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Abstract. There are two major approaches to activity coordination The work described in this paper aims at integrating joiahping
in multiagent systems. First, by endowing the agents wighddipa-  and joint learning within a single algorithm that brings etiger the
bility to jointly plan, that is, to jointly generate hypottigal activity advantages of both approaches while avoiding their disddges.
sequences. Second, by endowing the agents with the capabili The basic idea behind this work is that the agéitintly learn the
jointly learn, that is, to jointly choose the actions to be@xted on  information they need to know in order to evaluate the hygitital
the basis of what they know from experience about the inpade  activity paths generated during planning iyl jointly plan in or-
dencies of their actions. This paper describes a new ahgoglled  der to reduce the number of uninformed and thus inefficiearniag
JPJL (“Joint Planning and Joint Learning”) that combinethkap-  trials. The paper is structured as follows. Section 2 dbssra new
proaches. The primary motivation behind this algorithmoidting algorithm called JPJL (“Joint Planning and Joint Learn)rig in-
together the advantages of joint planning and joint learmirhile tegrated joint planning and joint learning. Section 3 pnésénitial
avoiding their disadvantages. Experimental results aveiged that  experimental results that indicate the performance feataf this al-
illustrate the potential benefits and shortcomings of thiL. Jdgo-  gorithm. Finally, Section 4 briefly summarizes the papeovijutes
rithm. pointers to related work, and critically discusses linitas of the
JPJL algorithm.

1 Motivation )
2 The JPJL Algorithm
Multiagent Systems (MAS)—systems in which several inténagc
intelligent and autonomous entities called agents pursmeset of
goals or perform some set of tasks—have received steadily-gr
ing interest in both research and application in the pastsygag.,
[4, 14, 28]). A key issue to be addressed when dealing with N\AS
that of activity coordination: How can several agents, ezagable
of executing specific actions, decide together what agtséguence
they should carry out in order to accomplish a common task® On
possible answer is that the agents should jointly genesatetheti-
cal activity sequences and do some kind of lookahead in docde-
termine the most promising actions, that is, they shouldtfpiplan.
A potential advantage of this approach is that the prolimtofi car-
rying out unsucessful and perhaps expensive or irreversittivity
sequences is kept low. An inherent difficulty with this agmio is,
however, that it is limited by the agents’ knowledge abowt nele-
vant their individual actions are for goal attainment ifeliént states
and how to determine which of several possible next statesit
appropriate for reaching the goal state. Another possibtsvar is
that the agents should jointly choose the actions to be éseéan
the basis of what they already know from experience abotintbe
dependencies among and effects of their actions, thatag,should
jointly learn. What makes this approach appealing is thatttents
themselves find out which paths of activity are likely to becass-
ful and which are not, and that the amount of a priori knowkedg
with which the agents have to be equipped by the system d&sign
kept low. An inherent difficulty with this approach is, hoveeythat
the required number of learning trials tend to grow rapidithwhe
number of possible actions.

The basic working cycle of the JPJL algorithm is concepyudé-
scribed in the Figure 1. As the figure shows, the overall agtie-
sults from the repeated execution of three major activitiesnely,
planning, action selection, and learning. During plannthg agents
jointly search through the space of possible future enviremtal
states. During action selection, the agents jointly deoiu¢he next
action to be carried out based on their planning resulterAfaving
chosen and executed the selected action, the agents jteEatly by
updating the estimated usefulness (goal relevance) af dlogions.
Below the three activities are described in detail. The dgson uses
the following simple notation and is based on the followitengen-
tary assumptions. There is a finite set of agehiseach capable of
carrying out some actions;. Ag refers to the set of all agents, and
Ac; refers to the set of actions that can be carried outdbyThe
environment in which the agents act can be described as ardeat
based state space, where the set of environmental feahatesan
be sensed (i.e., identified as being either true or falsehéwygents
is denoted byF = {f,g,...}. F* C F (for k € N) denotes a
real or hypothetical environmental state, i.e., the sehofrenmen-
tal features that are known to be true (in the case of a retd)sta
or assumed to be true by the agents (in the case of a hypathetic
state). Following the traditional STRIPS approach [5], gerda A;
associates three lists with each of its actiapsa set7;"" C F of
preconditions that contains the environmental featurasrked to
be fulfilled before this action can be carried out (“prectiodi set”);
asetFj*’ C F of environmental features that become false through
the execution of this action (“delete set”); and aBét? C F of en-
vironmental features that become true by executing thism¢tadd
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1. Initialization:

e States = {current real stafe

2. Planning:

e APD = APD + 1
3. Action Selection:

4. Learning:

effects of action execution
5. Goto 1

e Actual_Planning_Depth APD =0

until APD = Maximal_Planning_Depth do

o for eachF € States with F # goal state do

— the agents determine their applicable actions and theggneling hypothetical
successor states that would result from applying theseracti

— States = States U {hypothetical successor stajes{F}
— the agents jointly estimate the usefulness of these actions

o the agents determine the overall usefulness of the actiqpresees generated during
planning based on the individual actions’ estimated usefig

o the agents select the most promising sequence with highalsalpility
o the first action of the selected sequence is carried out

the agents update the estimated usefulness of their attamesl on the observable

Figure 1. Conceptual description of the basic working cycle of theLJ®dorithm. Each of the three basic activities—planningjan selection, and
learning—is jointly realized by the involved agents.

thetical) environmental state. This implies that in anyegienviron-

mental state an agen; at least knows which of the featurgsn the

setFreere =, e, Fi'° are true. Finally, it is assumed that an
jEAc;

agent maintains for each of its actioms a set;"“* that contains
the environmental featurgs € F;"*" that were true at execution
time (FI"* C F; " for all a;).

Planning. The basic idea behind the JPJL algorithm is that an agent
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a; € Ac;. These estimates are adjusted by the agents (as described Figure 2. Illustration of the hypothetical search space of the JPJL

below) such that they indicate what features should be taieré
certain actions are executed. An agdntinterprets an estimaf¢];
as follows: the higher (lower) it is, the more (less) liketyis that
a; should be only executed jf (and perhaps other features) is true.

The values[f] thus indicate under what environmental conditions

the actions should be carried out. This approach reflectdifiar-
ent features can be of different relevance for differentoast no
matter what agents could carry out these actions.ZEebe a real
or hypothetical state that is currently considered by thentg(i.e.,
F* € States as denoted in the Figure 1)Each agent announces the
actions it could carry out to the other agents (assumingakbtzard
communication structure). After the potential actionsareounced,
each agent checks the influence of the announced actionsits.r.
own actions and informs the announcing agents. More spaktyfic
assume thatl; announced:; together with the corresponding lists
F4* and F°! (which allows for determining the potential succes-
sor state). Then each, calculates the usefulnegg of this action
w.r.t. eacha; € Ac;, as follows:
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2 The order in which the agents consider the staté&irtes may be arbitrary
(as in the current version of the JPJL algorithm), adaptiv@redefined by
the system designer.

algorithm (planning depth = 2).

UJ’i is called A;’s evaluation function w.r.ta; anda;. After having
calculated the usefulness valuek, informs A; about these values.
A;, in turn, adds all usefulness values about which it was méat
by other agents, resulting in an estimated overall use$sitie of a;

in stateF*:

def
U; (F) < max{ 0,
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wherer is the number of agents that respondeddtoandi ranges
over these agent&/; can be interpreted as a joint evaluation func-
tion that is represented and calculated in a distributedhyegeveral
agents. The result of starting with the current real stae {hitial-
ization” in Figure 1) and expanding this state up to a cefpénning
depth can be viewed as a jointly generated tree of potenitard
states in which the arcs represent potential actions tegetith their
estimated overall usefulness. The Figure 2 illustratesittterpreta-
tion.

Action Selection.Let F° denote the current real state, and assume
that

def

(F°,5)
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Figure 3. lllustration of the JPJL update rule.
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is one of the jointly generated planning paths (i.e., oné fiam
the root to a leaf in the search tree), wheyg is an agent’s potential
action that transfer&*~* into the successor stafe®, U;, (F* ') is
the estimated overall usefulnessagf applied in state*~*, andm
is the maximal planning depth. Then the estimated usefsloEthis
path is defined as the sum of the usefulness values of thedndiv
actions along this path:

m
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Among all potential paths, pat{iF°, j) is selected with the proba-
bility
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e\k
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wherek ranges over all potential paths generated during planning;

This means that a path’s probability of being selected amsee with
its estimated usefulness. Once a p&#?f, j) is selected, the first
action (i.e.a;,) of this path is executed.

Learning. Learning is realized by jointly adjusting the action-
specific estimates of the environmental features. The adarg is
done in a distributed manner by the agents that carried dignac
More specifically, assume tha} proposed by4; has been selected
for execution in the real statE’. The A; updates its estimatég);
forall f € ;" as follows:

(i =1fli +a- (B-U;(F") ~[fl; + R) . (5)

wherea andj are constants called learning rates &is the actual
external reward that!; received after the execution af. (In the
case of delayed reward®, may be equal to zero.) This update rule,
which is in the spirit of Q-learning [24, 25] and temporalfdience
learning [23], aims at increasing (decreasiaf)s chance to carry
outa; in the future, if the usefulness of this action is jointlyiesited
as being high (low) and/or if this action results (does nsul® in
an external reward. The Figure 3 illustrates the update Ndge
that increasing the usefulness of the features that weeedtruhe
time of executinge; (including the preconditions af;) increases
the execution probability of the actions that made theswifea true;
this in turn increases the execution probability:f

3 This selection process could be iterated such that not amdybmit several
(compatible) actions are selected for execution withincilneent cycle.

3 Experimental Results

For the purpose of a careful experimental analysis we usedliess
of synthetic scenarios that capture the characteristicauwfiagent
learning and planning and allow to efficiently obtain indica re-
sults. This section presents the results for the scenaniosnsrized
in the Tables 1 and 21In the case of scenario 1 the environment con-
sists of 20 features. The task to be solved by the agentsrirtsform
an environmental start state into a goal state. There areafgents
capable of carrying out different actions. Agent 1 can caut/just
one action, agents 2 and 3 can each carry out two actions,gamd a
4 can carry out three actions. What makes the task addityooain-
plicated is that an agent can execute each of its actionsverae
contexts, differing in their precondition lists as well agit effects
(i.e., their add and delete lists). In particular, exeautim action un-
der different preconditions results in different effedtsr instance,
consider action 2 of agent 2. The execution of this actioragwe-
quires that the featuref, and f»¢ are true; additionally, one of the
featuresfs (context 1),f; (context 2), orfy (context 3) has to be true.
Through the execution of this action the featyfgealways becomes
true and the featurg, always becomes false. Additionally,fi§ (f7,
fo) is true at the time of execution, theg (f15, —) becomes true and
fs (f7, fo) becomes false. Things are analogously in the scenario 2.

Feature Sef {fi,--., fe0}
Start State {f1, f5, fo, f13, 15, f19}
Goal State {f1,f5. fs; fis, fio}
Agent | Action Context 1 Context 2 Context 3
pre fi:fs J2, f5 f3: f5
1 1 del fi fo f3
add fa, f10 fa, f15 fa, f20
pre | f2. f5, f20 I3: f5, f20 Ja, f5, f20
1| del f2; fro Ia; fio fa, fro
2 add fi,fs f1, f20 fi
pre | fs, fi0, f20 Jz, Fio, F20 Jo, fio, 20
2 | del Jes f20 J7s f20 Jas f0
add f5, fs fs, f15 fs
pre | fs, fi7, f20 f5, fis, f20 f5, f19; f20
1| del I f17 I5 f1s I5, f19
3 add f10, f16 f15, f16 f16
pre | fis, fie, 20 | fis, 17,20 | Jis,.f19, f20
2 | del f15, f16 fis, f17 f15, f19
add f5; f1s f1o0, f18 fi8
pre | fi1, fis, feo | fi2, f15, fe0 | fi4, f15, f20
1| del f11, f20 f12, f20 f14, f20
add f55 f13 J10, f13 f13
pre Ji1, fis fi2, fis Jis, fis
4 2 | del 11 12 13
add f5, f14 f10, f1a f1a, fa0
pre | fs, f7, fio J5, I8, fio fs, fa, f10
3| del I f7 f5, fs Is; fo
add fe, f15 fe, f20 fe
Table 1. Specification of scenario 1. Top: range of features, start

and goal state. Bottom: agents and their context-specifiicrac

The Figures 4 and 5 show the performance profiles for the scena
ios 1 and 2, respectively, for the planning depths 1 (curJL1"),
2 (*JPJL2"), and 3 (“JPJL3"). For all shown results the expental
setting was as followse = 0.2, 8 = 0.9, and R = 1000 iff the
goal state was reached. The initial values of the estin{#iesere
all zero (which means that the initial behavior is randomgatning
proceeds by the repeated execution of trials, where a $ridéfined
as any sequence of at most 10 basic working cycles that tnansf

4 The results we obtained for other scenarios (differing @riamber of en-
vironmental features, the number of agents, and the nunilaetions) are
qualitatively identical to those presented here.



Feature Sef {fi,[2,--..fa0}
Start State {f5, 7, 14, J18, f23, f28, fao0}
Goal State {f1, fs, fis, fo2, foa, foo}
Agent | _Action Context 1 Context 2 Coniext 3 Context 4
pre J2, Je, 12 T3, fe, J12 Ja, Jo, J12 J5, Fe, J12
1| del 2, f12 3, f12 4, f12 5, f12
add f1. f1s f1, foa f1. f30 f1
pre Ji, s J2, T FENE Ja, Je
1 2 del 1 P) 3 f4
add f5, f12 fs, f1s f5, f2a f5, f30
pre J7. Jiz2, Jis Jo, J12, J18 Jio, iz, Jis | Jii, Ji2, fis
3 | del 7, f18 9, f18 f10, f1s fi1, f1s
add 6, fs s, foa fs, fao s
pre [ f7, fi2, faa fs, 12, foa Fro, fi2, fea | Ji1, fi2, foa
2 1| del 7, foa s, f2a 10, foa 11, foa
add f6, fo fo, f1s fo, f3o fo
pre | fis, fis, faa | Jia, fis, foa | Fie, J1s, fea | Ji7, fis, Joa
1| del f13, f2a f14, foa f16, foa f17, foa
add fs, f15 f12, f15 f15, f30 fi5
pre Sz, fis JFra, Jis Jis, s Jre, Jis
2 | del 13 fia 15 fie
add fo, f17 fi2, fi7 f17, foa fi7, fs0
pre | Jfis, fio, f2a Ji8, F20, Joa | Jis, Jo2, Joa | Jis, J23, Joa
3 3 | del 18, f19 18, f20 18, fo2 18, f23
add 6, J21 12, J21 21, f30 21
pre | fio, foa, F30 | J20, F2a, Fao | F21,J24, F30 | J23, F2a, 30
4 | del f10, fao f20, fao f21, fa0 f23, fao
add fo, fo2 f12, foo 18, foo 22
pre [ fiz, fos, F3o | Jiz, Fo7, Fao | Jiz, Jzs, Fs0 | Jiz, F29, J3o
5 | del fi2, f25 fiz, for fi2, fo2s 12, fag
add , f26 18, f26 24, f26 26
pre | Jis, f2s, fao | Jis, F26, Fao | Jis, J2s, fso | Jfis, feo, Jao
1| del 18, f25 18, f26 18, f2s8 18, fog
4 add 6, f27 12, f27 24, f27 27
pre FEEINED Ja6, Fao 27, Fao 28, JFao
2 | del 25 26 27 28
add fs, f20 f12, fag fis, f20 foa, foo
Table 2. Specification of scenario 2.

the start state into the goal state or any other state. Whettey goal
state is reached, the next trial starts (with the start statde initial
state). Each data point shows the mean reward achieved pretie
ous 25 cycles, averaged over 5 independent runs. As thescsinosy,
the JPJL algorithm resulted in a clear performance impr@rerover
time. The maximum reward was closely approached (above 85 pe
cent) for different planning depths after about 280 cyatethe case
of the scenario 1 and after about 370 cycles in the case ofcthe s
nario 2. The results also show that the choice of the plandéeggh

is crucial to the overall system performance. Our major plag®ns
concerning the effects of the planning depth, as they areinth-
cated by the performance curves shown in the Figures 4 anahb, c
be summarized as follows:

e Smaller planning depths tend to result in smoother, but etomn:
creasing performance curves.

e Larger planning depths tend to result in performance cutlvas
are less smooth (particularly in early stages), but ina éaster.

e There is a risk of choosing a planning depth that is too large,
sulting in relatively large and undesirable “performanops.”

These observations indicate that the planning depth is ya aréi-
cal parameter that has to be chosen extremely carefullyorloty
to our experience it is not feasible to try to compensate dyative
effects of a badly chosen planning depth through modifyititeio
parameters like the learning ratesgnd/3)—this just results in con-
siderable experimental efforts that are not guaranteeddnteally
succeed.

4 Conclusions

The JPJL algorithm aims at enabling multiple agents to aehie-
ordinated activity through combining their learning andrpling ef-
forts. The primary idea behind this algorithm is to inter/learning
and planning within a single algorithm such tl{gtlearning helps
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Figure 4. JPJL performance curves for scenario 1.
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Figure 5. JPJL performance curves for scenario 2.

to evaluate the results of planning afijl planning helps to reduce
the number of required learning trials. Instead of “pureresy” or
“pure planning,” the JPJL algorithm realizes a kind of “piang-
based learning” or “learning-based planning.” The primeingarac-
teristic of this algorithm is that both learning and plargnare jointly
and distributedly realized by multiple agents.

In the area of multiagent systems a lot of work is available on



(4]
(5]

both activity coordination through joint learning (e.gl, [12, 15,
16, 18, 19, 26, 27]) and activity coordination through joptan-
ning (e.g., [2, 3, 6, 8, 10, 11, 17, 20]). However, there arby on
very little approaches that combine joint learning and tjgifan-
ning. There are two exceptions that are related to the JRjd- al
rithm. The first is the work by Sugawara and Lesser described i
e.g. [21, 22]. The basic idea behind this approach is to eredents

to learn situation-specific rules that capture relevantlocal infor-
mation in order to improve local planning and reasoningsTiiea
has been investigated within the context of LODES, a disteid
diagnosis system for computer communications networke. SHt-
ond is the approach by Nagendra Prasad and Lesser deseribef i
[13]. Here the central idea is to endow agents with the cdipatn
learn to choose appropriate, situation-specific coortinatrategies
from a set of available strategies. This idea has been imgiesd

in a system called COLLAGE. The primary difference between t 10]
LODES/COLLAGE approaches and the JPJL algorithm is that thé
former are very knowledge-intensive whereas the latterois im
particular, in the case of LODES the agents are required tg-a p [11]
ori possess deep domain knowledge and in the case of COLLAGE
the agents are required to a priori possess sophisticatedination

(6]

[7]

(8]

9]

knowledge in order to be able to appropriately coordinaéér thc- [12]
tivities. Against that, in the case of JPJL coordinationclges from  [13]
the scratch,” without requiring that particular domain oordination
knowledge is a priori available to the agents. [14]
In its current form the JPJL algorithm is limited in two sfeci
respects. The first limitation is that the JPJL algorithnuasss that  [15]
the planning depth is fixed and predefined. As the experirhesta
sults indicated, it is desirable that this is handled moreglile. One
way to cope with this limitation is to use a time-varying pitng  [16]
depth (e.g., starting with a low depth which is then increagseo-
portionally to the overall performance). Another, even enéiexi- (17]
ble way is that the agents on their own learn to adopt the defpth
their planning activities. The second limitation is thatgeneral it [1g]
can not be assumed that an agent is always aware of all treseffe
of its actions, that is, that an agent’'s world model is perfetdo-
mains where every effect of an action can be sensed by atdeast (19]
agent (not necessarily the one carrying out this actiong,pbssible
to solve this problem through communicating these efféegginst
that, the JPJL algorithm runs into coordination problemddmains
in which significant effects of actions are not so easy toaefeway [20]
to cope with this limitation is to extend the JPJL algorithoward
distributed modeling and diagnosis (e.g., [7, 9]). Desttitse limi-
tations we think that the encouraging results availableasalearly  [21]
justify to continue research in the directions indicatedvaband to
take the JPJL algorithm as a starting point for further esiptpthe 22]
possibilities of combining joint learning and joint plangi Our cur-
rent work concentrates on the “fixed planning-depth linotatand
explores how planned-based and reactive behavior can bieeffy  [23]
and effectively combined in multiagent settings. [24]
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