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ABSTRACT 
This paper  describes a novel algorithm for activity coordi- 
nation in multiagent systems tha t  combines joint planning 
and joint  learning. The basic idea underlying this algorithm 
is to combine the advantages of planning and learning, while 
at the same t ime avoiding their disadvantages. 

1. INTRODUCTION 
A key issue to be addressed when dealing with MAS is tha t  
of act ivi ty coordination: How can several agents, each capa- 
ble of executing specific actions, decide together what  activ- 
i ty sequence they should carry out in order to accomplish a 
common task? One possible answer is that  the agents should 
joint ly generate hypothet ical  activity sequences and do some 
kind of lookahead in order to determine the most promising 
actions, tha t  is, they should jointly plan. A potential  ad- 
vantage of this approach is tha t  the probabil i ty of carrying 
out unsucessful and perhaps expensive or irreversible activ- 
ity sequences is kept low. An inherent difficulty with this 
approach is, however, tha t  it is l imited by the agents'  knowl- 
edge about  how relevant their  individual actions are for goal 
a t ta inment  in different states and how to determine which of 
several possible next states is most appropriate  for reaching 
the goal state. Another  possible answer is that  the agents 
should jointly choose the actions to be executed on the ba- 
sis of what  they already know from experience about the 
interdependencies among and effects of their actions, tha t  
is, they should joint ly learn. Wha t  makes this approach ap- 
pealing is tha t  the agents themselves find out which paths 
of activity are likely to be successful and which are not, and 
tha t  the amount  of a priori knowledge with which the agents 
have to be equipped by the system designer is kept low. An 
inherent difficulty with this approach is, however, tha t  the 
required number of learning trials tend to grow rapidly with 
the number of possible actions. 

The work described in this paper  aims at  integrating joint 
planning and joint  learning within a single algorithm that  
brings together the advantages of both  approaches while 
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avoiding their disadvantages. The basic idea behind this 
work is tha t  the agents (i) joint ly learn the information they 
need to know in order to evaluate the hypothet ical  act ivi ty 
paths  generated during planning and (ii) joint ly plan in or- 
der to reduce the number of uninformed and thus inefficient 
learning trials. 

2. COMBINING JOINT PLANNING AND 
JOINT LEARNING 

This section describes a novel algori thm called JPJL  ("Joint 
Planning and Joint Learning") tha t  aims at achieving mul- 
tiagent coordination through combined joint  planning and 
joint learning. According to this algori thm the overall mul- 
t iagent activity results from the repeated execution of three 
major joint activities: planning, action selection, and learn- 
ing. During planning, the agents joint ly search through the 
space of possible future environmental states. During action 
selection, the agents joint ly decide on the next action to be 
carried out based on their planning results. After having 
chosen and executed the selected action, the agents joint ly 
learn by updat ing the est imated usefulness (goal relevance) 
of their actions. Below the three activities are described 
in detail. The description uses the following simple nota- 
t ion and is based on the following elementary assumptions. 
There is a finite set of agents Ai,  each capable of carrying 
out some actions a j . . A 9  refers to the set of all agents, and 
.Aci refers to the set of actions tha t  can be carried out by Ai. 
The environment in which the agents act can be described as 
a feature-based s tate  space, where the set of environmental 
features tha t  can be sensed (i.e., identified as being either 
true or false) by the agents is denoted by ~ = {f, 9 , . . .  }. 
~-k C_ Y (for k E N) denotes a real or hypothet ical  environ- 
mental  state. An agent Ai associates three lists with each 
of its actions aj :  a set ~j,j r~ C_ ~" of preconditions ("precon- 

dition set"); a set ~-]~t C_ b r of environmental features tha t  
become false through the execution of this action ("delete 
set"); and a set yr~aa C_ .7 r of environmental  features tha t  
become true by executing this action ("add set"). In any 
environmental s tate an agent Ai at least knows which of 
the features f in the set Y~ . . . .  = I . Ja j~t~ ~J'j ~ are true. 
Finally, it  is assumed tha t  an agent maintains for each of 
its actions aj  a set ~-~r~ tha t  contains the environmental 
features f E 9v~i w~re tha t  were true at  execution time. 

P l a n n i n g .  The basic idea behind the JPJL  algorithm is 
tha t  an agent A~ maintains an est imate [f]j for each f E 
~-~ . . . .  and each aj E .Aci. These est imates are adjusted 
by the agents (as described below) such tha t  they indicate 
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what features should be true before certain actions are ex- 
ecuted. An agent Ai interprets an est imate [f]j as follows: 
the higher (lower) it  is, the more (less) likely it is that  aj  
should be only executed if f (and perhaps other features) 
is true. Let ~-* be a real or hypothetical  s tate that  is cur- 
rently considered by the agents. Each agent announces the 
actions it could carry out to the other agents (assuming a 
blackboard communication structure).  After the potential  
actions are announced, each agent checks the influence of 
the announced actions w.r.t, its own actions and informs 
the announcing agents. More specifically, assume that  Ai 
announced aj  together with the corresponding lists y~da 
and yd~t. Then each Ak calculates the usefulness UJ of this 
action w.r.t, each al E ,4ck as follows: 

v J ( 7 * )  d-el [fit - [fit 
f ~ yaddNyj k . . . . .  f e Y]~lnY:~ . . . .  

(1) 

UJ is called Ak's evaluation function w.r.t, aj  and at. Af- 
ter having calculated the usefulness values, Ak informs Ai 
about these values. Ai, in turn, adds all usefulness values 
about  which it was informed by other agents, resulting in 
an est imated overall usefulness Uj of aj  in state Y*: 

vj(z ')  O, } Z :vJ (z ' )  } , (2) 
l 

where r is the number of agents that  responded to Ai and 
I ranges over these agents. Uj can be interpreted as a joint 
evaluation function tha t  is represented and calculated in a 
dis tr ibuted way by several agents. 

A c t i o n  S e l e c t i o n .  Let 5 r °  denote the current real state, 
and assume tha t  

( f , j )  d_e/ 

f aj I / . ~ ( ~ 0 )  .7:71 a$2 / . ~ ( ~ 1 )  ~ 72 . . .  

. . .  ~-m-1 ~J,, / vJ,,} ~'~-1) 5c~ 

is one of the joint ly generated planning paths (i.e., one path  
from the root to a leaf in the search tree), where aj~ is an 
agent 's potential  action tha t  transfers ~k -1  into the succes- 
sor s tate y k ,  Uj~ (~-~-1!~ is 1 the est imated overall usefulness 
of aj~ applied in state ~" - , and m is the maximal planning 
depth. Then the est imated usefulness of this path is defined 
as the sum of the usefulness values of the individual actions 
along this path: 

V(5~o,j} d-el ~ Vj~(ffyk_l) (3) 
k=l 

Among all potential  paths,  path  (yo,  j )  is selected with the 
probabil i ty 

e(U(~o,~>) 
' ( 4 )  

where k ranges over all potential  paths  generated during 
planning. 

L e a r n i n g .  Learning is realized by jointly adjusting the 
action-specific est imates of the environmental features. The 

adjustment  is done in a dis tr ibuted manner by the agents 
tha t  carried out actions. More specifically, assume tha t  aj 
proposed by Ai has been selected for execution in the real 
state 9 v°. The A~ updates  its estimates [f]j for all f E 9c~7 ~ 
as follows: 

[f]j = [f]j + oL . (13. Uj (27 ='°) - [f]j + R) , (5) 

where cz and fl are constants called learning rates and R is 
the actual external reward tha t  A~ received after the exe- 
cution of aj. (In the case of delayed rewards, R may be 
equal to zero.) This update  rule, which is in the spirit  of Q- 
learning and temporal  difference learning, aims at  increasing 
(decreasing) Ai 's  chance to carry out aj in the future, if the 
usefulness of this action is jointly est imated as being high 
(low) and/or  if this action results (does not result) in an 
external reward. 

3. CONCLUDING REMARKS 
For the purpose of an experimental  analysis we used a se- 
ries of synthetic scenarios tha t  capture the characteristics of 
multiagent learning and planning. The results gained so far 
show tha t  the JPJL  algorithm can lead to a clear improve- 
ment in the overall system performance. 

In the area of multiagent systems a lot of work is available 
on both activity coordination through joint  learning and ac- 
t ivi ty coordination through joint planning. However, there 
are only very little approaches tha t  combine joint learning 
and joint planning. There are two exceptions tha t  are re- 
lated to the JPJL  algorithm, namely the work by Sugawara 
and Lesser on LODES (e.g., [2]) and the work by Nagendra 
Prasad and Lesser on COLLAGE (e.g., [1]). The primary 
difference between the LODES/COLLAGE approaches and 
the JPJL  algorithm is that  the former are very knowledge- 
intensive whereas the lat ter  is not. In particular,  in the 
case of LODES the agents are required to a priori possess 
deep domain knowledge and in the case of COLLAGE the 
agents are required to a priori possess sophisticated coordi- 
nation knowledge in order to be able to appropriately co- 
ordinate their activities. Against that ,  in the case of JPJL 
coordination "evolves from the scratch," without requiring 
that  part icular domain or coordination knowledge is a priori 
available to the agents. 
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