Action Selection and Learning
in Multi-Agent Environments

Gerhard Wei8
Institut fir Informatik, Technische Universitit Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
weissg@informatik.tu-muenchen.de

Abstract. This paper focusses on reactive multi-agent systems in which (i) each agent
only knows a specific part of the environment, (i) each agent is specialized in a specific
action, and (i) actions of different agents can be incompatible. The central problem
addressed is how several agents can collectively adapt to their environment by learning to
generate a sequence of action sets that solves an environmental task.

The contents and organization of the paper are as follows. Section 1 briefly motivates
the topic of action selection and learning in multi-agent systems. Section 2 introduces a
new algorithm called DFG (for “Dissolution and Formation of Groups”) for the reinforce-
ment learning of appropriate sequences of groups of concurrently active agents. Section
3 provides theoretical and experimental results on the the DI'G algorithm. Section 4
concludes with a brief summary and an outlook on future work.

Keywords: Multi-agent systems, action selection, learning,
group development

1. Motivation

The last several years have witnessed a rapidly growing interest in multi—agent systems,
that is, in systems that are composed of a number of agents being able to interact and
differing from each other in their skills and their knowledge about the environment. Nowa-
days these systems establish a major rescarch subject in Distributed Artificial Intelligence
(e.g. Bond & Gasser, 1988; Huhns, 1987; Gasser & Huhns, 1989; Brauer & Hernandez,
1991). The growing interest is largely founded on the insight that many real-world prob-
lems are best modelled using a set of interacting agents instead of a single agent. In
particular, multi-agent modelling allows to cope with natural constraints like the limited
processing power of a single agent and to profit from inherent properties of distributed
systems like robustness, parallelism and scalability.

A great part of the research on multi-agent systems has focussed on the issues of coop-
eration and communication in the context of distributed problem solving (see e.g. Decker,
1987; Durfee, Lesser & Corkill, 1989). Against that, only little work has been done on
learning and adaptation; see (Wei, 1992b) for an overview of actual literature. This is in
contradiction to the common agreement that there are two important reasons for studying
learning and adaptation processes in multi-agent systems:

e to be able to endow artificial multi-agent systems (e.g. a system of interacting robots)
with the ability to learn and to improve their performance, and

* to get a better understanding of the learning and adaptation processcs in natural
multi-agent systems (e.g. human groups or societies).

There is a great variety in the multi-agent systems studied in the field of Distributed
Artificial Intelligence; see (ITuhns, 1987, foreword) for a classifying overview. This paper
deals with reactive multi-agent systems in which

e cach agent has only local information about the environment (i.e. no agent is “om-
niscient”),

e each agent can only carry out a specific action (i.e. no agent is “omnipotent”), and
e the actions of different agents can be incompatible.

(“Reactive” means that the behavior and the environment of the system are strongly cou-
pled, i.e. that there is a continuous interaction between the system and its environment.)
The central problem addressed is how the agents in such a multi-agent system can collec-
tively adapt to their environment by learning to generate a sequence of action sets that
solves an environmental task.

2. The DFG Algorithm

2.1. The Basic Working Method

The DFG algorithm (DFG stands for “Dissolution and Formation of Groups”) is de-
signed to solve the problem of learning appropriate sequences of action sets in reactive
multi-agent systems.! Its basic working method can be described as follows. The DFG
algorithm distinguishes between single agents and groups of compatible agents as the act-
ing units in a multi-agent system. Collective learning and adaptation encompasses two

'The DFG algorithm as it is described in this paper requires that each agent is specialized in only one
action; however, it can be easily extended to systems in which each agent can carry out several actions.

2

interrelated processes. First, credit assignment, that is, the process of estimating or ap-
proximating the goal relevance of the agents and the groups in different environmental
states. Second, group development, that is, the process of dissolving and forming groups in
dependence on their goal relevance. In each environmental state action selection is realized
by arranging a competition between the agents and groups on the basis of their goal rele-
vance. Only the winner of this competition is allowed to become active and to change the
environment. All together, an appropriate sequence of action sets is learnt by the repeated
execution of the following working eycle of the DG algorithm:

1. [Check for activity] The agents and groups check whether they could become active
in the actual environmental state.

2. [Group development] Existing groups that do not contribute to the goal attainment
dissolve, and agents and groups that are willing to cooperate form new groups.

3. [Action selection] Based on their goal relevance in the actual state, the agents and
groups compete with each other for the right to carry out their actions. The winner
becomes active and, in this way, transforms the actual into a new environmental
state.

4. [Credit assignment] The agents and groups adjust the estimates of their goal rele-
vances by assigning credit or blame to each other.

The next subsections describe the steps of this working cycle in detail.

2.2. Agents, Groups, and Activity

The DFG algorithm distinguishes between two types of acting units in a multi-agent
system: single agents and groups of compatible agents. An agent is composed of a sensor
component, a motor component, a knowledge base, and a learning element. The sensor and
the motor component enable the agent to interact with other agents and its environment,
(e.g. by communicating with other agents, by receiving visual information about the current
environmental state, or by carrying out an action that changes the environment). The
knowledge base contains the agent’s knowledge (e.g. other agents or its environment). The
learning element is responsible for the modifications in the knowledge base that improve the
agent’s interaction abilities (e.g. by refining its motor skills or by increasing the efficiency
of its cooperation with other agents). Tligure 1 illustrates this view of a single agent.
An agent is restricted in a twofold manner. First, because of limitations imposed on its
sensor abilities, an agent knows only a part of the environment; and second, because of
limitations imposed on its motor component, an agent is specialized in a specific action.
As a consequence of these restrictions, different agents may know different aspects of the
environment, and they may be specialized in different actions.

A group consists of a group leader and several compatible group members, where a
group leader is a single agent and a group member is cither a single agent or another
group. This recursive definition is rather general and covers both low and high structured
groups; see figure 2 for an illustration. The task of a group leader is to represent the group’s
interests; this includes, for instance, to decide whether the group should persist as an au-
tonomous acting unit, cooperate with another acting unit, or dissolve. The group members
have to be compatible in the sense that the activity of no member leads to environmental
changes that prevent the activity of another member.

There are three concepts that are elementary to the learning and adaptation processes
induced by the DFG algorithm: the (potential) activity, the activity context, and the
autonomy of a unit. An agent is said to be active (potentially active) simply if it carries
out (could carry out) its action. The activity of a group results from the concerted activity
of the group members, and a group is said to be active (potentially active) if all its members

3

P e R i e T o | Eais v e

[knowledge base

I sensor ! L - - = —-—— - |
e
= comp. A S s e S

| | r

|
!
|

[i I learning element | [

e B st et J i

ENVIRONMENT /
OTHER AGENTS \

Figure 1: An agent and its components. (See text for details.)

(a)

Figure 2: Structural organizalion of groups. A group is defined as a set of agents (O)
that is structured by leader-member relations (/ , \). (a) shows the most simple group
consisting of a leader and two members each being a single agent. (b) shows a a more
complicated group having two members, one being a group (dashed box) and the other
being a single agent. The “dashed group” again has a group (dotted box) and a single
agent as its members, where the “dotted group” has three members each being a single
agent.

are so. The activity context of an agent in an environmental state is given by the agent’s
knowledge about this state, and the activity context of a group is given by the activity
contexts of all group members. Finally, an agent as well as a group is said to be autonomous,
if it is not a member of a potentially active group. The next sections describe the roles of
these concepts in detail.

The following notation is used throughout the rest of this paper. S; refers to an
environmental state. U; refers to a unit of the multi-agent system, where a unit is either
an agent A; or a group Gj. If U; is a member of G; then this is symbolized by U; € Gj.
[Sil; refers to the part of S; that is known to the agent A;. [U;,S;] denotes the activity
context of the unit U; in the environmental state S;; this context can be formally described

4

by
ey [S_,'],t; if U= A
[Un SJ] i { UU;EG;;[U‘I’SJ‘] it U:' o= Gk

(Note that [U;, S;]N[Uk, S;] may but need not be empty, and that | J,[U;, S;] is not necessarily
equal to 5j. Similarly, [Us, S;] N [U;, Si] may but need not be empty; in particular, it may
be the case that [U;, S;] = [U;, Sk], which means that a unit may be unable to distinguish
between different environmental states.) Finally, U; is defined as

e A; f Ui=A4A;
¢ the leader of &5 if U; = G;

This is only a “technical definition” that allows to give an efficient description of the DFG
algorithm.

2.3. Action Selection and Credit Assignment

Action selection and credit assignment base on the action-oriented variant (WeiB, 1991,
1992a) of Holland’s (1985, 1986) bucket brigade model of learning in classifier systems.
Formally, the DFG algorithm realizes action selection and credit assignment as follows.
Let S; be the actual environmental state. For each unit U; that is potentially active and

autonomous in Sj, U; makes a bid B} for U’s right to become active. (The autonomy
condition ensures that there is no competition between a group and its members; see

below.) This bid is calculated by
Bi=a B +§-E , (1)

where « is a small constant called risk factor, 8 is a small random number called noise
factor, and E} is a scalar value called estimate. The - B! is called the deterministic part
and the B-E is called the stochastic part of B. The deterministic part of B is the fraction
of E! that U; is willing to risk for U;’s right to become active in S;. The stochastic part
of B! introduces noise into the bidding process in order to avoid getting stuck into local
learning minima.? The Ef is U’s estimate of U’s goal relevance in the activity context
(Ui, S;]. (The first time a unit U; is potentially active in a state S;, U initializes £ with
a predefined value E™; E™ is called the initialization value of the estimates.) On the
basis of their bids, a competition runs between the potentially active units and the unit
U? with

B] = max{Bj) (2)

is allowed to become active. This selection of the winning unit corresponds to the selection
of the set of actions that are carried out in the actual environmental state.

Credit assignment happens by means of a collective adjustment of the estimates Ei.
Let U; be the winning unit in the actual state Sj, and let Uy be the winning unit in the

preceding state S; (i.e. Uy transforms S; to S;). Then U; reduces its estimate E! by the
amount of the deterministic part of its bid B, i.e.

El=FEl —a-E |, (3)

?In the literature on classifier systems different methods for introducing noise in the bidding process
have been proposed; sce e.g. (Goldberg, 1989; Riolo, 1989).

5

and hands this amount back to Uy. Uy, in turn, adds the received amount to its estimate
E; of Uy’s goal relevance in the context [Uy, Si, i.e.

Ei=E.+a-E . (4)

(The current winner pays for the previlege of being active and rewards the preceding winner
for appropriately setting up the environment.) Additionally, if the activity of U; leads to
a new state in which a reinforcement is received from the environment, then U; adds this
reinforcement to its estimate £7.

The effects of this bucket-brigade-type adjustment of the estimates can be informally
described as follows. In a sequence of active units, each unit pays a certain amount to
its direct predecessor and receives a certain amount from its direct successor or from the
environment. This has two major effects. First, the estimate of a unit’s goal relevance
increases (decreases), if the unit pays less (more) than it receives. Second, a change (i.e. an
increase or decrease) in an estimate of an unit’s goal relevance is propagated, over time,
from this unit backwards through the chain of its predecessors. These effects lead to a
stabilization of a sequence of active units, if the last unit of the sequence regularly attains
payoff, and they result in a disintcgration of a sequence, if its last unit does not.

2.4. Group Development

According to the DFG algorithm, group development includes two contrary processes:
group formation and group dissolution. In order to be able to decide about the formation
of new groups and the dissolution of existing ones, each U; calculates the mean values of
its estimates over the previous episodes, where an episode is defined as the time interval
between the receipts of two successive environmental reinforcements.> More exactly, during
cach episode 7 + 1, U; calculates the gliding mean value MI[r + 1] of its estimate E! as

Mir+n=2. 3 B, ®)

T=1=v+1

where v is a constant called window size and EI[T] is E! at the end of episode T'. Both
group formation and group dissolution proceed in dependence on the gliding mean values
of the estimates.

Group formation. Let S; be the actual environmental state and let 741 be the actual

episode. For each unit U; that is potentially active and autonomous in S;, U; decides that
Ui is ready to cooperate and to form a new group with other units in the context [U:,54] if

) (6)

where o is a constant called cooperation factor which influences the units’ readiness to
form new groups. (The autonomy condition ensures that a unit does not cooperate if it
is already a member of a potentially active group.) In words, according to this decision
criterion a unit intends to cooperate in a specific context, if the estimate of the unit’s goal
relevance tends to increase too slowly, to stagnate or even to decrease. The units that are
ready to cooperate in their activity contexts form new groups as follows. Let I/ be the set
of all units that are ready to cooperate:

ﬂa’f[r—l—l] < J-Ef[f—u]

3Compared with a cycle-based calculation, an episode-based calculation enables a more balanced group
development.

until &/ = 0 do

e Let U; € U be the unit with .E'f = max;{Ef : Uy € U}. Then U; announces a
“cooperation offer” to the other units.

o For each unit U; € U that is compatible with U;, U; sends a “cooperation
response” to Uj.

o Let U™? C U be the set of all responding units. Then U; chooses the unit
Ur € U™ with E} = maxi{E] : U; € U™} as the cooperation partner of U,

ﬁ;_a_nd Uy, form a new group that has U; and Uy as its members and either U;

or Uy as its leader.*

o U=U\{U,Us)

It has to be stressed that the formation of cach new group occurs within the frame of the
group members’ activity contexts. If U; and U, form a new group G in the state S}, then
they do so because they are ready to cooperate in their activity contezts (Ui, S;] and [Uy, S5,
respectively. The group G' is potentially active in every state S; with [U;, Si] = [U;, S;] and
Uk, S1] = [Uk,Sj]. (In each such state U; and Uy inform the leader of G that they are
potentially active, and then the leader for its part declares G as being potentially active.)
With that, cooperation and group formation is a highly context-sensitive process, and each
group is strictly attached to a specific activity context.

Group dissolution. Again let S; be the actual environmental state and 7+ 1 the actual

episode. For each group G; that is potentially active and autonomous in S;, G; decides
that G; has to dissolve in its members if

Milr +1] < p- Bt (7)

where p is a constant called dissolution factor which influences the robustness of the existing
groups, and E*™ is the initialization value of the estimates (see 2.3). (Here the autonomy
condition ensures that a group does not dissolve as long as it is a member of another
group.) According to this decision criterion a group dissolves, if the estimate of its goal
relevance, averaged over the previous episodes, falls below a certain minimum level

3. Analysis

3.1. Learning Convergence

The DFG algorithm aims at generating appropriate sequences of action sets. Therefore
an important question is how this algorithm changes the estimates of the goal relevances
of units that are successively active. An answer to this question can be found by extend-
ing Grefenstette’s (1988) convergence result on the bucket brigade algorithm to the DFG
algorithm. This leads to the following

Proposition. Cansider a collection of units U;,,...,U;, in which
(i) each unit U;,, 1 < k < n, is coupled with unit Uiy, in the sense that each activity

of U;, in the context [U,, S;,] is followed (in the next cycle) by the activity of U;

k41
in the context [U;, .., Sj,,,], and

“Note that each group has exactly two members; this could be easily extended towards multi-member
groups by allowing U; to chosc several cooperation partners.

7

(ii) the only external reward (if any) is received by U;.
If E'f: converges to a constant value E*, then Ef:, 1 £ k < n, also converges to E*.

Proof. If Uy, 1 < k < n, is active during the cycle ¢t and U;,,, is active during the cycle
t+ 1, then
] j ik [, Tk 1
E} [t'+ 2] = E}} [t] —a-EXt]+ a- Eosit4+1)
where EJ¥[t 4 2] is E]* at the beginning of cycle ¢ + 2. This yields
Eifs+2l=(l-a) E™ 4+ ¥ 0 -(1—-a)" - EM[F+1]

Tkl

where s € N and 5 is defined as 3 = ¢ iff the sth activity of U;, in the context Ui, S;,]

occurred during the cycle t. Now suppose that E;’:‘:l‘ converges to £*. Then '
limy oo B[] = lim,eo Bi*[5 + 2) = B*

i.e. Ef: [t] also converges to [o*. "

This result shows that under the DFG algorithm the estimates of the goal relevance of
successively active units tend to converge to an equilibrium level. Under equilibrium con-
ditions, a unit pays to its predecessor the same amount than it receives from its successor.
With that, the estimates serve to predict the internal rewards.

3.2. Experimental Results

The blocks world is chosen as a task domain. This domain is well known in Artificial
Intelligence and has been intensively studied in the fields of problem solving and planning,
and it is clear enough for experimental studies in the unknown field of multi-agent learning.
What has to be learnt by a given set of agents is to transform a start constellation of blocks
into a goal constellation within a limited time interval. This paper summarizes the results
on the task shown in figure 3. In this task, each agent is specialized in a specific action; for
instance, agent A; is able to put block A on the bottom (symbolized by a 1) and agent Ag
s able to put block D on block A. The precondition for applying an action put(z,y) is that
no other blocks are placed on z and y, i.e. z and y have to be empty. Each agent is assumed
to have only minimal information about the environment: it only knows (“sees”) whether
the precondition of its action put(z,y) is fulfilled. Because of this information constraint,
an agent is unable to distinguish between all different environmental states.® In particular,
an agent may be unable to distinguish between a state in which its action is relevant and a
state in which its action is not relevant to goal attainment. For instance, agent A, cannot
distinguish between a “relevant state” in which block B is placed on the bottom and an
“irrelevant state” in which block B is placed on block F; similarly, As cannot distinguish
between a state in which block D is placed on the bottom and a state in which D is placed
on A. (The fact that an action may be relevant in one state but irrelevant in another
is sometimes called the Sussman’s anomaly; see c.g. (Ginsberg, 1986).) Two actions are
considered to be incompatible if their concurrent exccution is not possible. Formally, two
actions, put(z,y) and put(u,v), are incompatible if z € {u,v} or u € {z,y}ory=v# L.
Examples of sets of incompatible actions are {put(A, 1), put(A, B)} (i.e. a block cannot
be placed on different positions at the same time), {put(B,), put(E, F)} (i.e. different
blocks cannot be put on the same block), and {put(C, D), put(D, A)} (i.e. a block cannot
be put on a block which, at the same time, is put on another block). The transformation
from the start into the goal constellation has to be done in at most four cycles.

®Instead, each agent only distinguishes between the class of states in which its action is applicable and
the class of states in which its action is not applicable. A less strong restriction is used in (WeiB, 1992c).

8

Agents:
D B| |E ERa
Start Constellation Ay put(A, L) Az put(A, B) As: put(B, F)

Ay put(C, L) As: put(C,D) Ag: put(D, A)
Az pul(E, F) Ag: put(F, L) Ag: put(F, E)

B| |D| |F Limited Time Interval: at most 4 cycles

Goal Constellation

Figure 3: Blocks world task. (See text for details.)

An analysis of the scarch space of this task shows that there is one solution sequence
(i.e. a sequence of action sets that transforms the start into the goal constellation) of length
2, 24 solution sequences of length 3, and 210 solution sequences of length 4. The solution
sequence of length 2 is given by ({put(A, L), put(C, L), put(F, L)}, {put(A, B),put(C, D),
put(E, I')}). There is no solution sequence containing less than 5 actions; consequently, a
sequential “one-action-per-cycle” approach would require at least 5 cycles to solve the task.
In the case of a random walk through the search space (i.e. in the case of randomly choosing,
in each environmental state, an applicable set of compatible actions), the probability of
finding the solution sequence of length 2 is less than 1 percent, the probability of finding a
solution sequence of length 3 is less than 4 percent, and the probability of finding a solution
sequence of length 4 is less than 5 percent. With that, the probability that a random
sequence of at most four action sets transforms the start into the goal constellation is less
than 10 percent!

The experimental setting is as follows. A trial is defined as any sequence of at most four
cycles that transforms the start into the goal constellation (successful trial), as well as any
other sequence of exactly four cycles that transforms a start into a non—goal constellation.
Learning proceeds by the repeated execution of trials. At the end of each trial the start
constellation is restored, and the agents again try to solve the task. Additionally, only at
the end of each successful trial a non-zero external reward R®** is provided. Parameter
setting: £ = R** = 1000, a = 0.15, # € [—a/5... + a/5] (randomly chosen for every
bid), and » = 4.

Figure 4 shows the learning results of the DFG algorithm for 0 = 1+3aand p=1—a
(DFG1),0=14+aand p=1—a (DFG2), and for o =1+ a and p =1 — 3a (DFG3).°
Each data value reflects the mean environmental reward per trial obtained during the
previous 10 trials, averaged over 10 runs started with different random-number—generator
seeds. The learning performance of both the DFG1, the DFG2 and the DFG3 variant is
clearly above the random performance level (which is less than 100, see above). The highest
performance level of the DI'G1, the DIFG2 and the DFG3 variant was 950, 800, and 700,
respectively. The DFGI1 performed better than the DI'G2 which performed better than
the DFG3 variant. The reason for these performance differences is that the DFG1 uses a
less strict criterion for the formation of groups than the DFG2, and the DFG2 uses a less
strict criterion for the dissolution of groups than the DFG3 (cf. the o and p values). As a

6Similar results have been obtained in the experiments that we carried out with various other agent
and block constellations; additionally, in all these experiments the DI'G algorithm turned out to be robust
over a broad range of parameter settings.

1668 T
98g
888 |
788 4

688

reward 580 4

489 |

o 0D 4

trials

Figure {: Learning performance of the DFG algorithm. (See text for details.)

| Avg. number per run [DFG1 | DI'G2 | DFG3 |
created groups 27.5 19.1 20.2
dissolved groups 5.7 6.0 3.8

Table 1: Group development. (See text for details.)

consequence, under the DI'G1 more groups were created than under the DFG2, and under
the DFFG2 more groups dissolved than under the DFG3. In other words, the DFG1 turned
out to be more flexible than the DFG2, and the DFG2 turned out to be more flexible than
the DIF'G1. This is illustrated by table 1 which shows, for the three variants, the number
of created and dissolved groups per run, averaged over the ten runs. (Note that the ratio
of created and dissolved groups under the DFG2 is smaller than under the DFG1 and the
DFG3.)

These results clearly demonstrate the ability of the DFG algorithm to produce both
useful and stable sequences of active units, although the individual agents do only have
local information about their environment.)

4. Conclusion

This paper addressed the problem of action selection and reinforcement learning in re-
active multi-agent systems. A new algorithm called DFG was presented that implements
learning and adaptation on the basis of credit assignment and group development. Accord-
ing to this algorithm, several agents collectively adapt to their environment by learning
to coordinate their actions and to generate appropriate sequences of action sets. Theoret-
ical and experimental results were provided that show the learning abilities of the DFG
algorithm.

10

Further investigations are required for a complete understanding of the approach de-
scribed in this paper. Important topics for future research are, for instance, the devel-
opment of alternative criteria and strategies for group dissolution and group formation,
the extension of the concept of a group (e.g. towards multi-member groups with differ-
ent bindings between the members, or towards groups of successively active agents), and
the detailed analysis of the mutual influence of the critical parameters (e.g. window size,
cooperation and dissolution factor).

Acknowledgements

The author would like to thank Martin Eldracher for fruitful discussions on learning
and group development in multi-agent systems.

References

Bond, A. II., & Gasser, L. (Eds.). (1988). Readings in distributed artificial intelligence. San
Matco, CA: Morgan Kaufmann.

Brauer, W., & Hernandez, D. (Eds.). (1991). Verteille Kiinstliche Intelligenz und kooperatives
Arbeiten. Springer.

Decker, K. S. (1987). Distributed problem-solving techniques: a survey. IEEE Trans. on
Systems, Man, and Cybernelics, SMC-1 7(5), 729-740.

Durfee, E. I, Lesser, V. R., & Corkill, D. D. (1989). Trends in cooperative distributed problem
solving. IEEE Trans. on Knowledge and Data Engineering, 1(1), 63-83.

Gasser, L., & Iuhns, M. N. (Eds.). (1989). Distributed artificial intelligence (Vol. 2). Pitman.

Ginsberg, M. L. (1986). Possible worlds planning. In M. P. Georgeff, & A. L. Lansley (Ids.),
Reasoning about aclions and plans ~ Proceedings of the 1986 workshop (pp. 213-243)
Timberline, Oregon: Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algo-
rithms. In Machine Learning, 3, 225-245.

Holland, J. H. (1985). Properties of the bucket brigade algorithm. In J. J. Grefenstette (Ed.),
Proceedings of the First International Conference on Genetic Algorithms and Their Appli-
cations (pp. 1-7). Pittsburgh, PA: Lawrence Erlbaum.

Ilolland, J. II. (1986). Escaping brittleness: The possibilities of general-purpose learning algo-
rithms to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell
(Eds.), Machine learning: An artificial intelligence approach (Vol. 2, pp. 593-632). Los Al-
tos, CA: Morgan Kaufmann.

Iuhns, M. N. (Ed.). (1987). Distributed artificial intelligence. Pitman.

Riolo, R. L. (1989;. The emergence of coupled sequences of classifiers. In Proceedings of the
Third Inlernational Conference on Genelic Algorithms (pp. 256-264). Fairfax, VA: Morgan
Kaufmann.

Weil, G. (1991). The action-oriented bucket brigade. Technical Report FKI-156-91. Institut
fiir Informatik, Technische Universitit Miinchen.

WeiB, G. (1992a). Learning the Goal Relevance of Actions in Classifier Systems. In B. Neumann
(Ed.), Procecdings of the 10th European Conference on Artificial Intelligence (pp. 430-434).
Vienna, Austria: Wiley.

Weill, G. (1992b). Collective learning and aclion coordination. Technical Report FKI-166-92.
Institut fiir Informatik, Technische Universitit Miinchen.

Weill, G. (1992c). Learning to coordinale actions in mulli-agent systems. Internal Working
Paper (submitted, available from the author).

11

