of the class
of NP-hard problems [4], and therefore in many cases it is even very difficult “to
find a reasonable solution in a reasonable time”. The other reason is that this
problem is omnipresent in and highly relevant to many industrial application
domains like product manufacturing and workflow organization. This is because
the JAP constitutes the core of most scheduling tasks, and the effectiveness and
efficiency of whole companies and organizations is therefore often considerably
affected by the way in which they solve this problem in its concrete appearance.

The parallel and distributed learning approach to the JAP as it is introduced
in this article follows the multiagent learning paradigm known from the field
of distributed artificial intelligence. According to this approach, the nodes are
considered as active entities or “agents” that in some sense can be said to be
autonomous and intelligent, and the jobs are considered as passive entities or
“resources” that in some way are used or handled by the agents. The individual
agents are restricted in their abilities and, hence, have to interact somehow in
order to improve their use and handling of the resources with respect to some
predefined criteria. Learning in such a scenario can be interpreted as a search
through the space of possible interaction schemes. Starting out from the concept
of the estimates of the jobs’ influence on the overall time required for completing
all jobs, the described approach aims at appropriately adjusting these estimates
by a parallel and distributed reinforcement learning scheme that only requires
low-level communication and coordination among the individual nodes. This
low-level characteristic makes this approach different from most other available
multiagent learning approaches.

The article is structured as follows. The job assignment problem and three
concrete instantiations of it are described in section 2. The learning approach
is presented in detail in section 3. Experimental learning results for the three

Table 1:

time
job <

N1 N2 N3

1 2 40 80 100

2 8, 9 30 110 120

3 9 60 20 70

4 9 100 30 100

5 6 10 10 50

6 9 20 20 20

7 9, 10 70 50 20

8 – 40 20 80

9 – 30 90 80

10 – 60 50 20

Table 2:

time
job <

N1 N2 N3

1 2 10 50 50

2 3 10 40 70

3 4 10 100 50

4 5 10 60 90

5 6 10 100 50

6 – 10 50 80

7 – 40 80 80

8 – 100 120 60

9 – 60 30 70

10 – 20 90 80

11 – 100 100 30

12 – 60 20 50

13 – 10 40 70

Table 3:

time
job <

N1 N2 N3 N4

1 – 70 10 10 10

2 – 60 10 10 10

3 5, 6 100 120 20 120

4 5, 6 110 120 80 20

5 7 60 90 10 100

6 8 50 140 100 10

7 – 100 150 20 70

8 – 90 100 140 10

9 – 10 10 10 60

10 – 140 100 20 120

11 – 70 10 80 90

instantiations of the JAP are shown in section 4. A brief summary and an outlook
on future work is offered in section 5.

2 The Job-Assignment Problem (JAP)

The JAP as it is considered within the frame of the work described here can
be formally described as follows. Let J = {J1, . . . , Jn} be a set of jobs and
N = {N1, ..., Nm} be a set of nodes, where each job can be executed by at
least one of the nodes (n, m ∈ N). The individual jobs may be ordered by a
dependency relation, <, where Jk < Jl means that Jk has to be completed
before the execution of Jl can be started. Jk is called a predecessor of Jl, and
Jl is called a successor of Jk. The nodes may differ from each other in as far
as the time required for completing a job may be different for different nodes.
The problem to be solved is to find an assignment of the jobs to the nodes
such that the overall time required for completing all jobs contained in J is
minimal. Because this problem is NP-hard, usually it is reformulated such that
it is just required to find an almost optimal solution in polynomial time. The
learning approach described in this article follows this reformulation, and aims at
producing satisfying (and not necessarily optimal) solutions in reasonable time.

The tables 1 to 3 show three instantiations of the JAP, subsequently referred
to as I1, I2, and I3, respectively. Consider the table 1 (the others are to be read
analogously). There are 10 jobs and 3 nodes, and there are dependencies among
some of the jobs. For instance, job J1 has to be completed before job J2 can be
started, and the execution of job J9 requires the completion of the jobs J2, J3,
J4, J6, and J7. Each job can be executed by each node, but there are differences
in the time required by the nodes for executing the jobs. For instance, the nodes
N1, N2, and N3 need 40, 80, and 100 units of time, respectively, for completing
the job J1. As this table also shows, a node may require different time intervals

for completing different jobs. For instance, the node N1 needs 40, 30, and 60
units of time for completing the jobs J1, J2, and J3, respectively.

3 The Learning Approach

The basic idea underlying the multiagent learning approach described here is
that each job is associated with an estimate of the job’s influence on the overall
completion time, and that these estimates are improved in the course of learning.
As it is described in more detail below, this improvement as well as the execution
of the jobs is done by the involved nodes in a parallel and distributed way. A
high estimate indicates a significant impact on the overall completion time, and a
job being associated with a high estimate therefore is identified as “critical” and
should be completed as soon as possible. Learning proceeds in episodes, where
an episode consists of the time intervall required for completing all jobs. The
basic working steps realized during an episode can be conceptually described as
follows:

until all jobs are completed do
(1) The idle nodes choose among the executable jobs, and this choice is done

dependent on the nodes’ execution times and the job estimates.
(2) The nodes execute their chosen jobs.
(3) If a node completes a job, then it adjusts the estimate of this job.

When an episode t is finished, the next episode t+1 starts and learning continues
on the basis of the adjusted job estimates that are available at the end of episode
t. This is iterated for a predefined, maximum number of episodes. The best
solution found during these episodes is offered as the solution of the overall
learning process. (A solution found in an episode need not necessarily be as
good as the solution found in the preceding episode. Due to its statistical nature
this approach does not guarantee a monotonic improvement of the solutions
found in the course of learning.) The approach is parallel and distributed in as
far as both job execution (2) and estimate adjustment (3) is done by different
agents. A synchronization of the agents’ activities occurs in step (1). This also
shows the potential advantages of this kind of learning over centralized learning
approaches: it is more robust (e.g., failure of an individual node does not damage
the overall learning process); it is more flexible (e.g., new nodes can be easily
integrated in an ongoing learning process); and it is faster (because of inherent
task and result sharing).

Many concrete forms of this conceptual description are possible. It was not
the goal of the described work to exhaustively investigate all these forms. Instead,
the work aimed at an improved understanding of the potential benefits and
limitations of parallel and distributed machine learning in general, and therefore
a concretization has been chosen that realizes this type of learning in an intuitive
and relatively simple way and at the same time enables a conclusive and efficient
experimental investigation. In the actual implementation, step (1) realizes a
rank-based assignment of the executable jobs. This means that the job being

associated with the highest estimate is assigned first, the job having the second
highest estimate is assigned next, and so forth. Moreover, if the assignment
of a job is ambitious in the sense that there are several idle nodes capable of
executing this job, then the node offering the shortest (job-specific) execution
time is selected with highest probability. Formally, if N [Jk] denotes the set of
all idle nodes capable of executing a job Jk (at some time during an episode)
and T [i, k] denotes the time required by Ni ∈ N [Jk] for completing Jk, then the
probability that Ni executes Jk can be described by

T [i, k]
∑

Nj∈N [Jk] T [j, k]
. (1)

The actual implementation of step (3) offers two slightly different schemes, sub-
sequently referred to as A1 and A2, for the adjustment of the job estimates. In
the following, let Et

k
denote the estimate of job Jk at the beginning of episode t,

let Ct

k
denote the completion time of Jk in episode t, and let Ct

k
= 1

t

∑t

τ=1 Cτ

k

denote the average completion time of Jk in the episodes 1 to t. According to the
adjustment scheme A1, the estimates are updated immediately after job com-
pletion. Whenever a node finished a job Jk during an episode t, it modifies Et

k

according to
Et+1

k
= Et

k + α(Ct

k − Ct

k
) , (2)

where α is a factor called learning rate. The resulting estimate Et+1
k

is used for
ranking in step (1) of episode t + 1. The later (earlier) a job is completed, the
higher (lower) is its estimate at the beginning of the next episode and, hence,
the higher (lower) is the probability of an earlier execution of this job. According
to the adjustment scheme A2, the job estimates are updated at the end of each
epiode. In contrast to A1, this scheme explicitly takes into consideration that
there may be dependencies among the jobs. Consider the situation at the end
of episode t. Let Pred(Jl) denote the set of all predecessors of Jl, let Succ(Jl)
denote the set of all successors of Jl, and let Ct denote the overall completion
time in the episode t. For each Jk ∈ Pred(Jl), the node which executed Jl pays
a certain amount P t

lk
to the node which executed Jk during this episode. This

amount is given by

P t

lk =

{

(Ct

l
− Ct−1

l
)(Ct − Ct−1) + P t

l
if Succ(Jl) 6= ∅

(Ct

l
− Ct−1

l
)(Ct − Ct−1) otherwise

, (3)

where P t

l
is the sum of all payments that the node which executed Jl received

from the nodes which executed the successors of Jl at the end of the episode t,
this is,

P t

l =
∑

Ji∈Succ(Jl)

P t

il . (4)

After the node which executed a job Jk received all payments for this job from
the nodes which executed this job’s successors, it adjusts the estimate of Jk

according to

Et+1
k

= Et

k + α(Ct

k − Ct−1
k

)(Ct − Ct−1) + βP t

k , (5)

where α and β are factors called learning rates. The mechanism underlying this
update scheme is illustrated in table 4. For instance, as this table shows, if a
job Jk is finished later in episode t than in episode t − 1 (i.e., Ct

k
− Ct−1

k
>

0) and the overall completion time increased (i.e., C t − Ct−1 > 0), then the
estimate of Jk tends to increase (because the product (Ct

k
− Ct−1

k
)(Ct − Ct−1)

is positive, as expressed by the +). As a result, in this case it is likely that the
job Jk will be executed earlier and, provided that there is a causal relationship
between the completion time of Jk and the overall completion time, that an
improved assignment will be generated in the next episode t+1. The effect of the

Table 4: C
t
− C

t−1

influence on E
t

k
> 0 < 0

> 0 + −

C
t

k − C
t−1

k < 0 − +

payments is that potential causal relationships between the completion time of
the jobs and the overall completion time are propagated backwards through the
job dependency network. All together, this adjustment scheme takes particularly
care of “critical” dependency paths, that is, paths resulting in a late overall
completion.

Learning according to this approach occurs in a parallel and distributed way.
In particular, the estimates of different jobs may be adjusted concurrently, and
all processors involved in job execution are also involved in the adjustment of the
estimates. There are two major characteristics of this approach. First, it realizes
a basic form of reinforcement learning. The only available learning feedback is the
completion time of the individual jobs. This also means that there is no explict
information available about how to gain an improved job assigment. Second,
learning is just based on a low-level communication and coordination among the
individual nodes. This also means that there is no time- or cost-consuming need
for exchanging complex information or conducting complex negotiations in order
to realize learning.

4 Experimental Results

The figures 1, 2, and 3 show for the JAP instantiations I1, I2, and I3, respec-
tively, the best solutions learnt after 20 episodes by the adjustment schemes A1
and A2. In all experiments described here the learning rates α and β were set
to one, and the parameters E0

i , C0
i , and C0 where all initialized with zero. As

figure 1 shows, the shortest overall completion times for I1 generated by A1 and
A2 were 140 and 110, respectively; as figure 2 shows, the shortest overall com-
pletion times for I2 generated by A1 and A2 were 150 and 130, respectively; and
as figure 3 shows, the shortest overall completion times for I3 generated by A1
and A2 were 130 and 160, respectively. As these figures also show, the scheme
A2 produced slightly better results than the scheme A1 for the instantiations I1

Figure 1:

N3

N3

N2

N1

30 60 90 120 150 180time

1

3 8 6

510

5 1

4

10

4

2

7

9

8

6

3

7

0

2

N2

N1

9

instantiation I1 - scheme A1

instantiation I1 - scheme A2

no
de

s
no

de
s

and I3. This observation has been also made in a number of other experiments
not described here, and indicates that in general it is worth to explicitly take
the dependencies among the jobs into consideration. This is not very surprising.
The interesting point here is that good results could be also achieved if the de-
pendencies are not explicitly taken into consideration - as the results for scheme
A1 illustrate. This shows that the described learning approach is also of interest
for domains in which the dependencies are unknown. In order to be able to
evaluate these learning results, 20 random solutions for each of the three instan-
tiations have been generated. The best random solutions found for I1, I2, and I3
had overall completion times of 230, 200, and 210, respectively. Obviously, both
adjustment schemes clearly outperformed random search. Another measure of
evaluation is given by the optimal overall completion times, which are 100 for I1,
130 for I2, and 100 for I3. It should be noted that the three instantiations under
consideration were designed as test cases whose optimal solution are known –
as mentioned above, the JAP is too complex to be optimally solved in general.
A comparison with the optimal solutions shows that the optimum was found
for I2 and was closely approached for I1 and I3. This qualitatively coincides
with the comparative results gained in several other experiments. For reasons of
completeness is should be mentioned that the optimal solution for I1 was found
after 62 episodes (by A1) and for I3 after 41 episodes (by A2). It has to be
stated, however, that the schemes A1 and A2 are not proven to always converge
to the optimal solution, and therefore leave room for improvement.

Figure 2:

N2

0

N3

N1

N3

N2

N1

30 60 90 120 150 180time

21 4 6 10 9

7 12

8 11

1 2 3 4 5 13

9 12

8 11

3 5 13

10

7

6

instantiation I2 - scheme A2

instantiation I2 - scheme A1

no
de

s
no

de
s

Figure 3:

0 30 60 90 120 150 180time

N1

N2

N3

N1

N2

N3

N4

N4

1

2 11 9 8

3 5 10

4 6 7

10

11 3

2 9 5 7

1 4 6 8

instantiation I3 - scheme A1

instantiation I3 - scheme A2

no
de

s
no

de
s

5 Conclusion

The work described in this article applies parallel and distributed machine learn-
ing to a basic variant of the job-assignment problem. The learning approach

bases on the multiagent learning paradigm known from distributed artificial in-
telligence, and ascribes the jobs the passive role of resources and the nodes the
active role of agents. The concept of the estimates of the jobs’ influence on the
overall completion time is introduced, and the job estimates are adjusted in a
reinforcement learning style and without requiring intensive communication and
coordination among the individual nodes. Three instantiations of the JAP are
described and used for an experimental analyis. The available experiments show
that very good learning results can be achieved in relatively short time intervals.
Based on the experience and insights gained so far, the following two lines of
continuing work are recommended:

– Further experiments with more complex JAP settings (e.g., larger number
of nodes and/or jobs, variants of the JAP with varying numbers of nodes
and/or jobs, and variants of the JAP with more sophisticated dependencies
among the jobs and/or nodes). Ideally, such experiments will be conducted
in context of concrete real-world applications like multi-processor scheduling
in computer networks or industrial workflow optimization.

– Bottom-up extension of the learning approach towards distributed planning
and lookahead mechanisms and explicit negotiation among the nodes.

These two lines should not be considered separately, but in close interaction.
The results available so far indicate that it is worth to pursue these lines.

Parallel and distributed machine learning establishes a relatively young area
of research and application, and there are many open issues that still have to
be addressed in future work. Three of these issues considered as particularly
essential are the following:

– applicability and limitations of traditional machine learning approaches in
the context of parallel and distributed information processing systems;

– unique requirements for and principles of parallel and distributed machine
learning;

– formal models of parallel and distributed machine learning.

The need for addressing these and related issues increases as parallelism and dis-
tributedness play an increasingly important role for computer-based information
processing.

References

1. Chan, P.K., & Stolfo, S.J. (1995). A comparative evaluation of voting and meta-
learning of partitioned data. In Proceedings of the Twelfth International Conference

on Machine Learning (pp. 90–98).
2. Daley, R.P., Pitt, L., Velauthapillai, M., Will, T. (1991). Relations between prob-

abilistic and team one-shot learners. In Proceedings of the Workshop on Computa-

tional Learning Theory (pp. 228–239).
3. Davies, W., & Edwards, P. (1997). The communication of inductive inferences. In

[10].

4. Garey, M.JR., & Johnson, D. (1979). Computers and intractability . New York:
Freeman.

5. Jain, S., & Sharma, A. (1995). On aggregating teams of learning machines. Theo-

retical Computer Science A, 137(1), 85–108.
6. Pitt, L., & Smith, C. (1988). Probability and plurality for aggregations of learning

machines. Information and Computation, 77, 77-92.
7. Provost, F.J., & Hennessy, D.N. (1995). Distributed machine learning: Scaling up

with coarse grained parallelism. In Proceedings of the Second International Con-

ference on Intelligent Systems for Molecular Biology (pp. 340–348).
8. Sen, S. (Ed.) (1996). Adaptation, coevolution and learning in multiagent systems.

Papers from the 1996 AAAI Symposium. Technical Report SS-96-01. AAAI Press.
9. Sikora, R., & Shaw, M.J. (1991). A distributed problem-solving approach to induc-

tive learning . Faculty Working Paper 91-0109. Department of Business Adminis-
tration, University of Illinois at Urbana-Champaign.

10. Weiß, G. (Ed.) (1997). Distributed artificial intelligence meets machine learning .
Lecture Notes in Artificial Intelligence, Vol. 1221. Springer-Verlag.

11. Weiß, G., & Sen, S. (Eds.) (1996). Adaption and learning in multi-agent systems.
Lecture Notes in Artificial Intelligence, Vol. 1042. Springer-Verlag.

This article was processed using the LaTEX macro package with LLNCS style

