
Achieving Coordination through Combining
Joint Planning and Joint Learning

Gerhard Weiß1
Abstract. There are two major approaches to activity coordination
in multiagent systems. First, by endowing the agents with the capa-
bility to jointly plan, that is, to jointly generate hypothetical activity
sequences. Second, by endowing the agents with the capability to
jointly learn, that is, to jointly choose the actions to be executed on
the basis of what they know from experience about the interdepen-
dencies of their actions. This paper describes a new algorithm called
JPJL (“Joint Planning and Joint Learning”) that combines both ap-
proaches. The primary motivation behind this algorithm is to bring
together the advantages of joint planning and joint learning while
avoiding their disadvantages. Experimental results are provided that
illustrate the potential benefits and shortcomings of the JPJL algo-
rithm.

1 Motivation

Multiagent Systems (MAS)—systems in which several interacting,
intelligent and autonomous entities called agents pursue some set of
goals or perform some set of tasks—have received steadily grow-
ing interest in both research and application in the past years (e.g.,
[4, 14, 28]). A key issue to be addressed when dealing with MASis
that of activity coordination: How can several agents, eachcapable
of executing specific actions, decide together what activity sequence
they should carry out in order to accomplish a common task? One
possible answer is that the agents should jointly generate hypotheti-
cal activity sequences and do some kind of lookahead in orderto de-
termine the most promising actions, that is, they should jointly plan.
A potential advantage of this approach is that the probability of car-
rying out unsucessful and perhaps expensive or irreversible activity
sequences is kept low. An inherent difficulty with this approach is,
however, that it is limited by the agents’ knowledge about how rele-
vant their individual actions are for goal attainment in different states
and how to determine which of several possible next states ismost
appropriate for reaching the goal state. Another possible answer is
that the agents should jointly choose the actions to be executed on
the basis of what they already know from experience about theinter-
dependencies among and effects of their actions, that is, they should
jointly learn. What makes this approach appealing is that the agents
themselves find out which paths of activity are likely to be success-
ful and which are not, and that the amount of a priori knowledge
with which the agents have to be equipped by the system designer is
kept low. An inherent difficulty with this approach is, however, that
the required number of learning trials tend to grow rapidly with the
number of possible actions.1 Institut für Informatik, Technische Universität München, D-80290

München, Germany, weissg@in.tum.de

The work described in this paper aims at integrating joint planning
and joint learning within a single algorithm that brings together the
advantages of both approaches while avoiding their disadvantages.
The basic idea behind this work is that the agents(i) jointly learn the
information they need to know in order to evaluate the hypothetical
activity paths generated during planning and(ii) jointly plan in or-
der to reduce the number of uninformed and thus inefficient learning
trials. The paper is structured as follows. Section 2 describes a new
algorithm called JPJL (“Joint Planning and Joint Learning”) for in-
tegrated joint planning and joint learning. Section 3 presents initial
experimental results that indicate the performance features of this al-
gorithm. Finally, Section 4 briefly summarizes the paper, provides
pointers to related work, and critically discusses limitations of the
JPJL algorithm.

2 The JPJL Algorithm

The basic working cycle of the JPJL algorithm is conceptually de-
scribed in the Figure 1. As the figure shows, the overall activity re-
sults from the repeated execution of three major activities, namely,
planning, action selection, and learning. During planning, the agents
jointly search through the space of possible future environmental
states. During action selection, the agents jointly decideon the next
action to be carried out based on their planning results. After having
chosen and executed the selected action, the agents jointlylearn by
updating the estimated usefulness (goal relevance) of their actions.
Below the three activities are described in detail. The description uses
the following simple notation and is based on the following elemen-
tary assumptions. There is a finite set of agentsAi, each capable of
carrying out some actionsaj . Ag refers to the set of all agents, andA
i refers to the set of actions that can be carried out byAi. The
environment in which the agents act can be described as a feature-
based state space, where the set of environmental features that can
be sensed (i.e., identified as being either true or false) by the agents
is denoted byF = ff; g; : : :g. Fk � F (for k 2 N) denotes a
real or hypothetical environmental state, i.e., the set of environmen-
tal features that are known to be true (in the case of a real state)
or assumed to be true by the agents (in the case of a hypothetical
state). Following the traditional STRIPS approach [5], an agentAi
associates three lists with each of its actionsaj : a setFprej � F of
preconditions that contains the environmental features that need to
be fulfilled before this action can be carried out (“precondition set”);
a setFdelj � F of environmental features that become false through
the execution of this action (“delete set”); and a setFaddj � F of en-
vironmental features that become true by executing this action (“add
set”). An agent is assumed to be able to determine, at each time,
which of its actions could be carried out in the current (realor hypo-

1. Initialization:� States = fcurrent real stateg� A
tual P lanning Depth APD = 0
2. Planning:

until APD =Maximal P lanning Depth do� for eachF 2 States with F 6= goal state do

– the agents determine their applicable actions and the corresponding hypothetical
successor states that would result from applying these actions

– States = States [fhypothetical successor statesg n fFg
– the agents jointly estimate the usefulness of these actions� APD = APD + 1

3. Action Selection:� the agents determine the overall usefulness of the action sequences generated during
planning based on the individual actions’ estimated usefulness� the agents select the most promising sequence with highest probability� the first action of the selected sequence is carried out

4. Learning:
the agents update the estimated usefulness of their actionsbased on the observable
effects of action execution

5. Goto 1

Figure 1. Conceptual description of the basic working cycle of the JPJL algorithm. Each of the three basic activities—planning, action selection, and
learning—is jointly realized by the involved agents.

thetical) environmental state. This implies that in any given environ-
mental state an agentAi at least knows which of the featuresf in the
setFawarei = Saj2A
i Fprej are true. Finally, it is assumed that an

agent maintains for each of its actionsaj a setFtruej that contains
the environmental featuresf 2 Fawarei that were true at execution
time (Fprej � Ftruej for all aj).
Planning. The basic idea behind the JPJL algorithm is that an agentAi maintains an estimate[f ℄j for eachf 2 Fawarei and eachaj 2 A
i. These estimates are adjusted by the agents (as described
below) such that they indicate what features should be true before
certain actions are executed. An agentAi interprets an estimate[f ℄j
as follows: the higher (lower) it is, the more (less) likely it is thataj should be only executed iff (and perhaps other features) is true.
The values[f ℄ thus indicate under what environmental conditions
the actions should be carried out. This approach reflects that differ-
ent features can be of different relevance for different actions, no
matter what agents could carry out these actions. LetF� be a real
or hypothetical state that is currently considered by the agents (i.e.,F� 2 States as denoted in the Figure 1).2 Each agent announces the
actions it could carry out to the other agents (assuming a blackboard
communication structure). After the potential actions areannounced,
each agent checks the influence of the announced actions w.r.t. its
own actions and informs the announcing agents. More specifically,
assume thatAi announcedaj together with the corresponding listsFaddj andFdelj (which allows for determining the potential succes-
sor state). Then eachAk calculates the usefulnessU lj of this action
w.r.t. eachal 2 A
k as follows:U lj(F�) def= Xf 2 Faddj \Fawarek [f ℄l � Xf 2 Fdelj \Fawarek [f ℄l : (1)2 The order in which the agents consider the states inStatesmay be arbitrary

(as in the current version of the JPJL algorithm), adaptive,or predefined by
the system designer.

current real state

hypothetical statehypothetical state hypothetical state

hypothetical state

DEPTH=1

DEPTH=2

potential action a with potential action a’ with potential action a’’ with

a’’’ with U’’’ a’’’’ with U’’’’

hypothetical state

estimated usefulness U estimated usefulness U’ estimated usefulness U’’

Figure 2. Illustration of the hypothetical search space of the JPJL
algorithm (planning depth = 2).U lj is calledAk’s evaluation function w.r.t.aj andal. After having

calculated the usefulness values,Ak informsAi about these values.Ai, in turn, adds all usefulness values about which it was informed
by other agents, resulting in an estimated overall usefulnessUj of aj
in stateF�: Uj(F�) def= maxf 0 ; 1rXl U lj(F�) g ; (2)

wherer is the number of agents that responded toAi and l ranges
over these agents.Uj can be interpreted as a joint evaluation func-
tion that is represented and calculated in a distributed wayby several
agents. The result of starting with the current real state (see “Initial-
ization” in Figure 1) and expanding this state up to a certainplanning
depth can be viewed as a jointly generated tree of potential future
states in which the arcs represent potential actions together with their
estimated overall usefulness. The Figure 2 illustrates this interpreta-
tion.

Action Selection.Let F0 denote the current real state, and assume
that hF0; ji def=

actions that made
features true

add

aj

del

add

jF
true

jF
aware

pre

��
��
��

delal

jointly
estimated usefulness

pre

lF
aware

lF
true

influence on estimated overall
usefulness of subsequent actions

Figure 3. Illustration of the JPJL update rule.F0 aj1 = Uj1 (F0)�! F1 aj2 = Uj2 (F1)�! F2 : : :: : : Fm�1 ajm = Ujm (Fm�1)�! Fm
is one of the jointly generated planning paths (i.e., one path from
the root to a leaf in the search tree), whereajk is an agent’s potential
action that transfersFk�1 into the successor stateFk,Ujk (Fk�1) is
the estimated overall usefulness ofajk applied in stateFk�1, andm
is the maximal planning depth. Then the estimated usefulness of this
path is defined as the sum of the usefulness values of the individual
actions along this path:UhF0;ji def= mXk=1 Ujk (Fk�1) : (3)

Among all potential paths, pathhF0; ji is selected with the proba-
bility

e

�UhF0;ji�
e

�Pk UhF0;ki� ; (4)

wherek ranges over all potential paths generated during planning.
This means that a path’s probability of being selected increases with
its estimated usefulness. Once a pathhF0; ji is selected, the first
action (i.e.,aj1) of this path is executed.3
Learning. Learning is realized by jointly adjusting the action-
specific estimates of the environmental features. The adjustment is
done in a distributed manner by the agents that carried out actions.
More specifically, assume thataj proposed byAi has been selected
for execution in the real stateF0. TheAi updates its estimates[f ℄j
for all f 2 Ftruej as follows:[f ℄j = [f ℄j + � � �� � Uj(F0)� [f ℄j +R� ; (5)

where� and� are constants called learning rates andR is the actual
external reward thatAi received after the execution ofaj . (In the
case of delayed rewards,R may be equal to zero.) This update rule,
which is in the spirit of Q-learning [24, 25] and temporal difference
learning [23], aims at increasing (decreasing)Ai’s chance to carry
outaj in the future, if the usefulness of this action is jointly estimated
as being high (low) and/or if this action results (does not result) in
an external reward. The Figure 3 illustrates the update rule. Note
that increasing the usefulness of the features that were true at the
time of executingaj (including the preconditions ofaj) increases
the execution probability of the actions that made these features true;
this in turn increases the execution probability ofaj .3 This selection process could be iterated such that not only one but several

(compatible) actions are selected for execution within thecurrent cycle.

3 Experimental Results

For the purpose of a careful experimental analysis we used a series
of synthetic scenarios that capture the characteristics ofmultiagent
learning and planning and allow to efficiently obtain indicative re-
sults. This section presents the results for the scenarios summarized
in the Tables 1 and 2.4 In the case of scenario 1 the environment con-
sists of 20 features. The task to be solved by the agents is to transform
an environmental start state into a goal state. There are four agents
capable of carrying out different actions. Agent 1 can carryout just
one action, agents 2 and 3 can each carry out two actions, and agent
4 can carry out three actions. What makes the task additionally com-
plicated is that an agent can execute each of its actions in several
contexts, differing in their precondition lists as well as their effects
(i.e., their add and delete lists). In particular, executing an action un-
der different preconditions results in different effects.For instance,
consider action 2 of agent 2. The execution of this action always re-
quires that the featuresf10 andf20 are true; additionally, one of the
featuresf6 (context 1),f7 (context 2), orf9 (context 3) has to be true.
Through the execution of this action the featuref8 always becomes
true and the featuref20 always becomes false. Additionally, iff6 (f7,f9) is true at the time of execution, thenf5 (f15, –) becomes true andf6 (f7, f9) becomes false. Things are analogously in the scenario 2.

Feature SetF ff1; : : : ; f20g
Start State ff1; f5; f9; f13; f15; f19g
Goal State ff1; f5; f8; f18; f19g

Agent Action Context 1 Context 2 Context 3
pre f1; f5 f2; f5 f3; f5

1 1 del f1 f2 f3
add f4; f10 f4; f15 f4; f20
pre f2; f5; f20 f3; f5; f20 f4; f5; f20

1 del f2; f10 f3; f10 f4; f10
add f1; f5 f1; f20 f12
pre f6; f10; f20 f7; f10; f20 f9; f10; f20

2 del f6; f20 f7; f20 f9; f20
add f5; f8 f8; f15 f8
pre f5; f17; f20 f5; f18; f20 f5; f19; f20

1 del f5; f17 f5; f18 f5; f19
add f10; f16 f15; f16 f163
pre f15; f16; f20 f15; f17; f20 f15; f19; f20

2 del f15; f16 f15; f17 f15; f19
add f5; f18 f10; f18 f18
pre f11; f15; f20 f12; f15; f20 f14; f15; f20

1 del f11; f20 f12; f20 f14; f20
add f5; f13 f10; f13 f13
pre f11; f15 f12; f15 f13; f15

4 2 del f11 f12 f13
add f5; f14 f10; f14 f14; f20
pre f5; f7; f10 f5; f8; f10 f5; f9; f10

3 del f5; f7 f5; f8 f5; f9
add f6; f15 f6; f20 f6

Table 1. Specification of scenario 1. Top: range of features, start
and goal state. Bottom: agents and their context-specific actions.

The Figures 4 and 5 show the performance profiles for the scenar-
ios 1 and 2, respectively, for the planning depths 1 (curve “JPJL1”),
2 (“JPJL2”), and 3 (“JPJL3”). For all shown results the experimental
setting was as follows.� = 0:2, � = 0:9, andR = 1000 iff the
goal state was reached. The initial values of the estimates[f ℄ were
all zero (which means that the initial behavior is random). Learning
proceeds by the repeated execution of trials, where a trial is defined
as any sequence of at most 10 basic working cycles that transforms4 The results we obtained for other scenarios (differing in the number of en-

vironmental features, the number of agents, and the number of actions) are
qualitatively identical to those presented here.

Feature SetF ff1; f2; : : : ; f30g
Start State ff5; f7; f14; f18; f23 ; f28; f30g
Goal State ff1; f8; f18; f22; f24; f29g

Agent Action Context 1 Context 2 Context 3 Context 4
pre f2; f6; f12 f3; f6; f12 f4; f6; f12 f5; f6; f12

1 del f2; f12 f3; f12 f4; f12 f5; f12
add f1; f18 f1; f24 f1; f30 f1
pre f1; f6 f2; f6 f3; f6 f4; f6

1 2 del f1 f2 f3 f4
add f5; f12 f5; f18 f5; f24 f5; f30
pre f7; f12; f18 f9; f12; f18 f10; f12; f18 f11; f12 ; f18

3 del f7; f18 f9; f18 f10; f18 f11; f18
add f6; f8 f8; f24 f8; f30 f8
pre f7; f12; f24 f8; f12; f24 f10; f12; f24 f11; f12 ; f24

2 1 del f7; f24 f8; f24 f10; f24 f11; f24
add f6; f9 f9; f18 f9; f30 f9
pre f13; f18; f24 f14; f18; f24 f16; f18; f24 f17; f18 ; f24

1 del f13; f24 f14; f24 f16; f24 f17; f24
add f6; f15 f12; f15 f15; f30 f15
pre f13; f18 f14; f18 f15; f18 f16; f18

2 del f13 f14 f15 f16
add f6; f17 f12; f17 f17; f24 f17; f30
pre f18; f19; f24 f18; f20; f24 f18; f22; f24 f18; f23 ; f24

3 3 del f18; f19 f18; f20 f18; f22 f18; f23
add f6; f21 f12; f21 f21; f30 f21
pre f19; f24; f30 f20; f24; f30 f21; f24; f30 f23; f24 ; f30

4 del f10; f30 f20; f30 f21; f30 f23; f30
add f6; f22 f12; f22 f18; f22 f22
pre f12; f25; f30 f12; f27; f30 f12; f28; f30 f12; f29 ; f30

5 del f12; f25 f12; f27 f12; f28 f12; f29
add f6; f26 f18; f26 f24; f26 f26
pre f18; f25; f30 f18; f26; f30 f18; f28; f30 f18; f29 ; f30

1 del f18; f25 f18; f26 f18; f28 f18; f29
add f6; f27 f12; f27 f24; f27 f274
pre f25; f30 f26; f30 f27; f30 f28; f30

2 del f25 f26 f27 f28
add f6; f29 f12; f29 f18; f29 f24; f29

Table 2. Specification of scenario 2.

the start state into the goal state or any other state. Whenever the goal
state is reached, the next trial starts (with the start stateas the initial
state). Each data point shows the mean reward achieved in theprevi-
ous 25 cycles, averaged over 5 independent runs. As the curves show,
the JPJL algorithm resulted in a clear performance improvement over
time. The maximum reward was closely approached (above 95 per-
cent) for different planning depths after about 280 cycles in the case
of the scenario 1 and after about 370 cycles in the case of the sce-
nario 2. The results also show that the choice of the planningdepth
is crucial to the overall system performance. Our major observations
concerning the effects of the planning depth, as they are also indi-
cated by the performance curves shown in the Figures 4 and 5, can
be summarized as follows:� Smaller planning depths tend to result in smoother, but slower in-

creasing performance curves.� Larger planning depths tend to result in performance curvesthat
are less smooth (particularly in early stages), but increase faster.� There is a risk of choosing a planning depth that is too large,re-
sulting in relatively large and undesirable “performance jumps.”

These observations indicate that the planning depth is a very criti-
cal parameter that has to be chosen extremely carefully. According
to our experience it is not feasible to try to compensate the negative
effects of a badly chosen planning depth through modifying other
parameters like the learning rates (� and�)—this just results in con-
siderable experimental efforts that are not guaranteed to eventually
succeed.

4 Conclusions

The JPJL algorithm aims at enabling multiple agents to achieve co-
ordinated activity through combining their learning and planning ef-
forts. The primary idea behind this algorithm is to interwine learning
and planning within a single algorithm such that(i) learning helps

200

600

400

800

1000

50 100 150 200 250 300 350 400

average reward

cycles

JPJL1

JPJL3

JPJL2

Figure 4. JPJL performance curves for scenario 1.

200

600

400

800

1000

50 100 150 200 250 300 350 400

average reward

cycles

JPJL3

JPJL1

JPJL2

Figure 5. JPJL performance curves for scenario 2.

to evaluate the results of planning and(ii) planning helps to reduce
the number of required learning trials. Instead of “pure learning” or
“pure planning,” the JPJL algorithm realizes a kind of “planning-
based learning” or “learning-based planning.” The primarycharac-
teristic of this algorithm is that both learning and planning are jointly
and distributedly realized by multiple agents.

In the area of multiagent systems a lot of work is available on

both activity coordination through joint learning (e.g., [1, 12, 15,
16, 18, 19, 26, 27]) and activity coordination through jointplan-
ning (e.g., [2, 3, 6, 8, 10, 11, 17, 20]). However, there are only
very little approaches that combine joint learning and joint plan-
ning. There are two exceptions that are related to the JPJL algo-
rithm. The first is the work by Sugawara and Lesser described in
e.g. [21, 22]. The basic idea behind this approach is to enable agents
to learn situation-specific rules that capture relevant non-local infor-
mation in order to improve local planning and reasoning. This idea
has been investigated within the context of LODES, a distributed
diagnosis system for computer communications networks. The sec-
ond is the approach by Nagendra Prasad and Lesser described in e.g.
[13]. Here the central idea is to endow agents with the capability to
learn to choose appropriate, situation-specific coordination strategies
from a set of available strategies. This idea has been implemented
in a system called COLLAGE. The primary difference between the
LODES/COLLAGE approaches and the JPJL algorithm is that the
former are very knowledge-intensive whereas the latter is not. In
particular, in the case of LODES the agents are required to a pri-
ori possess deep domain knowledge and in the case of COLLAGE
the agents are required to a priori possess sophisticated coordination
knowledge in order to be able to appropriately coordinate their ac-
tivities. Against that, in the case of JPJL coordination “evolves from
the scratch,” without requiring that particular domain or coordination
knowledge is a priori available to the agents.

In its current form the JPJL algorithm is limited in two specific
respects. The first limitation is that the JPJL algorithm assumes that
the planning depth is fixed and predefined. As the experimental re-
sults indicated, it is desirable that this is handled more flexible. One
way to cope with this limitation is to use a time-varying planning
depth (e.g., starting with a low depth which is then increased pro-
portionally to the overall performance). Another, even more flexi-
ble way is that the agents on their own learn to adopt the depthof
their planning activities. The second limitation is that ingeneral it
can not be assumed that an agent is always aware of all the effects
of its actions, that is, that an agent’s world model is perfect. In do-
mains where every effect of an action can be sensed by at leastone
agent (not necessarily the one carrying out this action), itis possible
to solve this problem through communicating these effects.Against
that, the JPJL algorithm runs into coordination problems indomains
in which significant effects of actions are not so easy to detect. A way
to cope with this limitation is to extend the JPJL algorithm toward
distributed modeling and diagnosis (e.g., [7, 9]). Despitethese limi-
tations we think that the encouraging results available so far clearly
justify to continue research in the directions indicated above and to
take the JPJL algorithm as a starting point for further exploring the
possibilities of combining joint learning and joint planning. Our cur-
rent work concentrates on the “fixed planning-depth limitation” and
explores how planned-based and reactive behavior can be efficiently
and effectively combined in multiagent settings.

REFERENCES

[1] R.H. Crites and A.G. Barto, ‘Elevator group control using multiple
reinforcement learning agents’,Machine Learning, 33(2/3), 235–262,
(1998).

[2] K.S. Decker and V.R. Lesser, ‘Generalized partial global planning’,
International Journal of Intelligent Cooperative Information Systems,
1(2), 319–346, (1992).

[3] E.H. Durfee and V.R. Lesser, ‘Partial global planning: Acoordination
framework for distributed hypothesis formation’,IEEE Transactions on
Systems, Man, and Cybernetics, SMC-21(5), 1167–1183, (1991).

[4] J. Ferber,Multi-Agent Systems. An Introduction to Distributed Artificial
Intelligence, John Wiley & Sons Inc., New York, 1999.

[5] R.E. Fikes and N.J. Nilsson, ‘STRIPS: A new approach to the appli-
cation of theorem proving to problem solving’,Artificial Intelligence,
2(3-4), 189–208, (1971).

[6] M. Georgeff, ‘Communication and interaction in multi-agent planning’,
in Proceedings of the Third National Conference on Artificial Intelli-
gence (AAAI-83), pp. 125–129, (1983).

[7] B. Horling, V. Lesser, R. Vincent, A. Bazzan, and P. Xuan,‘Diagno-
sis as an integral part of multi-agent adaptability’, Technical Report
99-03, Computer Science Department, University of Massachussetts at
Amherst, (1999).

[8] M.J. Huber and E.H. Durfee, ‘An initial assessment of plan-recognition-
based coordination for multi-agent systems’, inProceedings of the
2nd International Conference on Multi-Agent Systems (ICMAS-96), pp.
126–133, (1996).

[9] E. Hudlická and V.R. Lesser, ‘Modeling and diagnosing problem-
solving system behavior’,IEEE Transactions on Systems, Man, and
Cybernetics, SMC-17(3), 407–419, (1987).

[10] F. Kabanza, ‘Synchronizing multiagent plans using temporal logic’, in
Proceedings of the First International Conference on Multi-Agent Sys-
tems (ICMAS-95), pp. 217–224, (1995).

[11] F. von Martial, Coordinating plans of autonomous agents, Lecture
Notes in Artificial in Artificial Intelligence, Vol. 610, Springer-Verlag,
Berlin et al., 1992.

[12] M. Matarić, ‘Reinforcement learning in the multi-robot domain’,Au-
tonomous Robots, 4(1), 73–83, (1997).

[13] M.V. Nagendra Prasad and V.R. Lesser, ‘Learning situation-specific
coordination in cooperative multi-agent systems’,Autonomous Agents
and Multi-Agent Systems, 2, 173–207, (1999).

[14] G.M.P. O’Hare and N.R. Jennings (eds.),Foundations of Distributed
Artificial Intelligence, John Wiley & Sons Inc., New York, 1996.

[15] N. Ono and Y. Fukuta, ‘Learning coordinated behavior ina continu-
ous environment’, inDistributed Artificial Intelligence Meets Machine
Learning, ed., G. Weiß, Lecture Notes in Artificial in Artificial Intelli-
gence, Vol. 1221, 73–81, Springer-Verlag, Berlin et al., (1997).

[16] L.E. Parker, ‘L-alliance: Task-oriented multi-robotlearning inbehavior-
based systems’,Advanced Robotics, 11(4), 305–322, (1997).

[17] A.E.F. Seghrouchni and S. Haddad, ‘A recursive model for distributed
planning’, in Proceedings of the 2nd International Conference on
Multi-Agent Systems (ICMAS-96), pp. 307–314, (1996).

[18] S. Sen and M. Sekaran, ‘Multiagent coordination with learning classi-
fier systems’, inAdaption and Learning in Multiagent Systems, eds., G.
Weiß and S. Sen, Lecture Notes in Artificial in Artificial Intelligence,
Vol. 1042, 218–233, Springer-Verlag, Berlin et al., (1996).

[19] P. Stone and M. Veloso, ‘Collaborative and adversariallearning: A case
study in robotic soccer’, inAdaptation, Coevolution and Learning in
Multiagent Systems. Papers from the 1996 AAAI Symposium, ed., S.
Sen, Technical Report SS-96-01, 88–92, AAAI Press, Menlo Park, CA,
(1996).

[20] T. Sugawara, ‘Reusing past plans in distributed planning’, in Pro-
ceedings of the First International Conference on Multi-Agent Systems
(ICMAS-95), pp. 360–367, (1995).

[21] T. Sugawara and V. Lesser, ‘On-line learning of coordination plans’,
in Working Papers of the 12th International Workshop on Distributed
Artificial Intelligence, (1993).

[22] T. Sugawara and V. Lesser, ‘Learning to improve coordinated ac-
tions in cooperative distributed problem-solving environments’, Ma-
chine Learning, 33(2/3), 129–153, (1998).

[23] R.S. Sutton, ‘Learning to predict by the method of temporal differ-
ences’,Machine Learning, 3, 9–44, (1988).

[24] C.J.C.H. Watkins,Learning from Delayed Rewards, Ph.D. dissertation,
King’s College, Cambridge University, 1989.

[25] C.J.C.H. Watkins and P. Dayan, ‘Q-learning’,Machine Learning, 8,
279–292, (1992).

[26] G. Weiss, ‘Action selection and learning in multi-agent environments’,
in From Animals to Animats 2 – Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior, pp. 502–510,
(1993).

[27] G. Weiss, ‘Learning to coordinate actions in multi-agent systems’, in
Proceedings of the 13th International Joint Conference on Artificial In-
telligence (IJCAI-93), pp. 311–316, (1993).

[28] G. Weiss (ed.),Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence, The MIT Press, Cambridge, MA, 1999.

