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Abstract— This paper series focusses on the intersection of

neural networks and evolutionary computation. It is ad-

dressed to researchers from artificial intelligence as well as
the neurosciences.

Part II provides an overview of hybrid work done in the

neurosciences, and surveys neuroscientific theories that are
bridging the gap between neural and evolutionary computa-

tion. According to these theories evolutionary mechanisms

like mutation and selection act in real brains in somatic

time and are fundamental to learning and developmental
processes in biological neural networks.
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I. Introduction

In the neurosciences biological neural networks are in-
vestigated at different organizational levels, including the
molecular level, the level of individual synapses and neu-
rons, and the level of whole groups of neurons (e.g., [11,
36, 44]). Several neuroscientific theories have been pro-
posed which combine the fields of neural and evolution-
ary computation at these different levels. These are the
theory of evolutionary learning circuits, the theories of se-
lective stabilization of synapses and pre–representations,
and the theory of neuronal group selection. According to
these theories, neural processes of learning and develop-
ment strongly base on evolutionary mechanisms like mu-
tation and selection. In other words, according to these
theories evolutionary mechanisms play in real brains and
nervous systems the same role in somatic time as they do
in ecosystems in phylogenetic time. (Other neuroscientific
work which is closely related to these theories is described
in [28, 46, 47].)

This paper overviews the hybrid work done in the neu-
rosciences. Sections II to V survey the four evolutionary
theories mentioned above. This includes a description of
the major characteristics of these theories as well as a guide
to relevant and related literature. Section VI concludes
the paper with some general remarks on these theories and
their relation to the hybrid approaches proposed in artifi-
cial intelligence.
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II. The Theory of Evolutionary

Learning Circuits

According to the theory of evolutionary learning circuits
(TELC for short) neural learning is viewed as the grad-
ual modification of the information–processing capabilities
of enzymatic neurons through a process of variation and
selection in somatic time [12, 13]. In order to put this
more precisely, first a closer look is taken at enzymatic
neurons, and then the fundamental claims of the TELC
are described.

The TELC starts from the point of view that the brain
is organized into various types of local networks which
contain enzymatic neurons, that is, neurons whose firing
behavior is controlled by enzymes called excitases. (For
details of this control and its underlying biochemical pro-
cesses see e.g. [14, 15].) These neurons incorporate the
principle of double dynamics [15] by operating at two levels
of dynamics: at the level of readin or tactilization dynam-
ics, the neural input patterns are transduced into chemical–
concentration patterns inside the neuron; and at the level of
readout dynamics, these chemical patterns are recognized
by the excitases. Consequently, the enzymatic neurons
themselves are endowed with powerful pattern–recognition
capabilities where the excitases are the recognition primi-
tives. Both levels of dynamics are gradually deformable as
a consequence of the structure–function gradualism (“slight
changes in the structure cause slight changes in the func-
tion”) in the excitases. As Conrad pointed out, this struc-
ture–function gradualism is the key to evolution and evo-
lutionary learning in general, and is a important condition
for evolutionary adaptability in particular. (Evolutionary
adaptability is defined as the extent to which mechanisms
of variation and selection can be utilized in order to survive
in uncertain and unknown environments [16].)

There are three fundamental claims made by the TESC:
redundancy of brain tissue, specifity of neurons, and ex-
istence of brain–internal selection circuits. According to
the claim for redundany, there are many replicas of each
type of local network. This means that the brain consists
of local networks which are interchangeable in the sense
that they are highly similar with respect to their connec-
tivity and the properties of their neurons. The claim for
specifity says that the excitases are capable of recognizing
specific chemical patterns and, with that, cause the enzy-
matic neurons to fire in response to specific input patterns.
According to the third claim, the brain contains selection
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circuits which direct the fitness–oriented, gradual modifi-
cation of the local networks’ excitase configurations. These
selection circuits include three systems: a testing system
which allows to check the consequences (e.g., pleasure or
pain) of the outputs of one or several local networks for the
organism; an evaluation system which assigns fitness values
to the local networks on the basis of these consequences;
and a growth–control system which stimulates or inhibits
the production of the nucleic acids which code for the lo-
cal networks’ excitases on the basis of their fitness values.
The nucleic acids, whose variability is ensured by random
somatic recombination and mutation processes, diffuse to
neighbouring networks of the same type (where they per-
form the same function because of the interchangeability
property mentioned above). These claims imply that neu-
ral learning proceeds by means of the gradual modification
of the excitase configurations in the brain’s local networks
through the repeated execution of the following evolution-

ary learning cycle:

1. Test and evaluation of the enzymatic neuron–based
local networks. As a result, a fitness value is assigned
to each network.

2. Selection of local networks. This involves the fitness–
oriented regulation of the production of the excitase–
coding nucleic acids, as well as their spreading to ad-
jacent interchangeable networks.

3. Application of somatic recombination and selection to
these nucleic acids. This maintains the range of the
excitase configurations.

The execution stops when a local network is found which
has a sufficiently high fitness. Conrad emphasized that this
evolutionary learning cycle is much more efficient than nat-
ural evolution because the selection circuits enable an in-
tensive selection even if there is hardly a difference between
the fitness values of the interchangeable networks.

Finally, some references to related work. The TESC
is part of extensive work focussing on the differences be-
tween the information processing capabilities of biological
(molecular) systems and conventional computers; see e.g.
[15, 16, 17]. A computational specification of the ESCM
which concentrates on the pattern–processing capabilities
of the enzymatic neurons, together with its sucessful appli-
cation to a robot–control task, is contained in [29, 30, 31].
Another computational specification which concentrates on
the intraneuronal dynamics of enzymatic neurons is de-
scribed in [32]. A combination of these two specifications
is described in [33]. Further related work being of particu-
lar interest from a computational point of view is presented
in [1, 18].

III. The Theory of Selective Stabilization

of Synapses

The theory of selective stabilization of synapses (TSSS
for short) is presented in [7, 8]. This theory accounts for
neural processes of learning and development by postulat-
ing that a somatic, evolutionary selection mechanism acts

at the level of synapses and contributes to the wiring pat-
tern in the adult brain. Subsequently the neurobiological
basis and the major claims of the TSSS are depicted.

The neurobiological basis of the TSSS comprises aspects
of both neurogenesis and neurogenetics. In vertebrates
one can distinguish several processes of brain development.
These are the cellular processes of cell division, movement,
adhesion, differentiation, and death, and the synaptic pro-
cesses of connection formation and elimination. (For de-
tails see e.g. [19, 20, 38].) The TSSS focusses on the “synap-
tic aspect” of neurogenesis; it deals with the outgrowth and
the stabilization of synapses, and takes the developmental
stage where maximal synaptic wiring exists as its initial
state. The neurogenetic attidue of the TSSS constitutes a
compromise between the preformist (“specified–by–genes”)
and the empirist (“specified–by– activity”) view of brain
development. It is assumed that the genes involved in brain
development, the so–called genetic envelope, only specify
the invariant characters of the brain. This includes, in
particular, the connections between the main categories of
neurons (i.e., between groups of neurons which are of the
same morphological and biochemical type) and the rules
of synaptic growth and stabilization. These rules allow for
an activity–dependent, epigenetic synapse formation within
the neuronal categories. (As Changeux formulated: “The
genetic envelope offers a hazily outlined network, the ac-
tivity defines its angles.” [3, p. 193])

The TSSS makes three major claims. First, at the crit-
ical stage of maximal connectivity there is a significant
but limited redundany within the neuronal categories as
regards the specifity of the synapses. Second, at this time
of so–called “structural redundany” any synapse may exist
under (at least) three states of plasticity: labile, stable, and
degenerate. Only the labile and stable synapses transmit
nerve impulses, and the acceptable state transitions are
those from labile to either stable or degenerate and from
stable to labile. Especially, the state transition of a synapse
is epigenetically regulated by all signals received by the
postsynaptic soma during a given time interval. (The max-
imal synaptic connectivity, the mechanisms of its develop-
ment, and the regulative and integrative properties of the
soma are determinate expressions of the genetic envelope.)
Third, the total activity of the developing network leads to
the selective stabilization of some synapses, and to the re-
gression of their functional equivalents. As a consequence,
structural redundancy decreases and neuronal singularity
(i.e., individual connectivity) increases. This provides a
plausible explanation of the naturally occuring connection
elimination occuring during neural development.

For further readings in the TSSS see e.g. [4, 5, 6, 10].

IV. The Theory of Selective Stabilization

of Pre–Representations

The theory of selective stabilization of pre–representa-
tions (TSSP for short) can be viewed as an extension of
the TSSS. This theory provides a selectionist view of neural
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learning and development in the adult brain by postulating
that somatic selection takes place at the level of neural
networks [5, 10, 27]. Similar to the theory of neuronal
group selection (section V), the TSSP may be viewed as
an attempt to show how neurobiology and psychology are
related to each other.

There are two major claims made by the TSSP. The first
claim is that there exist mental objects or “neural repre-
sentations” in the brain. A mental object is defined as
a physical state achieved by the correlated and transitory
(both electrical and chemical) activity of a cell assembly
consisting of a large number of neurons having different
singularities. According to the TSSP, three classes of men-
tal objects are distinguished. First, primary percepts; these
are labile mental objects whose activation depends on the
direct interaction with the outside world and is caused by
sensory stimulations. Second, stored representations; these
are memory objects whose evocation does not demand en-
vironmental interaction and whose all–or–none activity be-
havior results from a stable, cooperative coupling between
the neurons. And third, pre–representations; these are
mental objects which are generated before and concomitant
with any environmental interaction. Pre–representations
are labile and of great variety and variability; they result
from the spontaneous but correlated firing of neurons or
groups of neurons. The second claim made by the TSSP
is that learning in the adult brain corresponds to the se-

lective stabilization of pre–representations, that means, the
transition from selected pre–representations to stored rep-
resentations. This requires, in the simplest case, the inter-
action with the environment, the criterion of selection is
the resonance (i.e., spatial overlapping or firing in phase)
between a primary percept and a pre–representation.

Further literature on the TSSP. In [9] the two selective–
stabilization theories, TSSS and TSSP, are embedded in
more general considerations on the neural basis of cogni-
tion. A formal model of neural learning and development
on the basis of the TSSP is described in [22, 43].

V. The Theory of Neuronal Group Selection

The theory of neuronal group selection (TNGS for short)
or “neural Darwinism” [23, 25] is the most rigorous and
elaborate hybrid approach in the neurosciences. This the-
ory, which has attracted much attention especially in the
last few years, bridges the gap between biology and psy-
chology by postulating that somatic selection is the key
mechanism which establishes the connection between the
structure and the function of the brain. As done in the
preceding sections, below the major ideas of the TNGS are
described.

There are three basic claims. First, during prenatal and
early postnatal development, primary repertoires of degen-
erate neuronal groups were formed epigenetically by selec-
tion. According to the TNGS a neuronal group is consid-
ered as a local anatomical entity which consists of hundreds
to thousands of strongly connected neurons, and degener-

ate neuronal groups are groups that have different struc-
tures but carry out the same function more or less well
(they are nonisomorphic but isofunctional). The concept
of degeneracy is fundamental to the TNGS; it implies both
structural diversity and functional redundancy and, hence,
ensures both a wide range of recognition and the reliabil-
ity against the loss of neural tissue. Degeneracy naturally
origins from the processes of brain development which are
assumed to occur in an epigenetic manner and to elabo-
rate several selective events at the cellular level. According
to the regulator hypothesis, these complex developmental
processes, as well as the selective events accompaning these
processes, are guided by a relatively small number of cell
adhesion molecules. Second, in the (postnatal) phase of be-
havioral experience, a secondary repertoire of functioning
neuronal groups is formed by selection among the preexist-
ing groups of each primary repertoire. This group selection
is accomplished by epigenetic modifications of the synap-
tic strenghts without change of the connectivity pattern.
According to the dual rules model, these modifications are
realized by two synaptic rules that operate upon popula-
tions of synapses in a parallel and independent fashion:
a presynaptic rule which applies to long–term changes in
the whole target neuron and which affects a large num-
ber of synapses; and a postsynaptic rule which applies to
short–term changes at individual synapses. The function-
ing groups are more likely to respond to identical or simi-
lar stimuli than the non–selected groups and, hence, con-
tribute to the future behavior of the organism. A funda-
mental operation of the functional groups is to compete
for neurons that belong to other groups; this competition
affects the groups’ functional properties and is assumed
to play a central role in the formation and organization
of cerebral cortical maps. Third, reentry – phasic sig-
naling over re–entrant (reciprocal and cyclic) connections
between different repertoires, in particular between topo-
graphic maps – allows for the spatiotemporal correlation
of the responses of the repertoires at all levels in the brain.
This kind of phasic signaling is viewed as an important
mechanism supporting group selection and as being essen-
tial both to categorization and the development of con-
sciousness. Reentry implies two fundamental neural struc-
tures: first, classification couples, that is, re–entrant reper-
toires that can perform classifications more complex than a
single involved repertoire could do; and second, global map-
pings, that is, re-entrant repertoires that correlate sensory
input and motor activity.

Some brief notes on how the TNGS accounts for psy-
chological functions. Following Edelman’s argumentation,
categories do not exist apriori in the world (the world is
“unlabeled”), and categorization is the fundamental prob-
lem facing the nervous system. This problem is solved by
means of group selection and reentry. Consequently, cat-
egorization largely depends on the organism’s interaction
with its environment and turns out to be the central neural
operation required for all other operations. Based on this
view of categorization, Edelman suggests that memory is
“the enhanced ability to categorize or generalize associa-
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tively, not the storage of features or attributes of objects
as a list” [25, p. 241] and that learning, in the minimal
case, is the “categorization of complexes of adaptive value
under conditions of expectancy” [25, p. 293].

There is a large body of literature on the TNGS. The
most detailed depiction of the theory is provided in Edel-
man’s book [25]. In order to be able to test the TNGS,
several computer models have been constructed which em-
body the theory’s major ideas. These models are Darwin
I [24], Darwin II [26, 39, 25], and Darwin III [40, 41]. Re-
views of the TNGS can be found in e.g. [21, 34, 35, 42, 37].

VI. Concluding Remarks

This paper overviewed neuroscientific theories which view
real brains as evolutionary systems or “Darwin machines”
[2]. This point of view is radically opposed to traditional in-
structive theories which postulate that brain development
is directed epigenetically during an organism’s interaction
with its environment by rules for a more or less precise
brain wiring. Nowadays most researchers agree that the
instructive theories are very likely to be wrong und unre-
alistic, and that the evolutionary theories offer interesting
and plausible alternatives. In particular, there is an in-
creasing number of neurobiological facts and observations
described in the literature which indicate that evolutionary
mechanisms (and in particular the mechanism of selection)
as postulated by the evolutionary theories are indeed fun-
damental to the neural processes in our brains.

Some final notes on the relation between the hybrid work
done in the neurosciences and the hybrid work done in
artificial intelligence (see part I of this paper series [45]).
Whereas the neuroscientific approaches aim at a better un-
derstanding of the developmental and learning processes in
real brains, the artificial intelligence approaches typically
aim at the design of artificial neural networks that are ap-
propriate for solving specific real-world tasks. Despite this
fundamental difference and its implications, however, there
are several aspects and questions which are elementary and
significant to both the neuroscientific and the artificial in-
telligence approaches:

• Symbolic–subsymbolic intersection (e.g., “What are
the neural foundations of high-level, cognitive abili-
ties like concept formation?” and “How are symbolic
entities encoded in the neural tissue?”),

• Brain wiring (e.g., “What are the principles of neural
development?” and “How are the structure and the
function of neural networks related to each other?”),

• Genetic encoding (e.g., “How and to what extend are
neural networks genetically encoded?”), and

• Evolutionary modification (e.g., “At what network level
and at what time scale do evolutionary mechanisms
operate?” and “In how far do the evolutionary mech-
anisms influence the network structure?”).

Because of this correspondence of interests and research
topics it would be useful and stimulating for the neurosci-
entific and the artificial intelligence community to be aware

of each others hybrid work. This requires an increased in-
terdisciplinary transparency. To offer such a transparency
is a major intention of this paper series.
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