
Capturing Agent Autonomy in Roles and XML

Gerhard Weiß
Institut für Informatik, TUM

Boltzmannstraße 3
85748 Garching, GERMANY

weissg@in.tum.de

Michael Rovatsos
Institut für Informatik, TUM

Boltzmannstraße 3
85748 Garching, GERMANY

rovatsos@in.tum.de

Matthias Nickles
Institut für Informatik, TUM

Boltzmannstraße 3
85748 Garching, GERMANY

nickles@in.tum.de

ABSTRACT
A key question in the field of agent-oriented software en-
gineering is how the kind and extent of autonomy owned
by computational agents can be appropriately captured. As
long as this question is not answered convincingly, it is very
unlikely that agent-oriented software (having “autonomy” as
a real property rather than just a catchy label) gets broadly
accepted in industry and commerce. In particular, in order
to be of practical value an answer to this question has to
come in form of concrete techniques which enable develop-
ers of agent-oriented software to precisely capture the scope
of behavioral freedom and self-control they want to concede
to a computational agent. This paper describes two such
techniques. First, a formal schema called RNS for speci-
fying the boundaries of autonomous agent behavior. This
schema is conceptually grounded in sociological role the-
ory, and employs the concepts of role, norm and sanction
to capture agent autonomy. What makes RNS particularly
valuable and distinct from related autonomy specification
approaches is, among other things, its strong expressiveness
and high precision. Second, a software tool called XRNS
which enables developers to easily generate RNS-based au-
tonomy specifications in XML format. Encoded in XML,
these specifications are easily accessible to all stakeholders
in an agent-oriented software under development, and can
be even processed directly by XML enabled computational
agents.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Requirements/Specifica-
tions—languages, tools

General Terms
Design, Theory

Keywords
agent-oriented software engineering, computational auton-
omy, specification, RNS, XRNS, XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

1. INTRODUCTION
Software engineering has always been targeted on the de-

velopment of software whose behavior is fully determined
and predictable under all circumstances. This does hold for
both paradigms which have dominated the field so far: the
classical paradigm of structure orientation with its focus on
modularization, data abstraction, abstract data types, etc.;
and the currently predominant paradigm of object orien-
tation with its emphasis on messages, classes, inheritance,
polymorphism, etc. Since some years a subfield is emerg-
ing in software engineering, known as agent-oriented soft-
ware engineering, which is targeted on a significantly differ-
ent type of software, namely, software possessing at least to
some extent action and decision choice (e.g., see [4, 8, 15]
for related proceedings and [9, 14] for surveys). This sub-
field’s guiding principle is agent orientation, where an agent
is understood as a computational entity capable of flexible,
social, and autonomous behavior. Through its emphasis on
autonomy as a key property of computational agency, agent
orientation remarkably differs from both structure and ob-
ject orientation in that it gives up the traditional request
for a complete behavioral determination and predicability:
within certain boundaries agents are empowered to act and
decide under self-control. An obvious key question coming
up with agent orientation is how the kind and the extent
of autonomy owned by different agents can be tailored ap-
propriately. Thereby “appropriately” means that agent au-
tonomy should be neither unnecessarily cut down (as this
would result in agents being not really distinct from or-
dinary objects) nor unnecessarily admitted (as this would
result in an increased risk of undesirable or even chaotic be-
havior). To answer this question is perhaps the most critical
precondition for a broad, industrial and commercial accep-
tance of agent-oriented software. In particular, in order to
be of practical value this answer has to come in form of con-
crete techniques – methods, formalisms, tools, and so forth
– which enable and support software developers in precisely
capturing and describing the scope of self-control they want
to concede to a computational agent in a given application.

This paper describes research which aims at developing
such techniques. More specifically, the contribution of this
paper is twofold. First, it presents a formal schema called
RNS (standing for “Roles, Norms, Sanctions”) which allows
for a highly precise specification of a computational agent’s
autonomy. The basic view underlying RNS is that agents
act as owners of roles in order to pursue their goals. As
role owners, agents are exposed to certain norms (permis-
sions, obligations, and interdictions), and through behaving

105

in conformity with or in deviation from norms they become
exposed to certain sanctions (rewards or punishments). Sec-
ond, the paper describes a software tool called XRNS which
is based on RNS and which enables developers to easily gen-
erate RNS-based autonomy specifications in XML format.
XRNS is implemented in Java and is based on standard tech-
nology such as MySQLTM and JDBCTM.

The paper is organized as follows. Sections 2 and 3 de-
scribe RNS and XRNS, respectively. Section 4 discusses these
two techniques. Section 5 overviews related work. Section
6 concludes the paper with general considerations on the
importance of autonomy engineering.

2. RNS

2.1 Basic Constructs
RNS, which is largely inspired by sociological role theory

(e.g., [2]), requires to specify the autonomy of computational
agents in terms of roles which are available to these agents
and through which these agents can try to achieve their
goals. The set of available roles is called a role space. A role
space is specified in the form

ROLE SPACE role space id � role id list �

where role space id is a character string uniquely identify-
ing the role space under consideration and role id list is a
list of character strings called role identifiers that uniquely
identify roles.1 Conceptually, a role serves as a behavioral
guideline which helps to achieve behavioral predictability
without excluding behavioral freedom. Formally, a role is
treated as a collection of activities, and for each role identi-
fier, role id , being included in ROLE SPACE there must be a
role specification in the form

ROLE role id � activity id list �

where activity id list is a list of identifiers of the activities
being part of this role. For each activity identifier there
must be a corresponding activity specification as detailed
in section 2.2. Throughout this paper selected facets of an
agent-based supply chain management system is considered
as an application scenario, where the role space includes the
following roles (among others not described here): USsup-
plier; EUROsupplier; AssemblyMg (= assembly manager);
MemBoardDir (= member of the board of directors of the
overall management system); and SpaceMg (= manager of
the role space itself, being responsible for activities affecting
the structure and contents of the role space).

RNS distinguishes three types of norms – permissions (P),
obligations (O), and interdictions (I) – and two types of
sanctions – reward (RE) and punishment (PU) – that ap-
ply in case of norm conformity and deviation. By enabling
a designer to explicitly specify sanctions, RNS takes care of
the fact that generally (and in particular in open applica-
tions) agents as autonomous entities do not necessarily act
in accordance with the available norms, but may ignore and
violate them. Based on the distinction of different types of
norms and sanctions, a status range is attached to each ac-
tivity which describes activity-specific norms and associated

1Syntactic keywords are written in underlined
TYPEWRITER FONT, and italic font is used to indicate
variables. Expressions enclosed in brackets [.] are optional.
Brackets of the form <.> are part of the RNS syntax.

sanctions. More specifically, a status range specification is
of the form

STATUS RANGE status statement list

where status statement list is a list of so called status state-
ments each describing a norm-sanction pair that is specific
to the activity to which the status range is attached. A key
feature of RNS is that it facilitates the explicit modeling and
specification of requests for (refraining from) executing par-
ticular activities. This feature induces the distinction of two
kinds of norm-sanction pairs attached to an activity:

• norm-sanction pairs an activity is subject to, no mat-
ter whether the execution or omission of the activity is
requested or not by some agent. Norm-sanction pairs
of this kind are, so to say, independent of any requests
for (not) executing the activity to which they are at-
tached. Norm-sanction pairs of this kind, and the sta-
tus statements describing them, are called independent
and are indicated by the keyword IND.

• norm-sanction pairs an activity becomes subject to as
a consequence of a request for (not) executing it. Such
norm-sanction pairs are, so to say, induced by (i.e.,
do become active as an effect of) explicit requests for
activity execution or omission. Agents requesting the
(non-)execution of an activity are called role senders.
Norm-sanction pairs of this kind, and the status state-
ments describing them, are called dependent and are
indicated by the keyword DEP.

The common syntax of independent status (IS) statements
and dependent status (DS) statements is as follows:

<status type> : NORM <norm type> <condition>

� �� �

norm specification

+ SANC <sanction type> <sanction>

� �� �

sanction specification
� �� �

norm-sanction pair

where status type ∈ {IND, DEP role id} discriminates among
IS and DS statements, norm type ∈ {P, O, I}, condition is
a Boolean expression making it possible to formulate con-
ditioned norms, sanction type ∈ {RE, PU}, and sanction
is an expression specifying a sanction of type sanction type.
Though syntactically almost identical, IS and DS statements
differ significantly in their semantics. First consider IS state-
ments, that is, statements of the form

<IND> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

Dependent on norm type, such a statement attached to an
activity reads as follows:

• norm type = {P}: “An agent owning the role of which
this activity is part of is permitted to execute this ac-
tivity provided that the condition condition is fulfilled.
The sanction associated with this permission is of type
sanction type and is given by sanction.”

• norm type = {O}: “An agent owning the role of which
this activity is part of is obliged to execute this activ-
ity provided that the condition condition is fulfilled.
The sanction associated with this obligation is of type
sanction type and is given by sanction.”

• norm type = {I}: “An agent owning the role of which
this activity is part of is forbidden to execute this
activity provided that the condition condition is ful-
filled. The sanction associated with this interdiction is
of type sanction type and is given by sanction.”

106

Against that, DS statements, that is, statements of the form

<DEP role id> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

read as follows:

• norm type = {P}: “If an agent owning the role role id
requests to execute this activity (from an agent own-
ing the role of which this activity is part of), then the
requested agent is permitted (by the requesting agent)
to execute it (i.e., she may execute it) provided that
the condition condition is fulfilled. The sanction as-
sociated with this permission is of type sanction type
and is given by sanction.”

• norm type = {O}: “If an agent owning the role role id
requests to execute this activity, then the requested
agent is obliged (by the requesting agent) to execute
it (i.e., she must execute it) provided that the condi-
tion condition is fulfilled. The sanction associated with
this obligation is of type sanction type and is given by
sanction.”

• norm type = {I}: “If an agent owning the role role id
requests to not execute this activity, then the requested
agent is forbidden (by the requesting agent) to execute
it (i.e., she must not execute it) provided that the con-
dition condition is fulfilled. The sanction associated
with this interdiction is of type sanction type and is
given by sanction.”

DS statements make it possible to capture situations in
which requests (e.g., from different agents) for executing an
activity do have different normative and sanctioning impacts
on the requested agent. In other words, DS statements al-
low to model situations in which requests even for the very
same activity induce different norms and sanctions. With
that, the RNS schema is highly sensitive to normative and
sanctioning contexts.

2.2 Activities
As mentioned above, for each activity identifier included

in a ROLE specification there must a corresponding activity
specification. According to RNS, four types of activities are
distinguished:

• Basic activities, that is, resource and event handling
activities (Type I).

• Request activities, that is, requests for executing ac-
tivities (Type II).

• Sanctioning activities, that is, activities that result in a
punishment of behavior deviating from available obli-
gations and interdictions, as well as activities that re-
sult in a rewarding of behavior going conform with
permissions, obligations and interdictions (Type III).

• Change activities, that is, activities that result in changes
of status statements being part of the status range of
an activity of any type (Type IV). As a status state-
ment consists of a norm specification and a sanction
specification, change activities can be also character-
ized as activities that result (i) in changes of norms
attached to an activity and/or (ii) in changes of sanc-
tions associated with such norms.

Each of these four types of activities may be subject to
(or “the target of”) an activity of types II, III, and IV.
This means, in particular, that RNS allows to formulate
“crossed and self-referential” constructs such as requests for

requests, requests for sanction and norm changes, changes
of norms attached to norm-changing activities (as well as re-
quests for such changes), and changes of sanctions attached
to sanction-changing activities (as well as requests for such
changes). Examples of such constructs, which we call activ-
ity reference constructs, are provided below. In the follow-
ing, the four activity types are described in detail.

Resource and Event Handling Activities. These ac-
tivities are activities concerning the management and con-
sumption of resources and events. Two types of resources are
distinguished, namely, consumable ones (e.g., time, money,
and any kind of raw material to be processed in a manufac-
turing process) and non-consumable ones (e.g., data, pro-
tocols, and communication support services such as black-
board platforms and translation systems). Examples of such
activities are provide(CPU time), deliver(material,quantity),
access(database), and run-protocol(English-auction). The
RNS specification of this type of activities has the general
form

ACT activity id (activity variable list)

� STATUS RANGE status statement list �

where activity variable list is a list of variables specific to
the activity activity id . The first line of any activity speci-
fication, starting with the keyword ACT, is called an activity
header , and the part enclosed in �.� is called an activity
body . Here is an example of a specification of a basic activ-
ity. Assume there is a role with identifier USsupplier, and
that one of its basic activities is specified as follows:

ACT deliver (material,quantity)

� STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP EACH> : NORM <O> <quantity ≤ 100> + SANC <PU> <withdraw role>

<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>

�

The keyword EACH used as an instantiation of role id (resp.
agent id) indicates that all roles (resp. agents) are con-
cerned, and the keyword NO used as an instantiation of condi-
tion (of sanction type and sanction) indicates that the norm
is unconditioned (that there is no associated sanction). With
that, in this example the IS statement says that an agent
owning the role of which the deliver activity is part of is
permitted to deliver. The first DS statement says that a re-
quest from each agent (no matter what role she owns within
the role space under consideration) for executing this deliver
activity induces the obligation to deliver, provided that the
requested quantity is not above 100. Furthermore, the state-
ment says that the requested agent must withdraw the role
USsupplier (i.e., is not longer allowed to act as a USsup-
plier) in the case of violating such an induced obligation.
The second DS statement says that the delivery of steel, if
requested by an agent owning the role AssemblyMg (“As-
sembly Manager”), is forbidden; not acting in accordance
with this interdiction is punished by some fine. Generally,
the keyword EACH serves as a wildcard, and expressions in-
cluding it are called templates.

Execution Requests. These activities are specified as fol-
lows:

ACT REQUEST activity id

(agent id list ; role id list ; [NOT] activity id (activity variable list))

� STATUS RANGE status statement list

NORMATIVE IMPACT norm specification list �

107

The activity header says that requests can be directed to-
wards any agent who is referred to in agent id list and who
owns at least one of the roles listed in role id list . The
header also identifies the activity being subject to the re-
quest. The keyword NOT is optional and is to be used only
in the case of interdiction (i.e., in the case of requests for
not executing some activity). norm specification list spec-
ifies the normative impact of the request on the requested
agent(s) through a list of norm specifications. As already
introduced above, these specifications are of the form

NORM <norm type> <condition>

Note that every norm specification included in a normative
impact specification of a request activity, together with the
identifier of the role of which the request activity is a part,
unambiguously points to a single or (if there are multiple
sanctions – rewards and punishments – associated with the
induced norm) several DS statements.

As an illustrating example based on the delivery activ-
ity specified above, consider the following request activity
specification being part of the role AssemblyMg:

ACT REQUEST ManagerReq1

(EACH ; USsupplier, EUROsupplier ; NOT deliver (material, quantity))

� STATUS RANGE

<IND> : NORM <P> < (material = steel) AND (rating(material) = poor)> +

SANC <NO> <NO>

<DEP MemBoardDir> : NORM <O> <NO> + SANC <PU> <reprimand>

NORMATIVE IMPACT

NORM <I> <material = steel>

�

The keyword EACH in the activity header says that the re-
quest can be directed towards each agent owning the roles
USsupplier or EUROsupplier. (If role id list were also in-
stantiated with EACH, then this would mean that each agent
– without any role restriction – can be requested to deliver.)
The status range includes an IS and a DS statement. The
IS statement says that an agent as an assembly manager is
permitted to request the non-execution of the deliver activ-
ity, provided that the material to be not delivered is steel
the current price of steel is rated as poor. The DS state-
ment means that this request activity becomes obligatory
for an agent owing the role AssemblyMg if it is requested by
an agent owning the role MemBoardDir (“Member of Board
of Directors”); in case of not following this obligation, an
assembly manager receives an official reprimand.

The specification of the corresponding request activity of
the MemBoardDir role could look like this:

ACT REQUEST DirectorReq1

(EACH ; AssemblyMg ;

REQUEST ManagerReq1

(EACH ; USsupplier, EUROsupplier ; NOT deliver (material, quantity))

)

� STATUS RANGE

<IND> : NORM <O> <decided by board> + SANC <PU> <board exclusion>

NORMATIVE IMPACT

NORM <O> <NO>

�

This example also indicates how nested requests (i.e., “re-
quests for requests for requests for . . . ”) look like in RNS
notation.

Sanctioning Activities. Activities of this type are speci-
fied as follows:

ACT SANCTION activity id (agent id list ; role id list ; activity id ; norm spec)

� STATUS RANGE status statement list

SANCTIONING IMPACT sanction specification list �

where norm spec is a norm specification and sanction specifi-
cation list is a list of sanction specifications, that is, a list
of specifications of the form

SANC <sanction type> <sanction>

The sanctioning impact part specifies all sanctions that “be-
come reality” through the execution of the sanctioning activ-
ity. For an example of a sanctioning activity, again consider
the supply chain management system. Here we assume that
all sanctioning activities are bundled within a special role
called RoleMg (“Role Manager”), with one of these activi-
ties being defined as follows:

ACT SANCTION DeliverPunish3 (EACH ; EACH ; deliver ; NORM <O> <quantity ≤ 100>)

� STATUS RANGE

<IND> : NORM <P> <NO> + SANC <RE> <earn bonus>

<DEP MemBoardDir> : NORM <I> <NO> + SANC <PU> <withdraw role>

SANCTIONING IMPACT

SANC <PU> <withdraw role>

�

The two occurrences of EACH indicate that the sanctioning
activity concerns each agent and each role of which the ac-
tivity with identifier “deliver” is part of. The IS statement
says that an agent owning the role SpaceMg is uncondition-
ally permitted (i.e., may) to execute this sanction, and that
she earns some bonus in the case she does (i.e., actually
makes use of her permission). The DS statement says that
the sanctioning activity may become subject to an uncondi-
tioned interdiction, namely, as the result of an “interdiction
request” by an agent owning the role with identity Mem-
BoardDir; violating such an interdiction is punished through
the withdrawal of role ownership.

A further example of a sanction specification illustrating
the expressiveness of RNS is the following. Under the as-
sumption that each norm violation is punished by the with-
drawal of role ownership, the “most general” specification
of a sanction activity that can be constructed as part of the
role SpaceMg is

ACT SANCTION TotalSanction (EACH ; EACH ; EACH ; EACH)

� STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

SANCTIONING IMPACT

SANC <PU> <withdraw role>

�

saying that each agent being a space manager is part of is
unconditionally permitted to sanction any norm violation
through the withdrawal of role ownership.

Change Activities. Change activities affect the status
range of activities. Three types of change activities are dis-
tinguished: DEL (delete), REP (replace), and ADD (add). The
specification of these activities is as follows:

ACT ADD activity id (role id list ; activity id list ; status statement)
� STATUS RANGE status statement list

[STATUS IMPACT

add status statement]
�

ACT DEL activity id (role id list ; activity id list ; status statement)
� STATUS RANGE status statement list

[STATUS IMPACT

delete status statement]
�

108

ACT REP activity id (role id list ; activity id list ; status statement 1 ; status statement 2)

� STATUS RANGE status statement list

[STATUS IMPACT

replace status statement 1 by status statement 2]

�

The status impact parts are optional as they are of explana-
tory nature only. Here is an example of a specification of
replace activity:

ACT REP

(USsupplier, EUROsupplier ; deliver ;

<IND> : NORM <P> <NO> + SANC <NO> <NO> ;

<IND> : NORM <O> <NO> + SANC <PU> <pay fine>)

� STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP MemBoardDir> : NORM <I> <NO> + SANC <PU> <space exclusion>

�

An agent owning a role which includes this activity specifi-
cation is permitted to replace, within each deliver activity
being part of the roles USsupplier and EUROsupplier, the
first status statement given in the activity header of this
specification by the second one. According to the DS state-
ment, an agent owning the role MemBoardDir may forbid
this delete activity (i.e., is authorized to request to not ex-
ecute it); the consequence of violating this interdiction is
the exclusion from the role space. Generally, RNS enables
to formulate requests on change activities, and, reversely, it
enables to formulate changes of status statements belonging
to request activities.

3. XRNS
XRNS (version 2.0) is a tool which supports a developer

in creating RNS-based autonomy specifications and which
transforms these specifications into a valid XML document.
XRNS takes roles (rather than a complete role space or an
individual activity) as the basic unit of transformation, that
is, it generates an XML document for each role. The tool
is implemented in JavaTM 1.3, and its GUI is realized with
JavaTM SWING. MySQLTM (version 3.23.42), the most pop-
ular open source database, is used to store and efficiently
manage all data provided by a developer. The JDBCTM API
(version 1.12) is used to enable database access; JDBCTM

(“Java Data Base Connection”) is the industry standard for
connectivity between Java and a wide range of databases.
As a JDBC enabling database driver, MM.MySQL (version
2.0.4) is used; this is the official and most popular JDBC
driver for MySQLTM. The transformation of the RNS-based
specifications is realized via the Xerces Java Parser (version
1.4.0).

3.1 User Interface
The figure 1 gives an impression of the GUI of XRNS.

The GUI consists of an “XRNS window” having a menu bar
through which all available XRNS functions can be easily
accessed in a pull-down style. In this figure, the left side of
the XRNS window shows a part of the tree-structured role
space for the supply chain management system described in
2.2; and the right side shows a mouse-click selected detail of
this role space, namely, the deliver activity of the USsupplier
role. At a glance, the functionality of XRNS is as follows:

• “Role space” menu: creation of a new role space.

• “Role” menu: creation of a new role.

Figure 1: The GUI of XRNS.

• “Agent” menu: specification of agent identifiers.

• “Activity” menu: creation of a new activity of any of
the four activity types distinguished according to RNS.

• “Status-statement” menu: creation of a new status
statement list, and extension of an existing one.

• “Conflict-detection” menu: detection of conflicts among
norms.

• “Delete” menu: deletion of a role, of an activity within
a role, and of a status statement within an activity.

• “XML-file” menu: transformation of a role description
to XML.

The conflict-detection function is under development, and
is not further described here. Currently XRNS just detects
some elementary conflicts among obligations and interdic-
tions. (Conflict detection is very extensive as it requires e.g.
a complete pairwise comparison of all available status state-
ments, and this makes the use of efficient database technol-
ogy mandatory.) Not included in the menu bar are implicit
functionalities of XRNS, such as the verification of activity
name consistency.

3.2 Generated XML Documents and DTD
The figure 2 gives an example of an XML document gen-

erated by XRNS. This document captures the RNS-based
specification of the USsupplier role described in 2.2 As this
example shows, the XML tag naming is chosen so that it
closely reflects the RNS notation.

The DTD (Document Type Definition) defining the legal
elements of XRNS-generated XML document is shown in
the figure 3. This DTD is also used to ensure that the data
provided by a developer are of legal type. Moreover, this
DTD can be used by computational agents themselves to
validate an XML encoded RNS-based role specification.

2Actually, a DS statement is omitted to keep the example
document short. Note that this document corresponds to
the activity description on the right side of the figure 1.

109

Figure 2: XML encoding of the USsupplier role,
generated by XRNS.

4. DISCUSSION

4.1 Benefits
RNS. The RNS schema is appealing for several reasons:

it is based on a relatively simple notation and syntax; it
is domain- and application independent; it is neutral w.r.t.
autonomy (i.e., it is neither biased in favor of nor against
autonomy and so supports a developer in specifying any au-
tonomy level she considers as appropriate); it is grounded
in sociological role theory; and, in particular, it is strongly
expressive and enables a highly precise specification of agent
autonomy. Expressiveness and precision derive from the fol-
lowing features:

• Through its concept of (positive and negative) sanc-
tions RNS enables a developer to explicitly specify
consequences of both norm-conforming and norm-de-
viating behavior. The importance of specifying these
consequences results from the fact that autonomy, ta-
ken seriously, implies autonomy against norms [5] – an

Figure 3: DTD for validating XML documents pro-
duced by XRNS.

agent as an autonomous entity can not be guaranteed
to always act in accordance with all available norms.

• Through its concept of change activities RNS supports
the explicit modeling and specification of potential dy-
namic changes in norms and sanctions and thus in be-
havioral autonomy.

• Through its concept of a status range RNS enables a
developer to specify different normative impacts on the
same activity. This makes it possible to cope with sit-
uations in which the normative status of an activity
depends on the request context, that is, on who re-
quested the activity under what condition. With that,
RNS allows to explicitly capture context sensitivity of
norms and thus of autonomy.

• RNS supports the specification of complex activities
through various activity reference constructs. While
some possible reference constructs (e.g., “a request for
requesting a certain resource handling activity”) may
be only of marginal interest in an application at hand,
others (e.g., “a request for sanctioning a norm viola-
tion”) may be of particular importance.

110

• As it is based on the role concept, RNS does not imply
constraints on the type and structure of the individual
agents. Instead, it enables a developer to abstract from
architectural aspects of agency. This is of particular
importance in the case of open applications, because
here it often is not known in advance which agents will
enter into the running system.

XRNS. Because of the properties of XML, the XML-encoded
specifications generated by XRNS are rather comfortable to
read by humans and can be easily processed by comput-
ers. Moreover, available as XML documents these specifica-
tions can be exchanged across computing platforms, human
languages, and applications, and can be used with a great
number of available tools and utilities (e.g., for searching,
extracting, translation, etc.). From these benefits in gen-
eral, the following key advantages derive in particular:

• XRNS makes “autonomy” easily accessible to all stake-
holders of the agent-oriented software under develop-
ment, including analysts, designers, programmers, po-
tential end users, and the customers themselves. Such
an accessibility is invaluable w.r.t. the identification
and refinement of the kind and level of autonomy an
agent should possess, and fosters an early detection of
misconceptions of autonomous behavior. XRNS thus
supports the validation and verification of autonomy-
related software properties through all phases of the
developmental process.

• XRNS makes the autonomy specifications directly ac-
cessible to XML-enabled computational agents them-
selves. In particular, this makes it much easier to built
open agent interaction forums in which the individ-
ual agents behave as desired. For instance, an “XML
speaking agent” who participates in an open supply
chain for the first time can orientate herself much eas-
ier and perhaps even without any human intervention
if the roles she is allowed to fill within this supply chain
are described in XML.

• XRNS supports the distributed development of autono-
mous software, as well as the reuse of RNS-based spec-
ifications across agent-oriented software systems and
applications.

Another important feature of XRNS which contributes to its
practical usage is that it is based on industrial standard soft-
ware, such as JDBCTM and MM.MySQL (resp. MySQLTM

Connector/J).

4.2 Deficiencies and Open Issues
Though RNS/XRNS are appealing for a number of reasons,

they also leave room for improvement. The two most critical
deficiences of RNS we identify are the following. First, RNS
in its current version does not support developers in explic-
itly specifying information and control relationships among
roles such as generalization, aggregation, inheritance, peer,
superior-subordinate, and so forth. Without support of such
an explicit specification is it difficult (especially for large-
scale applications) to obtain transparency of the overall sys-
tem and its internal organizational structure. Second, RNS
does not yet support developers in identifying and avoiding
conflicts among norms (e.g., permission and interdiction of
the same activity). Especially for large-scale applications

such a support is extremely important as a means for avoid-
ing poor system behavior resulting from normative conflicts.
Both deficiences are of particular relevance w.r.t. a coherent
and consistent system perspective and both require to ex-
tend RNS appropriately. What needs to be done in a first
step thus is to define clear and useful conceptualizations of
role-role relationships and normative conflicts. Encouraged
by the above mentioned advantages of RNS we are currently
concentrating on this first step.

Another important issue left for future research is the
suitability of RNS/XRNS for interaction protocol specifica-
tion and design. A remarkable difference between RNS-type
specification and standard protocol-type specification is in
the potential normative impact of requests: in the case of
RNS, a request can induce an obligation; against that, in
the case of (speech act-based) interaction protocols it is typ-
ically assumed that an obligation is not induced by a request
per se (i.e., is not an inherent consequence of the utterance
of a request), but only by the – explicit – acceptance of a
request. We believe that both “request-obligation perspec-
tives” do make sense, though probably in different contexts
and on different levels of systems modeling. Obviously, an
identification and characterization of these contexts and lev-
els is needed, as well as an investigation of possibilities to
unify both perspectives by extending RNS and/or standard
interaction protocols accordingly.

As regards XRNS, a possible improvement is to use XML
schemas instead of DTDs to gain advantages such as support
for data types.

5. RELATED WORK
Among the available work on agent autonomy (e.g., see

the collections [6, 12]), there are several approaches which
are closely related to RNS in that they also aim at a norms-
based specification of autonomous behavior [10, 11, 13, 1,
7]. As elucidated below, what makes RNS distinct from all
these approaches is the expressiveness and precision with
which it allows to capture autonomy.

An approach which shows several interesting parallels to
RNS is described in [10]. The focus there is on norm compli-
ance and on the question what motiviations an agent might
have to comply with norms. Like RNS, this approach is
based on the view that agents as autonomous entities may
decide to not act in accordance with norms; moreover, sim-
ilar to RNS this approach considers the issue of positive
and negative sanctions. The main difference is that this ap-
proach does make several strong and in some sense restric-
tive assumptions on the cognitive structure and processes
within the individual agents (e.g., by treating sanctions as
the agents’ goals and by defining autonomy in terms of mo-
tivations hold by agents). Against that, RNS does not make
restrictive assumptions on “things occuring within agents”,
but concentrates on the role level.

Another approach showing interesting parallels to RNS is
presented in [11]. This approach focuses distributed systems
management through policies. A policy in this approach is
understood as a behavior-influencing information being lo-
cated outside of the managers themselves, and is specified
in terms of normative concepts (authorizations and obliga-
tions). Similar to RNS, this approach employs the role con-
cept and supports a specification of context sensitivity. The
main differences are that this approach does assume that

111

agents always do behave norm-conforming (thus sanction-
ing is not considered), that complex activity specification is
not supported, and that the specification of dynamic norm
(and sanction) changes is not supported.

A logic-based approach related to RNS is described in [13].
This approach concentrates on collective agency and offers,
similar to RNS, a normative system perspective. One impor-
tant difference is that RNS, in contrast to this approach with
its roots in deontic logic, does not rely on inter-definability
of permissions and obligations (i.e., P (x) =def ¬O¬x). An-
other important difference is that this approach does neither
consider the possibility of norm-deviating behavior nor the
issue of dynamic norm change activities.

Other logic-based approaches related to RNS are [1, 7].
Unlike RNS, however, these approaches do neither support
the specification of dynamic changes in norms and sanctions
nor do they capture complex activity specification. More-
over, these approaches are not role-based; instead, norms
and sanctions are directly attached to agents and assump-
tions are made on agent-internal (cognitive) processes.

As regards XRNS, a related work is described in [3]. Here
a system called XRole for the XML-based definition of roles
is described. XRole, however, does not concentrate on au-
tonomy issues like XRNS does, but has its focus on agent
interaction.

6. CONCLUDING REMARKS
To take the property of autonomy serious is essential to

agent orientation and the field of agent-oriented software en-
gineering. Among the commonly voiced objections to agent
orientation are at least two which are directly related to this
property: “everything an agent does can be done by an ob-
ject as well”, and “agents are just a risky source of chaotic
system behavior.” As long as these autonomy-related objec-
tions are not proved to be without substance, computational
agency will hardly become a broadly accepted technology
– despite the fact there are a number of seminal applica-
tion domains which actually call for autonomous software
(e.g., telecommunications, e/m-commerce, mobile robots,
and supply chain management). Characteristic to these do-
mains is that they are too complex to be fully predictable
in all relevant aspects; as a consequence, software is needed
which is autonomous enough to continue its work even under
unforeseeable circumstances. Today it is common practice
in the field to keep autonomous behavior minimal in order
to avoid uncontrollable behavior, by applying rigid interac-
tion protocols, preset organization patterns, and so forth [9].
We think, however, that this practice is not satisfactory, as
it tends to make objects out of agents and to give up the
benefits of autonomy too rashly. Instead, for the reasons
mentioned above it is our feeling that the field needs to in-
vest much more effort on the engineering of computational
autonomy in order to ensure that agent orientation eventu-
ally becomes widely accepted. The approach described in
this paper is intended to contribute to this effort.

Acknowledgements. The work reported here has been
supported by Deutsche Forschungsgemeinschaft (DFG) un-
der contract Br609/11-2.

7. ADDITIONAL AUTHORS
Christian Meinl (Institut für Informatik, TUM, Boltz-

mannstraße 3, 85748 Garching, meinl@in.tum.de).

8. REFERENCES
[1] M. Barbuceanu, T. Gray, and S. Mankovski. The role

of obligations in multiagent coordination. Journal of
Applied Artificial Intelligence, 13(2/3):11–38, 1999.

[2] B.J. Biddle and E.J. Thomas, editors. Role theory:
Concepts and research. John Wiley & Sons, Inc., New
York, London, Sydney, 1966.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. XRole:
XML roles for agent interaction. In Proceedings of the
3rd International Symposium “From Agent Theories to
Agent Implementations (AT2AI-02), 2002. to appear.

[4] P. Ciancarini and M. Wooldridge, editors.
Agent-oriented software engineering. Proceedings of
the First International Workshop (AOSE-2000).
Lecture Notes in Computer Science, Vol. 1957.
Springer-Verlag, 2001.

[5] R. Conte, C. Castelfranchi, and F. Dignum.
Autonomous norm acceptance. In J.P. Müller, M.P.
Singh, and A. Rao, editors, Intelligent Agents V.
Proceedings of the Fifth International Workshop on
Agent Theories, Architectures, and Languages
(ATAL-98), Lecture Notes in Artificial Intelligence
Vol. 1555, pages 99–112. Springer-Verlag, 1999.

[6] R. Conte and C. Dellarocas, editors. Social order in
multiagent systems. International Book Series on
Multiagent Systems, Artificial Societies, and
Simulated Organizations. Kluwer Academic
Publishers, 2001.

[7] F. Dignum. Autonomous agents with norms. Artificial
Intelligence and Law, 7:69–79, 1999.

[8] F. Giunchiglia, J. Odell, and G. Weiß, editors.
Agent-oriented software engineering III. Proceedings of
the Second International Workshop (AOSE-2002).
Lecture Notes in Computer Science. Springer-Verlag,
2003. to appear.

[9] N.R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2):277–296, 2000.

[10] F. Lopez y Lopez, M. Luck, and M. d’Inverno.
Constraining autonomy through norms. In Proceedings
of the First International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’2002), 2002.

[11] E. Lupu and M. Sloman. Towards a role based
framework for distributed systems management.
Journal of Network and Systems Management,
5(1):5–30, 1997.

[12] D. Musliner and B. Pell (Cochairs). Agents with
adjustable autonomy. Papers from the AAAI spring
symposium. Technical Report SS-99-06, AAAI Press,
Menlo Park, CA, 1999.

[13] O. Pacheco and J. Carmo. A role based model for the
normative specification of organized collective agency
and agents interaction. Journal of Autonomous Agents
and Multi-Agent Systems, 2002. to appear.

[14] G. Weiß. Agent orientation in software engineering.
Knowledge Engineering Review, 16(4):349–373, 2002.

[15] M. Wooldridge, G. Weiß, and P. Ciancarini, editors.
Agent-oriented software engineering II. Proceedings of
the Second International Workshop (AOSE-2001).
Lecture Notes in Computer Science, Vol. 2222.
Springer-Verlag, 2002.

112

