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ABSTRACT
This paper introduces InFFrA, a novel method for the ana-
lysis and design of multiagent systems that is based on the
notions of interaction frames and framing. We lay out a con-
ceptual framework for viewing multiagent systems (MAS) as
societies consisting of socially intelligent agents that record
and organise their interaction experience so as to use it
strategically in future interactions. We also provide crite-
ria for the class of MAS InFFrA is suited for. The benefits
of our approach are that it helps to understand and develop
socially intelligent agents as well as to identify shortcom-
ings of existing MAS. The method is evaluated through the
analysis of an opponent classification heuristic that is used
to optimise strategic behaviour in multiagent games, and
interesting issues for future research are discussed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; D.2.1 [Software Engineer-
ing]: Requirements/Specification—Methodologies

General Terms
Design, Theory

Keywords
Social reasoning architectures, theories of agency and auton-
omy, sociologically grounded methods, social order, control
& norms, coordinating multiple agents & activities.

1. INTRODUCTION
Multiagent systems (MAS) research has long viewed so-

cieties of interacting agents as either relatively closed, well-
organised compounds consisting of subordinate entities that
work towards a common goal or as open systems populated
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by self-interested agents which maintain “arms-length rela-
tionships” with each other while pursuing their own (poten-
tially conflicting) goals.

In this paper, we suggest a novel outlook on this dichoto-
my that is located at the very borderline between cognitive
intra-agent reasoning and societal, supra-agent interaction
processes. Inspired by Erving Goffman’s micro-sociological
analyses of everyday interaction processes in human soci-
eties [5], we propose a socio-centric view of interaction pro-
cesses that is based on the notions of frames and framing.
Frames are units of knowledge that reflect the regularities
in interaction processes with respect to recurring patterns of
action among interacting actors. While they are not directly
subject to manipulation by individual actors (since their va-
lidity depends on others’ behaviour), the importance of cog-
nitive processing of such social knowledge comes in when
agents engage in framing, i.e. in the activity of acquiring
and adapting frame knowledge through interaction experi-
ence and strategically applying this knowledge in order to
achieve their own private goals.

Thus, instead of focusing on either the closed or open
view of MAS, we propose a view whose foremost aim is to
focus on the necessity for agents to cope with the constraints
interaction practices impose on their individual behaviour,
or, in other words, on societies of completely autonomous
yet socially bounded agents.

We have developed a model of computational interaction
frames [8] that is capable of adequately capturing the knowl-
edge that is necessary for agents to understand “what is go-
ing on” in their encounters with others, and a conceptual ar-
chitecture called InFFrA (Interaction Frames and Framing
Architecture) that re-formulates the concept of framing in
computational terms. Our hypothesis is that this architec-
ture is sufficient to model and analyse a very general class of
social reasoning algorithms, both at the cognitive and at the
social level. Its power lies in providing a clear and intuitive
conceptual framework (i) for decomposing social reasoning
algorithms in terms of a generic view of framing, and (ii)
for describing global MAS behaviour in terms of interleav-
ing framing processes. It thus provides a basis for analysing
and improving social reasoning methods, and also has the
potential for developing new kinds of socially intelligent au-
tonomous agents.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the class of MAS our approach is suited for.
Section 3 presents a computational model of frames, and
Section 4 introduces the framing agent architecture InFFrA.
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This is followed by an application of our method to an oppo-
nent classification system in the context of multiagent games
in Section 5. Section 6 rounds up with some conclusions and
an outlook on directions for further research on the subject.

2. FRAMING MULTIAGENT SYSTEMS
Before introducing computational interaction frames and

a framing architecture, we should first describe what kind
of agent-based social reasoning systems they are suited for.

Generally, we assume that MAS consist of self-interested
agents that can neither predict the behaviour of their part-
ners/adversaries, nor rely on their benevolence or on their
capabilities. This means that they are confronted with co-
actors whose behaviour is contingent, and the only way to
overcome this problem is by using communication. Thereby,
any action qualifies as communicative that (i) is explicitly
performed by an actor, (ii) is observable by at least two par-
ties and (iii) signifies or stands for other actions by virtue
of having been repeatedly followed by those other actions in
the past (actually, it stands for the expectation [1] that they
will be performed).

More specifically, we require that agents in the MAS we
examine reason about patterns of communication experien-
ced in social interaction and use them strategically when
pursuing their own goals. So the minimal cognitive-level
requirement for “framing” MAS is that they contain (at least
some) agents that can

1. record communication and identify patterns and regu-
larities within it,

2. relate the effects of communicative behaviour to one’s
private goals by assessing its consequences,

3. engage in goal-oriented communication with others by
exploiting behavioural regularities among agents.

We claim that InFFrA is capable of adequately modelling
this specific aspect – the socio-cognitive interface, so to speak
– of MAS that exhibit these features. The patterns and
regularities in communication are captured by the notion
of computational interaction frames, and strategic usage of
these frames is captured by the process of framing.

3. INTERACTION FRAMES
Frames [5] are a central concept in the micro-sociological

analyses of everyday life that Erving Goffman carried out;
they can be seen as the answer to the simple question “what
is going on here?” that each human poses to herself in
any interaction situation. That is, they provide “framing”
information about a particular class of interaction situations
that will allow the participant to act appropriately, i.e. in a
competent, routine fashion.

In a MAS context, we can view them as data structures
that contain sufficient knowledge to structure interaction for
the individual that employs them. In that, they describe
what is in-between rather than what is inside agents, as most
mentalistic approaches do. While offering this advantage of
being genuinely social, they are still linked to the mental
processes of the agent which is using them, and hence allow
for the modelling of rational, self-interested agents.

What kinds of information will such a data structure con-
sist of? If a frame is to feed the interaction with sufficient
information, it must exhibit the following properties:

1. Common knowledge: It must allegedly be shared know-
ledge among the interacting agents. When one agent
uses it, it must assume its peer(s) to have the same
information.

2. Relevance: The interaction knowledge captured by the
frame must be grounded in agents’ experience, it must
occur repeatedly, and it must affect the agents’ stand-
ing.

3. Generalisation: It must generalise from particular en-
actments of a class of interactions.

4. Instrumentalisation: The knowledge captured by it
must relate to the agent’s private goals and prefer-
ences, if the agent is to gain from using frame knowl-
edge.

Requirements 2 and 3 refer to qualitative aspects of the
knowledge a frame captures. They require that agents iden-
tify what matters to them through their experience of past
encounters, and that they be able to store those pieces of
information efficiently in expressive representations.

Requirements 1 and 4 can be realised by separating frame
knowledge into common and private attributes, the former
employed in reasoning “as if” interaction partners had the
same knowledge, the latter expressing the agent’s current
stance towards the frame in question.

3.1 Common attributes
In principle, it would be sufficient for a “framing” agent

to record sequences of experienced communication, and, in
fact, this approach has been taken1 in [1]. However, we ob-
serve that it is both counter-intuitive and inefficient for an
agent to store huge numbers of interaction instances, and
that there is a need for deriving more compact representa-
tions by generalising from particular instances.

The five attributes we have derived serve precisely this
purpose: roles and relationships parametrise interaction se-
quences with knowledge about the participating parties, con-
texts generalise over the state of affairs before, during, and
after an interaction is carried out, and beliefs generalise over
epistemic states of the involved actors. Together with the
core interaction trajectory (“what actually happens”), these
three attributes form an interaction frame. Repositories of
such frames are organised by relating frames to each other
by virtue of meta-frame links.

In the following paragraphs, these classes of common at-
tributes are described in more detail.

3.1.1 Trajectories
Trajectories are the core element of interaction frames,

as they describe what the frame is about. In essence, they
are temporally ordered communicative action sequences of
actors that relate to each other, as laid out in Section 2.
The most genuine kind of such trajectories are, of course,
messages in the context of communication protocols, but
also any other kind of communicative action in the sense
described above. We use generalised trajectory models with
variables for actors and for the parameters of actions that
occur in them (rather than overtly specific traces of interac-
tions), in order to cover a suitably wide range of situations.
1Though not from an agent perspective (there, it was used to
model the evolution of an entire MAS from the perspective
of an external observer).
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Figure 1: A trajectory model.

Instead of using a specific formalism for expressing such tra-
jectories at this point we have chosen to employ merely ab-
stract graphical models2 of protocol-like trajectories as the
one depicted in Figure 1: in it, three actors (actually roles)
R1, R2, R3 perceive each other’s actions and react upon
them. Arrows denote messages, shaded boxes observable
non-message (“physical”) actions.

3.1.2 Roles & Relationships
Like trajectories generalise from individual courses of ac-

tion, roles abstract from individuals by describing properties
of classes of actors. We suggest that a powerful concept of
role models as data structures should encompass three kinds
of attributes that define a role R:

1. Behavioural attributes: expected behaviour, skills/ca-
pabilities/access to resources;

2. Intentional attributes: beliefs, desires/preferences, in-
tentions; goals, tasks;

3. Social attributes (Relationships): dependencies/power
(on/over others), aggregation (groups/organisations)
and membership, representation (acting on behalf),
acquaintance (knowledge about others).

The graphical model we use here (cf. Figure 2) shows agent
roles as rounded nodes and group roles as hexagons with a
boundary box around members (possibly overlapping); these
are interlinked through relationship arcs (for various types
of relationships). The vertical line may be used as a status
scale, if a one-dimensional measure has been defined (e.g. by
computing the total of existing dependencies for each role).

3.1.3 Contexts
Having abstracted from actions and actors, there is also

a need to abstract from situations in which the interactions
occur, and this is achieved by using context models. These
consist of two parts:

1. Activation and deactivation conditions: these are rele-
vance conditions, i.e. conditions under which the frame
will be adopted or abandoned by the participating par-
ties.

2Since the adequacy of specific formalisms may very across
applications, this strategy is followed throughout the paper.

R2

R3

R4 R5

R1

G2

G1

st
at

u
s

Figure 2: Role and relationship model.
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Figure 3: Context model with embedded trajectory
that shows conditions Ci in shaded (relevance) and
white (enactment) boxes/arrows.

2. Pre-, post- and sustainment conditions: these are en-
actment conditions, conditions that have to hold before
the frame can be carried out, conditions that are al-
ways ensured after a frame has been completed, and
conditions that must hold throughout the enactment of
a frame.

As Figure 3 suggests, the scope of a trajectory is defined
by embedding it into a context model: Relevance conditions
define clear-cut relevance conditions for adoption and aban-
donment of the frame; enactment conditions supply informa-
tion about what is needed to carry out the frame properly
and about what the frame achieves.

3.1.4 Beliefs
According to our theoretical intuitions, the beliefs model

plays a subordinate role in a frame. Although it may contain
beliefs that are necessary to execute and interpret the frame
properly, e.g. causal or conceptual knowledge (as Figure 4
suggests), it can be neglected as long as the interaction itself
occurs as expected. However, if an actor is able to infer
certain beliefs that his peers have when enacting a particular
frame, or if it is able to associate certain beliefs of his own
with the frame in a useful way, beliefs may aid the frame-
wise organisation of experience.

3.1.5 Links and history.
Links that relate an entire frame to other frames by re-

lationships such as aggregation, inheritance (in the object-
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Figure 4: Two-part belief model with conceptual
and causal beliefs. Roles’ beliefs are depicted as
shaded sub-areas of the networks.
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Figure 5: Integrated frame data structure.

oriented sense) and also by semantic relations (such as “F
is an alternative to G”, “F is a variant of G by sharing the
same set of roles” etc.), and histories, that relate a frame
to previous or subsequent frames by recording the modifica-
tions performed when deriving new frames (“F was derived
from G by adding precondition C to its context model”) are
both captured by building up frame repositories. These are
databases that comprise various frames in the form shown in
Figure 5 linked to each other which are used by the agent (as
information that is local to its mental processes) to manage
the framing process described in Section 4.

3.2 Private attributes
If frames are to aid in the process of exploiting interac-

tion experience, common attributes that represent shared
interaction knowledge must be supplemented with local in-
formation about the individual experiences and evaluations
of the agent using them. This is the purpose of private at-
tributes, which basically contain status slots for each of the

common attributes (role assignment status, trajectory sta-
tus, activation status and belief status). All of these contain
mappings for all facts in the respective common attribute
and assessments concerning the private evaluations of the
current state of affairs. To keep things simple, we will not
extend the notation of Figure 5, since status data can be
simply added to the four slots already introduced.

As for the concrete processes by which the resulting values
of private attributes are determined, they are the result of
the framing process in InFFrA that is described in more detail
in the next section.

4. FRAMING AGENT ARCHITECTURE
Designing a social reasoning architecture based on the no-

tion of framing means both describing how frames are con-
structed by an agent and how they are used in interactions.
Framing is a very complex activity that involves (1) tracking
the enactment of activated frames, (2) choosing whether to
retain the current frame or to change frame when appropri-
ate, (3) modifying frame knowledge with experience and (4)
relating these three activities to one’s private goals in order
to make them part of individually rational decision-making.

The full architecture is shown in detail in Figure 6. To
describe its features, we first introduce the data structures it
employs and then the top-level processing steps that operate
on these data structures3.

The data structures that are used to perform these steps
are the following:

- the active frame (the unique frame currently activa-
ted),

- the perceived frame (a frame-wise interpretation of the
currently observed state of affairs),

- the difference model (containing the differences bet-
ween perceived frame and active frame),

- the trial frame (the current hypothesis when alterna-
tives to the current frame are sought for),

- and the frame repository, a (suitably organised) frame
database used as a hypothesis space.

The top-level view of the framing process can be described
by the following steps that an agent has to perform in each
reasoning cycle:

1. Situation interpretation: The situation interpreta-
tion module obtains the perceived frame and incoming per-
cepts as inputs. It outputs a frame that is used as a descrip-
tive model of the current situation for matching purposes.
Its task is to record ongoing interaction in terms of inter-
action frames, i.e. to distinguish between the trajectory it-
self, actor attributes that determine roles and relationships,
context-relevant percepts and the beliefs of parties involved.

2. Matching: During frame matching, the current in-
teraction situation as represented by the perceived frame (a
descriptive model of interaction “as is”) is compared with
the active frame4 (a normative picture of what the interac-
tion “should be like”). The difference model is generated as

3Due to space limitations, we are not able to present details
for each component of the architecture here. We refer the
interested reader to [8].
4In the process of re-framing, the perceived frame is com-
pared with trial frames that are “mock-activated”.
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Figure 6: Detailed view of the framing-based agent architecture. The main line of reasoning between percep-
tion and action (shown as a shaded arrow) captures both the sub-processes involved and the temporal order
in which they occur.

a result of this process, which contains lists of observations
that conform with the active frame and of percepts that
deviate from the expected course of action.

3. Assessment: The frame assessment module evaluates
data obtained from the difference model with respect to
three measures: frame adequacy, frame validity and frame
desirability.

Adequacy reflects the degree to which the context model
is satisfied by the current situation, which serves two pur-
poses: (i) failure to meet context preconditions and sus-
tainment conditions jeopardises correct execution of the ac-
tions prescribed by the frame and (ii) occurrence of activa-
tion/deactivation conditions implies adoption/abandonment
of the frame.

Validity expresses the degree to which the interaction pro-
cess matches the trajectory data. Mainly, it is used to infer
whether the interacting parties meet the expectations in-
duced by the frame, i.e. whether they are “doing the right
thing”. The result of assessing frame validity should be a
detailed description of who fails to comply with which expec-
tation for what reason. Obviously, if this description proves
the active frame to be a false interpretation of what is going
on, re-framing must be attempted.

Desirability, finally, reflects the use of the current frame
with respect to the agent’s private goals. Postconditions in
the context of the frame as well as states of affairs that occur
during the enactment of the trajectory must be desirable for
the agent – otherwise, it should find a better alternative5.

4. Framing decision: If the current frame seems ap-

5This is not to say that only desirable frames will be acti-
vated by the agent. Of course, circumstances may require
the opposite, e.g. due to long-term commitments, reciprocal
relationships, access to resources, etc. Suggesting a view of
self-interested rational agents should not insinuate that the
agent’s rationality is not socially bounded in practice.

propriate according to the results of frame assessment, the
process continues with step 6 (comply), else with step 5 (de-
viate). In the case of deviate, the reasons for the re-framing
decision are output to the adjustment model to better guide
the search for a new frame.

5. Adjustment/Re-Framing: Frame adjustment occurs
when the agent has decided to cancel activation of the cur-
rent frame. The adjustment module suggests trial frames
using (1) the reasons for re-framing, (2) the frame repository
data and (3) operators that allow for switching to, modifying
and creating new frames. These trial frames are then used
as “mock instances” of the active frame, and the framing
process continues with step 2.

6. Enactment: The frame enactment module generates
commitments for the agent that result from the employed
frame. It outputs directives to the behaviour generation
module which inform the agent about social obligations, per-
missions and prohibitions that it should respect.

7. Behaviour generation: Current social constraints are
obtained from the frame enactment module and influence the
action choices of the agent. Usually, action choices made by
the agent at a sub-social level are simply overruled by these
social-level decisions. However, alternatives to this strict
overriding of local reasoning can be conceived of, and so we
include this module to cater for richer models of combining
individual with social choices.

The intuition behind this framing procedure is a very sim-
ple one: as long as the activated frame seems appropriate, it
is maintained and influences the behaviour generating (sub-
social) processes that the agent employs. If it fails to match
the needs of the situation or those of the agent, alternatives
are sought for, and if none exist, frames are adapted un-
til promising alternatives are found. These are iteratively
instantiated as “mock frames” and tested against current
conditions. If a suitable alternative has been found, it is
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activated, otherwise, we try again.
This logic is very similar to that used in case-based reason-

ing methods [6], InFFrAmight in fact be called a case-based
interaction learning method for knowledge-based delibera-
tive agents.

With respect to our outlook on autonomy, one last thing
to note is that, once activated, a frame does limit individ-
ual agent rationality and deliberation, but only if the agent
wishes to submit herself to it.

In the following evaluation, we exemplify how this archi-
tecture provides useful guidance for identifying relevant is-
sues in the process of analysing and developing framing mul-
tiagent systems. This evaluation will also explain how con-
crete implementations can further elaborate certain aspects
such as the prevention of infinite trial instantiation (loops
between steps 2 and 5), the combination of adequacy, valid-
ity and desirability measures, and goal-oriented generation
of new frames in the process of re-framing.

5. EVALUATION

5.1 Application: Strategic Opponent Classifi-
cation in Multiagent Games

In order to evaluate the adequacy of our framework, we
apply it to the prototype of an opponent classification sys-
tem for iterated multiagent games that has been recently
developed in our research group [9]. In this system, agents
moving on a toroidal grid play a fixed number of Iterated
Prisoner’s Dilemma [4, 7] games whenever they happen to
be in the same caret with some other agent (when more
than two agents meet, every player plays against every other
player). The goal of the system is to extend the model-based
learning method US-L* proposed by Carmel and Markovitch
[3, 2] (that is based on learning opponent behaviour in terms
of a deterministic finite automata (DFA)) by classification
capabilities, so that in large-scale MAS agents need not build
a model of every opponent but only of the different classes
of opponent behaviour that exist.

For lack of space, it is not possible to lay out the details
of the opponent classification MAS here (they can be found
in [9]). To give an idea of the most important aspects of the
method, however, we should mention that each agent main-
tains a (variably-sized, bounded) set of opponent classes

C = {ci = 〈Ai, Qi, Si〉|i = 1, . . . k}
where each class consists of (i) a DFA Ai that models the
behaviour of opponents in ci, (ii) a Q-table [10] Qi to learn
optimal strategies against Ai (the state space of the Q-
table is the state space of Ai, entries are updated using
game rewards); (iii) a set of samples (recent fixed-length se-
quences of game moves of both players) Si with which Ai

is trained (these are collected whenever the modelling agent
plays against class ci). Further, a similarity measure σ :
Agents ×C → [0; 1] between adversaries and classes is main-
tained, as well as a membership function m : Agents → C
that describes which opponent pertains to which class.

After a sequence e of games has been played with oppo-
nent a during an “encounter”, the modelling agent updates
the sample set Si for ci = m(a) (m(a) is initially undefined
(⊥)) and adapts Ai if it fails to predict e correctly. Also,
the values in Qi are updated with payoffs received during
e, so that an optimal strategy is learned over time. Then,

Algorithm 1 Top-level algorithm

1: inputs: Adversary a, Encounter e, Integer k
2: outputs: Set C, Membership function m
3: begin

4: ∀c ∈ C.σ(a, c)← correct(a,c)
all(a)

5: if m(a) = ⊥ then
6: m(a)← BestClass(a,e, C, k, 1)
7: else
8: if m(a) doesn’t predict e correctly then
9: if S(a, m(a)) ≤ δ ∨m(a) is very stable then
10: m(a) ← BestClass(a, e, C, k, ρ1)
11: end if
12: c′ ← BestClass(a, e, C, k, ρ2)
13: if c′ ∈ C ∧ c′ is very stable then
14: m(a) ← c′
15: end if
16: Om-Learn(m(a), e)
17: if m(a) has been modified then
18: ∀m(a′) 	= m(a).σ(a′ , m(a)) ← 0
19: end if
20: C ← C − {c|∀a′.m(a′) 	= c}
21: end if
22: end if

the top-level classification procedure is called as outlined in
Algorithm 1.

The algorithm strongly relies on the definition of a func-
tion BestClass(a, e, C, k, ρ) which retrieves the most appro-
priate class for opponent a given the current encounter e.
The function attempts to find a class in C that matches e
with at least similarity ρ. If no such class can be found, a
new class is created, unless |C| = k, i.e. the upper bound on
the number of admissible opponent classes has been reached.
If |C| = k, the constraint on ρ is dropped and the most sim-
ilar class is returned.

The top-level algorithm begins with an update of all σ-
values with respect to a in line 4 (similarities are always
computed as the ratio between encounters with a correctly
predicted by c correct(a, c) and the total number of encoun-
ters with a all(a)); then, if a is an unknown agent (5–7), it is
classified to any c that correctly predicts e (this is achieved
by applying ρ = 1). In the counter-case (lines 8–20), nothing
is done unless m(a) has been modified because of e, i.e. if it
has correctly predicted e. If σ(a,m(a)) falls below similarity
threshold δ, or if m(a) has been stable for a long time, a is
re-classified to the maximally similar class, which has to be
at least as similar as ρ1 (lines 9–11). If no such class ex-
ists, the same strategy is followed as in line 6 (a new class is
created if possible, else the most suitable class is selected).

If, on the other hand, similarity is larger than δ and the
automaton is not highly stable, we still re-classify a, but
only to highly similar (ρ2 
 ρ1), highly stable classes, so
that similar classes are merged in the long run (lines 12–
15). The opponent model learning function Om-Learn is
then called in line 16 to generate a model that is consistent
with the new experience e.

Finally, if e caused modifications to m(a), the σ-values for
all agents not in m(a) are reset to 0 (line 18) since nothing
can be said about their similarity with m(a), if the model
for m(a) has just changed; also, empty classes are erased
from C (line 20).

As concerns action choices during encounters, the Q-table
belonging to m(a) is used (with additional Boltzmann ex-
ploration) if a has been classified before; if a is encountered
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for the first time, the most similar class is determined using
σ-values after each move, and the move the Q-table of that
class suggests is played.

Despite its simplicity, this classification heuristic is quite
effective: when playing against n fixed strategies, it con-
verges to n classes that can play optimally against arbitrary
numbers of adversaries as long as these play one of the n
strategies. If all agents use the above strategy, on the other
hand, no discernible global behaviour emerges, agents make
random action choices. Only if additional assumptions are
made (e.g. if agents play TIT FOR TAT for a while them-
selves whenever the other exhibits random behaviour) can
cooperation be established (these results are presented in
more detail in [9]).

5.2 InFFrA-based Analysis
The above description has made clear how the algorithm

works at a technical level. What is not clear, however, is
its socio-cognitive dimension, an understanding of which is
crucial for multiagent system analysis and design. What is
therefore needed is a uniform framework in which this al-
gorithm can be embedded and which clarifies the cognitive
and social processes occurring within and between individ-
ual agents, as provided by InFFrA. In the following, we de-
scribe how the opponent classification MAS can be analysed
and characterised in terms of InFFrA terminology.

The MAS just described clearly belongs to the class of
systems suggested in Section 2, since agents in it record,
organise and exploit regularities in interaction processes in
a socially intelligent way.

Interaction Frames. The opponent classes created by
the algorithm are interaction frames with a trajectory model
(the automaton, a causal model of reaction to one’s own
actions) defined in terms of two roles whose relationship is
one of mutual interdependence: one role is always fixed – the
modelling agent itself; the other role is described by keep-
ing track of all opponents who match it (this is done by the
m-function). The context model is largely trivial: activa-
tion and de-activation conditions are simply “being in the
same caret with an opponent” and “having finished l IPD
games”, pre- and sustainment conditions are empty. How-
ever, post-conditions in terms of reward expectations are
represented by the Q-table. As for beliefs, these are implicit
to the architecture: both agents know their action choices
(capabilities), both know the game has a fixed length, both
know that the other’s choices matter. Links exist implicitly
between all frames since they are all exclusive alternatives
to each other: they share role sets, belief models and con-
text (apart from post-conditions) and are tailored for the
same kind of interaction (since there occurs only one type of
interactions); in fact, the frames can only be distinguished
by DFA-, Q-table-, Si- and σ-data.

As for private attributes, these are of course the actual
entries in the Q-table (own payoffs cannot be perceived by
opponents) and the samples in Si-sets that reflect the past
experiences with that frame (histories). Also, a role assign-
ment takes place whenever encountering an agent by using
Ai to predict its behaviour, and state changes in the DFA
track trajectory status during play. Tracking context is triv-
ial except for the Q-update, but the update of the σ-function
(line 4 in Algorithm 1) as well as re-setting their values in
case of DFA modification (line 18) track framing experience
across frames, and they actually manipulate all frames’ pri-

vate attributes simultaneously. More particularly, the dif-
ference model that is represented by σ-values is constantly
computed for all frames with respect to the current interac-
tion situation (cf. below).

These frames are certainly based on common knowledge
(as far as common attributes are concerned) and they are
grounded in experience; also, the DFA models generalise
from individual actors and actions by re-constructing mental
states of opponents, and together with Q-learning they are
instrumentalised by the modelling agent to optimise payoff
performance. Thus, their use covers the criteria listed in
Section 3.

Framing. To illustrate how the opponent classification
MAS can be viewed in terms of a framing agent architecture,
we re-trace the top-level processing steps described in Sec-
tion 4 and identify the respective algorithmic components in
the opponent classification MAS. At the same time, we use
InFFrA to identify weaknesses and advantages of the MAS
to underline its usefulness for improving existing systems.

We need to distinguish between (i) the case in which the
current opponent a has been encountered before and (ii) the
case in which we are confronted with an unknown adversary.

Case (i): The matching process occurs at the start of
every encounter; m(a) is chosen (blindly) as the most ap-
propriate frame from the repository and is activated.

This choice is then never altered during the encounter and
this is a first disadvantage of the system, because no frame
assessment and adjustment occurs during encounters, thus
limiting the adaptability of the modelling agents severely
within the current interaction.

The situation interpretation module records the current
sequence of moves (the perceived frame), stores it in Sm(a)

and updates the entries in the Q-table according to recent
payoffs. The frame matching module updates similarity val-
ues (line 4 in Algorithm 1) for all frames with respect to
a. Compared to the InFFrA-intuition, this is a much more
complex matching activity, since it compares the difference
model with all classes, so that the lack of framing assess-
ment is partly made up for by adding complexity at the
frame matching stage.

As mentioned, frame assessment and re-framing occur
only after the encounter: frame validity is assessed accord-
ing to whether the current sequence of opponent moves is
understood by the DFA in m(a) or not. Here, we observe
a second drawback of the prototype: adequacy and desir-
ability assessment is clearly under-developed, since neither
consistency of Q-values nor the usefulness (e.g. expected fu-
ture payoff with that class) of frames is taken into account.
For example, the classification heuristic would not be able
to cope with types of opponents whose actions have different
utility outcomes for the modelling agent. If, e.g., own payoff
matrix entries differed across opponents, those opponents
would still end up being classified identically if they per-
form identical actions. Also, since the agent has no choices
regarding partner selection, it does not make sense to weigh
the desirability of entire Q-tables against each other.

As a consequence, the framing decision also has only ef-
fects on future encounters with the same agent. It depends
on the simple criterion of whether the DFA of c has just
been modified or not. If so, the frame adjustment module
comes into play: it potentially re-classifies a, creates a new
class for it and resets similarity values for non-members of
c; at the same time, it seeks to retain highly stable classes
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and to merge similar classes in the long run.
This is undoubtedly the most elaborate component in the

opponent classification MAS, and it nicely illustrates the
possibilities of a long-term organisation of interaction expe-
rience, especially because, in a boundedly rational manner,
it tries to distinguish between frames only where necessary.
Trial instantiation, on the other hand, is very simple: it can
be trivially reduced to using the maximally (and highly)
similar candidate frame as the new value for m(a), because
similarities between a and all classes are constantly tracked.

Frame enactment is performed by tracking opponents’ ac-
tions in the current DFA and by selecting the next move
according to the Q-table. Then, since there are no other
reasoning levels to compete with, behaviour generation is
straightforward.

In this enactment stage, a third shortcoming can be iden-
tified that probably explains the lack of structure in interac-
tion among modelling agents described at the end of Section
5.1, namely the fact that the frames impose no restrictions
on the action selection mode of the modelling agent itself
– in fact, the trajectory represented by the DFA prescribes
only the actions of the opponent, and the modelling agent
is merely optimising its behaviour towards the opponent.
Therefore, since no agent feels it should comply with some
more specific pattern of behaviour, no recurring efficient in-
teraction patterns can occur.

Case (ii): In the case of unknown opponents, frame as-
sessment and re-framing is implemented as in the previous
case. The differences lie in matching and in making framing
decisions, which occurs after each round of the encounter
(and not only after the entire encounter), since after each
round, the modelling agent activates the most similar class
with respect to the current sequence of moves and uses this
class for enactment decisions (according to the respective
Q-table).

Again, this illustrates the implementation of the bounded
rationality principle: the framing effort is in this case much
greater (and adheres much more to InFFrA requirements),
given that interactions with unknown agents are much riskier
than those with known adversaries. This suggests that an
extension of the opponent classification heuristic that also
allows for re-framing during encounters in case (i) might in-
crease agent performance, yet at a greater computational
cost.

This evaluation provides evidence for the practical use of
InFFrA as a conceptual framework that supports the analysis
of existing MAS by decomposing social reasoning algorithms
into functional components that have to fulfil certain re-
quirements. Starting from these requirements, we can then
identify advantages and shortcomings of the analysed sys-
tems and suggest improvements. In that, InFFrA itself is
designed to match the needs of a particular class of MAS
which we find under-represented in current MAS research,
namely systems consisting of agents whose social intelligence
is based on the ability to record, organise and exploit regu-
larities observed in social interaction processes.

6. CONCLUSIONS
This paper has presented the InFFrA method for view-

ing multiagent systems as societies of agents that engage in
framing, i.e. in recording, organising and strategically em-
ploying regularities in micro-social interactions. We have
based this method on a conceptual social reasoning archi-

tecture that is built upon the notion of interaction frames,
i.e. units of interaction knowledge that can be used to struc-
ture the social world for the reasoning agent, as proposed
by the sociological theory of Erving Goffman [5].

The benefits of our approach have been illustrated using a
prototypical strategic opponent classification MAS for learn-
ing in games. Apart from showing how an agent architecture
can be modelled and analysed in terms of the InFFrA termi-
nology and intuitions, we have given examples for potential
improvements of this existing MAS based on the principled,
socio-centric view InFFrA proposes.

Future challenges include (i) exploring the usage of frames
in richer scenarios, particularly with a focus on the prag-
matics of communication, (ii) developing formal represen-
tations for the concepts introduced here, (iii) investigating
the co-evolution of subjective frame models, the emergence
of stable, intra-subjectively valid frames and (iv) develop-
ing concrete architectures in order to achieve efficient, flexi-
ble coordination among self-interested but socially conscious
agents.

We believe that in current MAS research, the analysis of
the mutual dependence between cognitive agent processing
of interaction experience and the evolution of social regular-
ities (which lead to phenomena such as (self-)organisation,
the evolution of norms and institutions, group formation
etc.) is still at its beginning. Using InFFrA as a tool for
analysing and modelling precisely this relationship certainly
leads to a better understanding of the problems associated
with it.
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