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An Intelligent Agent for Bilateral Negotiation with Unknown
Opponents in Continuous-Time Domains
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Automated negotiation among self-interested autonomous agents has gained tremendous attention due to
the diversity of its broad range of potential real-world applications. This article deals with a prominent type
of such negotiations, namely, multiissue negotiation that runs under continuous-time constraints and in
which the negotiating agents have no prior knowledge about their opponents’ preferences and strategies.
A negotiation strategy called Dragon is described that employs sparse pseudoinput Gaussian processes.
Specifically, Dragon enables an agent (1) to precisely model the behavior of its opponents with compara-
bly low computational load and (2) to make decisions effectively and adaptively in very complex negotiation
settings. Extensive experimental results, based on a number of negotiation scenarios and state-of-the-art ne-
gotiating agents from Automated Negotiating Agents Competitions, are provided. Moreover, the robustness
of our strategy is evaluated through both empirical game-theoretic and spatial evolutionary game-theoretic
analysis.
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1. INTRODUCTION

Automated negotiation, as a fundamental and powerful mechanism for managing in-
teraction among computational agents [Jennings et al. 2001], has become a subject
of central interest in distributed artificial intelligence over the past years. The main
reason behind it is twofold. First, it can support and facilitate human negotiators in
reaching more efficient outcomes by compensating for the limited computational abili-
ties of humans, especially in complicated negotiations. Second, its spectrum of potential
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applications in industrial and commercial domains is very broad [Adhau et al. 2012;
Moosmayer et al. 2013; Sanchez-Anguix et al. 2013]. Various forms of negotiation can
be distinguished [Lopes et al. 2008]. This article deals with bilateral multi-issue ne-
gotiation. In this setting, two agents negotiate with the goal to agree on a profitable
contract for a product or service, where the contract consists of multiple issues that
are of conflictive importance to the negotiators, such as price, delivery time, quantity,
and quality. To meet common requirements of real-world negotiation applications, the
following four assumptions are made. First, the negotiating agents have no prior infor-
mation about their opponents—neither about their preferences (e.g., their preferences
over issues or issue value ordering) nor about their negotiation strategies. Second,
negotiation time is limited—that is, there is a deadline by which an agreement is to
be achieved. Furthermore, the deadline is based on the amount of real time that has
elapsed. Third, the utility of the negotiation outcome decreases over time—in other
words, there is a discounting factor that reduces an agent’s payoff over time. Fourth,
each agent has a private reservation value below which an opponent’s offer is not
accepted and an agent obtains its reservation value even if no agreement is reached
during negotiation. Negotiation settings that fulfill these assumptions are of relevance
to a wide range of practical applications and are also common to many human–human
negotiation scenarios. Researchers in the community consider negotiations happen-
ing in such settings as complex negotiations to differentiate those in a simple form
(single-issue negotiations, negotiations with prior opponent information, etc).

Appropriately modeling an opponent’s behavior is known to be a major factor in
successful negotiation (e.g., Zeng and Sycara [1997] and Hindriks et al. [2009a]). This
modeling, however, is very challenging because negotiators generally are not open about
their true preferences and strategies, as they want to avoid exploitation of this infor-
mation (e.g., Raiffa [1982] and Coehoorn and Jennings [2004]). Existing approaches
to tackle this challenge suffer from two main shortcomings: oversimplification and
computational complexity. Oversimplification means that simplifying assumptions are
made that underestimate an opponent’s behavioral space. This typically results in
simpler-to-calculate, yet too imprecise, opponent models. Computational complexity
means that opponent models, especially those that do not suffer from oversimplifica-
tion, are too complex to be calculated efficiently in real time.

This work tackles these problems and makes several contributions. The primary con-
tribution is the proposition of a novel negotiation strategy—Dragon—for the negotiat-
ing agent. This strategy makes use of sparse pseudoinput Gaussian processes (SPGPs)
to (1) relax the modeling assumptions of other approaches by employing a nonparamet-
ric functional prior, making it capable of modeling highly complex opponent models,
and (2) reduce the computation complexity of learning in such a nonparametric setting.
The second contribution is the proposition of a new adaptive decision-making strategy.
The main advantages of this new decision-making method are (1) allowing the agent
to determine the best possible concession degree of the opponent and (2) avoiding the
problems related to irrational concession.1 The third contribution is to introduce spa-
tial evolutionary game theory to analyze the strategy robustness in a various ranges
of agent interaction.

The remainder of this article is structured as follows. Section 2 provides the reader
with background knowledge needed to understand the remainder of the article. Then,
the technicalities of Dragon are explained in Section 3. An in-depth analysis of

1When playing against a tough opponent, a concession-making strategy that is too sensitive to opponent
behavior inherently tends to suggest (far) more concession than necessary to reach an agreement with such
an opponent. We refer to this phenomenon as irrational concession (making); further considerations on this
issue are provided in Section 3.2.
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the approach in the context of tournament performance is given in Section 4, and
Section 5 launches an innovative scheme to examine the robustness of the negotiation
strategy. Section 6 overviews important related work and pinpoints major deficiencies
for complex negotiations. Section 7 concludes and identifies interesting future research
directions.

2. PRELIMINARIES

In this section, we provide the reader with the background knowledge needed to un-
derstand the remainder of the article. First, the negotiation model in which the agents
operate is explained. Second, the regression framework, including Gaussian processes
(GPs) and SPGPs, is detailed.

2.1. Negotiation Model

In the agents field, a large number of works [Faratin et al. 1998, 2002; Williams et al.
2011; Chen and Weiss 2012; Chen et al. 2013b] adopt the alternating offers protocol
formalized in Rubinstein [1982] for bilateral negotiation. During negotiation, the two
parties in turn make offers and counteroffers under the alternating offers protocol.
This exchange process can be in a form of either discrete or continuous time. Our work
is based on the continuous-time version (as this is an element of complex negotiation).

Another key aspect of a negotiation model is to specify the way in which an agent
evaluates the utility of an offer to her. We take a common view from the existing
literature [Williams et al. 2011; Hao and Leung 2012; Baarslag et al. 2013; Chen
et al. 2013a]. Formally, let i be an agent, j be an issue, and k represent the choice
of the jth issue. We define the value of issue j as v jk. The lowest payoff of an agent
for a negotiation is called the reservation value (θ ). Further, wi

j denotes the weighting
preference that agent i assigns to issue j. The weights of agent i over the issues are
normalized summing to one (i.e.,

∑n
j=1(wi

j) = 1). These preferences are determined by
the interests of the parties to which the agents are on behalf. An offer, O, is a vector of
values v jk for each of the issues j. The utility of an offer for agent i is defined as

U i(O) =
n∑

j=1

(
wi

j · V i
j (v jk)

)
, (1)

where V i
j is the evaluation function of agent i, mapping the value of an issue j to a real

number.
Each agent makes, in turn, an offer in form of a contract proposal to express its

demand, although it is free to leave the negotiation table for its own sake, following the
notion of negotiation round from Rubinstein [1982]. In this work, we refer to negotia-
tion rounds as the number of offer exchanges between the two parties. A negotiation
continues until one party accepts a proposal from the other party, or one party’s break-
ing off, or no more rounds are allowed due to time-out. If no agreement is reached at the
end, the provided disagreement solution then takes effect, where each party obtains
its own reservation value (θ ). This also holds for the case in which one side withdraws
from the negotiation in advance.

Moreover, we define a discounting factor δ (δ ∈ [0, 1]) to capture the discounting effect
in negotiation as follows:

Dδ(U, t) = U · δt, (2)

where Dδ(U, t) means the discounted utility at time t, U is the (original) utility, and t
is the standardized time (i.e., t ∈ [0, 1]). From the preceding equation, it is clear that
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the longer it takes for agents to come to an agreement, the lower the utility they can
achieve.2

2.2. Gaussian Processes

In the field of machine learning, GPs are one of the well-known, nonlinear, nonparamet-
ric regression techniques. These models have been successfully applied in negotiation
settings by Williams et al. [2011]. Although GPs are a powerful form of function ap-
proximators, they suffer from computational problems once dealing with large datasets.
GPs present a good candidate for opponent modeling as long as the computational com-
plexity is reduced. To address this accuracy-computation dilemma, Dragon proposes a
novel learning scheme based on SPGPs. These models (detailed in Section 2.2.2) are
able to achieve similar modeling accuracy to GPs but with much less computational
effort.

2.2.1. Normal Gaussian Processes. GPs are a form of nonparametric regression tech-
niques. Following the notation of Rasmussen and Williams [2006], given a data set
D = {x(i), y(i)}n

i=1, where x ∈ R
d is the input vector, y ∈ R is the output vector, and n

is the number of available data points when a function is sampled according to a GP,
we write f (x) ∼ GP(m(x), k(x, x′)), where m(x) is the mean function and k(x, x′) the co-
variance function, fully specifying a GP. Learning in a GP setting involves maximizing
the marginal likelihood of Equation (3),

log p(y|X) = −1
2

yT (
K + σ 2

n I
)−1y − 1

2
log

∣∣K + σ 2
n I

∣∣ − n
2

log 2π, (3)

where y ∈ R
m×1 is the vector of all collected outputs, X ∈ R

m×d is the matrix of the
dataset inputs, and K ∈ R

m×m is the covariance matrix with |.| representing the de-
terminant. Due to space constraints, we refer the interested reader to Rasmussen and
Williams [2006] for a thorough discussion of the topic. To fit the hyperparameters that
best suit the available dataset, we need to maximize the marginal likelihood function
of Equation (3) with respect to �, the vector of all hyperparameters. Typically, this
maximization requires the computation of the derivatives of Equation (3) with respect
to �. These derivatives are then used in a gradient-based algorithm to perform the
updates. Namely, the update is performed using the following equations:

∂

∂θ j
log p(y|X,�) = 1

2
yT K−1 ∂K

∂θ j
K−1y − 1

2
tr

(
K−1 ∂K

∂θ j

)

= 1
2

tr
(

(ααT − K−1)
∂K
∂θ j

)
with α = K−1y. (4)

The problem with GPs is that maximizing Equation (3) is computationally expensive
due to the inversion of the covariance matrix K ∈ R

n×n, where n is the number of
data points. The update in each step of the gradient-based optimization algorithm
incurs the inversion cost of O(n3). Since the covariance matrix is parameterized by the
hyperparameters �, this inversion needs to be computed at each step of the gradient-
based algorithm as the values of � are updated.

It is for this specific reason that we employ a fast and more efficient learning tech-
nique (i.e., SPGPs). The most interesting feature of SPGPs is that these approximators
are capable of attaining very close accuracy in both learning and prediction to normal
GPs with only a fraction of the computation cost, primarily because learning is param-
eterized by a small number of pseudoinputs that are automatically fitted depending

2Note that the discounting effect is applied to offer both the utility and the reservation value.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 16, Publication date: October 2014.



An Intelligent Agent for Bilateral Negotiation 16:5

on the variation of the sought function. This property makes them extremely suit-
able to the negotiation domain, where a complex and low cost function approximation
framework is highly demanded. The technicalities of SPGPs are described next.

2.2.2. Sparse Pseudoinput Gaussian Processes. As mentioned previously, normal GPs are
computationally expensive to learn, especially in an online setting. SPGPs aim to
reduce the complexity of GPs in both learning and prediction. The idea is to parametrize
the regression model with the so-called pseudoinputs. The location of these inputs is
iteratively fitted by maximizing a new kind of marginal likelihood. Interestingly, using
only a small amount of pseudoinputs, SPGPs are capable of attaining very similar
fitting and prediction results to normal GPs. To clarify, the idea is to parametrize
the model by M << n pseudoinput points while still preserving the full Bayesian
framework. This leads to the parametrization of the covariance function by the location
of M <<< n pseudoinputs. These are then fitted in addition to the hyperparameters to
maximize the following new marginal likelihood:

p(y|X, X̄,�) =
∫

p(y|X, X̄, f̄)p(f̄|X̄)df̄

= N
(
y|0, KNMK−1

M KMN + � + σ 2I
)
, (5)

where X̄ is the matrix formed by the pseudoinputs with X̄ = {x̄}M
m=1. KNM is the co-

variance matrix formed by the pseudo and the real inputs as KMN = k(x̄m, xn), with
k(., .) being the covariance kernel. K−1

M is the inverse of the covariance matrix formed
among the pseudoinputs with KM = k(x̄m, x̄m). � is a diagonal matrix having the di-
agonal entries of λn = knn − kT

n K−1
M kn. The noise variance and the identity matrix are

represented by σ and I, respectively.
Results in Snelson and Ghahramani [2006] show a complexity reduction in the train-

ing cost (i.e., the cost of finding the parameters of the covariance matrix) to O(M2N)
and in the prediction cost (i.e., prediction on a new set of inputs) to O(M2). The re-
sults further demonstrate that SPGPs can fully match normal GPs with small M (i.e.,
few pseudoinputs), successfully producing very sparse solutions. A full mathematical
treatment may be found elsewhere [Snelson and Ghahramani 2006].

To understand the usefulness and powerfulness of SPGPs in the context of automated
negotiation, consider a classical negotiation scenario where two agents negotiate with
each other about what kinds of sports to do, what time to do them, the intensity, and
the price. The task of the prediction model is to forecast the utilities that an agent will
receive in the future. With only M = 20, SPGPs were able to attain very similar results
to normal GPs as shown in Figure 1. It is clear that both learned functions follow a
very similar increasing trend. Predictions made at 65 negotiation intervals also show
similar predicted values in both cases. The black crosses in Figure 1(a) represent the
location of the fitted pseudoinputs. It is also clear that these pseudoinputs were mostly
located in critical ranges of the function.

3. PROPOSED METHOD

The overall Dragon strategy is shown in Algorithm 1. Dragon consists of three func-
tional components that are essential and vital for the agent to operate successfully.
First, the opponent-modeling component is described. It adopts a nonparametric and
computationally efficient regression technique to approximate the opponent’s model.
This allows the agent to have more accurate estimates that are used to predict the
future behavior of the opponent. After having learned the opponent’s model, the
concession-making component determines the optimal concession behavior using a
novel adaptive decision-making strategy that automatically avoids the problem of
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Fig. 1. The curves in the middle (blue) represent the mean of the approximated function, and the solid
lines (red) around them represent the variance. The black crosses in Figure 1(a) show the locations of the
pseudoinputs, and the vertical dash-dot lines (green) in both figures denote the time at which the prediction
is taking place—that is, they separate historic and predicted data points.

ALGORITHM 1: The Dragon approach. Let tc be the current time, δ the time discounting factor,
and tmax the deadline of negotiation. Oopp is the latest offer of the opponent, and Oown is a new offer
to be proposed by Dragon. χ is the time series including the maximum utilities over intervals. 
 is
the lead time for prediction (i.e., the time between the release of the prediction and the end of the
period being predicted), and Eδ denotes the discounted expected utility of incoming counteroffers.
Elow is the lowest expectation to negotiation, ρ is the compromise point (i.e., the time at which the
agent starts to concede), and R is the dynamic conservative expectation function that carefully
suggests target utilities to avoid irrational concession. u′

c is the target utility at time tc.

1: Require: R, δ, 
, tmax
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: recordOffers(tc, Oopp);
5: if TimeToUpdate(tc) then
6: χ ⇐ preprocessData(tc)
7: Eδ ⇐ Predict(χ, 
);
8: (Elow, ρ) ⇐ updateParas(tc);
9: R ⇐ (Elow, ρ);
10: end if
11: u′

c = getTargetUtility(tc, Eδ, δ, R);
12: if isAcceptable(u′

c, Oopp, tc, δ) then
13: accept(Oopp);
14: else
15: checkTermination();
16: Oown ⇐ constructOffer(u′

c);
17: proposeNewBid(Oown);
18: end if
19: end while
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irrational concession. Finally, the third and last stage of Dragon (i.e., the responding
component) responds to those counteroffers and determines the time point at which
the negotiation session terminates. Next, each of the preceding components is detailed.

3.1. Opponent-Modeling Component

Modeling the opponent’s behavior is done by the first component of Dragon. It adopts
the SPGPs (detailed in Section 2.2.2) to accurately and efficiently learn the opponent’s
model. This process of opponent modeling corresponds to the lines 2 through 7 in
Algorithm 1. Namely, upon receiving a new proposal from the opponent at the time tc,
the agent records the time stamp tc and the utility U (Oopp) that this bid offers according
to our agent’s own utility function. However, in the setting of multi-issue negotiations
with the two negotiation partners having different utility functions, a small change in
utility of the opponent may result in a large utility variation for our agent. Making
concession at some steps does not necessarily mean that the opponent will increase its
concession in the coming rounds. This tends to cause a major misinterpretation of the
opponent’s behavior if the agent deals with every single counteroffer. Therefore, and to
reduce that negative impact, the whole negotiation is divided into a number of equal
intervals (denoted as ζ ). As the utility is measured in terms of our agent’s own utility
function, this utility may vary significantly in a given interval. Using maximum offers
can alleviate the effect of noise on the prediction model. It is worth pointing out that
although minimum or average offers are also useful with respect to noise reduction,
they may to some extent lower an agent’s expectation on the opponent concession,
thereby causing the effect of irrational concession (see Section 3.2). The maximum
utilities at each interval with the corresponding time stamps are then provided as
inputs to the SPGPs. As SPGPs are more computationally efficient compared to normal
GPs, the number of intervals here can be much more (by factors of hundreds) than those
used in Williams et al. [2011]. This automatically leads our agent to have more accurate
predictions of the future opponent’s behavior compared to that work.

After learning a suitable model, SPGPs forecast the future behavior of the opponent
as shown in line 7 of Algorithm 1. Dragon keeps track of the expected discounted utility
based on the predictive distribution at a new input t, which is given by

p(u∗|t,D, X̄) =
∫

p(u|t, X̄, f̄)p(f̄|D, X̄)df̄ = N
(
u|μ, σ

2
∗
)
, (6)

where

μ = kT
 Q−1

M (� + σ 2I)−1u

σ 2
 = K − kT



(
K−1

M − Q−1
M

)
k + σ 2

QM = KM + KMN(� + σ 2I)−1KNM.

With the given probability distribution over future utilities and the effect of the
discounting factor, the expected utility Eδ(t) is then formulated by

Eδ(t) = 1
C

∫ +∞

−∞
Dδ(u · p(u; μ, σ), t)du, (7)

where μ and σ are the mean and standard deviation at time t and δ is the discounting
factor.

In contrast to the work of Williams et al. [2011], we adopt a mathematically valid
approach to preserve a probability distribution by introducing C, the normalizing
constant, rather than truncating the probability distribution between [0, 1]. The
latter does not generate a valid probability density function anymore, whereas ours
guarantees this.
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3.2. Concession-Making Component

Using the approximated model, the concession-making component aims at setting an
appropriate concession degree. To deal with uncertainty in negotiation, the concession-
making component primarily takes two factors into account. The first relates to the
prediction of the opponent’s future compromise, whereas the second builds on the
agent’s own expectation to the negotiation outcome.

As mentioned earlier, Dragon makes use of SPGPs to predict the future moves of
an opponent following Equation (7). Although successful, the prediction results are
sometimes rather overpessimistic due to Boulware behavior [Faratin et al. 1998] of
opponents. Such “sophisticated and tough” opponents attempt to avoid (or to postpone
as far as possible) making concessions during the bargaining process. In this case, an
opponent’s offers can easily result in a misleading, too low expectation of an agent
about the utility that the opponent will offer in the future. As a consequence, an
adaptive agent can be inclined to react irrationally in the sense that it compromises
either too much or too early or even both. To solve the problem of irrational concession,
Dragon employs a dynamic conservative expectation function R(t). Informally, it is a
“dynamic conservative expectation function that carefully suggests utilities.” Overall,
R(t) is sensitive to the remaining time because an agent is under more pressure to
settle a negotiation as time is vanishing. Since smaller values of the discounting factor
(δ) force rational agents into reaching agreements earlier (otherwise, the final payoff
gets more discounted), R(t) is inversely proportional to δ. R(t) further takes the lowest
expectation (Elow) as its minimum value. Formally, R(t) is written as

R(t) = Elow + (
1 − t

1
(1−ρ)β

)(
uP

max − Elow
)

cos
(

1 − δ

ω

)
, (8)

where β is the concession factor affecting the concession rate, uP
max is the maximum

utility of the given preference P in a domain, ω is the weight that reflects the impact
of the discounting factor to the concession degree, and ρ is the compromise point.

There are two important variables considered in R(t): the compromise point and
the lowest expectation. In what follows, we motivate the need for them and detail the
technicalities for defining them.

Since the design objective of the negotiation strategy/agent is to maximize its profits,
it is highly demanded to exploit the opponent. But the trade-off between exploitation
and compromise is also of major importance. To clarify, suppose that the agent never
makes any concession, probably no agreement would be reached, or the opponent might
even break off somewhere within the negotiation process. Thus, ρ is used to adaptively
adjust the time at which Dragon should stop exploiting the opponent and rather start
to compromise. To this end, the value of ρ should increase with the increasing ratio
between the number of new solutions and the total solutions proposed by the other
party. This is because a high ratio of new solutions tends to be a good indicator of the
opponent’s cooperation. Thus, we introduce γt to represent the ratio of new counterof-
fers over the past 10 intervals up to t. The observation of new counteroffers cannot
guarantee the concession by the other party (e.g., these new offers could just be the
offers with high utility for the opponent but low utility for our agent). Therefore, the ef-
fect of γt is influenced by the maximum concession until t (λt),3 leading to the following:

ρ = 1 − (
1 − γ

(1−λt)
α
δ

t
)
t, (9)

where α is the parameter controlling the influence of λt.

3The maximum concession (until time point t) is the maximum compromise among all counteroffers given
by the opponent until time t.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 16, Publication date: October 2014.



An Intelligent Agent for Bilateral Negotiation 16:9

The other variable needed to define R(t) is Elow, which represents the lowest expec-
tation to a negotiation session. Formally, Elow is defined as

Elow =
{
θ i f θ ≥ maxU(Eδ=1(0, tl))
maxU(Eδ=1(0, tl)) otherwise,

(10)

where θ is the reservation value specified by the preference, maxU returns the maximal
utility from counteroffers, and tl is the last time the update was carried out.

Based on the preceding definitions, the decision of how to counter the opponent is
made as follows. If the future expectation obtained from Eδ(t) is optimistic (i.e., there
exists an interval {T |T 	= ∅, T ⊆ [tc, ts]}), that is,

Eδ(t) ≥ Dδ(R(t), t), t ∈ T , (11)

with ts being the end point of the prediction and ts ≤ tmax, then the time t̂ at which the
maximum expectation û is reached is set according to

t̂ = argmax
t∈T

Eδ(t). (12)

And û is defined as

û = Eδ(t̂). (13)

Conversely, in the pessimistic case where the estimated opponent concession is below
the agent’s expectations, we define the probability of accepting the best possible utility,
ϕ, to be inversely proportional to the minimum difference between Eδ(t), Dδ(R(t), t),
and the discounting factor, as follows:

ϕ = 1 − 5

√
δ · (Dδ(R(tν), tν) − Eδ(tν))

Dδ

(
uP

max, tν
) , tν ∈ [tc, ts], (14)

where tν is given by

tν = argmin
t∈[tc,ts]

(|Eδ(t) − Dδ(R, t)|). (15)

According to the probability ϕ, the best possible outcome in the “pessimistic” scenario
is chosen as the target utility. The rationale here is that if the agent rejects the “locally
optimal” counteroffer, it may lose the opportunity to reach a fairly good agreement
earlier.

In the acceptance case, û and t̂ are defined as Eδ(tν) and tν , respectively. Otherwise, û
is defined as −1, meaning that it does not have an effect, and R(tc) is used for the target
utility u′

c. When the agent expects to achieve a better outcome (see Equation (11)), the
optimal expected utility û is chosen as its target utility (see Equations (12) and (13)).

Obviously, conceding immediately to û is not rational for the agent when ul ≥ û (ul
is the utility of last bid before tl). Neither is it to shift to û without delay if ul < û,
especially because the predication may be not completely accurate. To deal with this,
Dragon simply concedes linearly. More precisely, the concession rate is dynamically
adjusted to be able to “grasp” every chance to maximize profit. Overall, the process to
set u′

c is shown in line 11, which is calculated as follows:

u′
c =

{
R(tc) i f û = −1
û + (ul − û) tc−t̂

tl−t̂ otherwise. (16)

3.3. Responding Component

The responding component is the last component of the Dragon strategy and corre-
sponds to lines 12 through 18 of Algorithm 1. After the expected utility u′

c has been
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determined, the agent needs to examine one of two conditions in response to the op-
ponent. According to the first condition, the agent has to validate whether the utility
of the counteroffer U (Oopp) is better than u′

c, whereas according to the second condi-
tion, the agent has to determine whether it had already proposed this offer (i.e., the
opponent’s counteroffer) earlier in the negotiation process. If either one of these two
conditions is satisfied, the agent accepts it and terminates the session as shown in
line 12.

On the other hand, if none of them are met, the agent proposes a new offer depending
on an ε-greedy strategy—that is, to select either a greedy action (i.e., exploit) with 1-ε
probability or to select a random action with an ε probability, where 0 ≤ ε ≤ 1. The
greedy action is determined based on a frequency analysis. Although simple, such a
method has been successfully applied by some state-of-the-art negotiating agents, like
Hardheaded and CUHKAgent (refer to Baarslag et al. [2013] and Hao and Leung
[2012]). In the present work, Dragon considers that the opponent is rational. More
precisely, Dragon assumes that the sequence of counteroffers is in line with a decreasing
order of satisfaction. Thus, for a value of an issue j, the more frequent and earlier it is
proposed by the negotiation partner, the more contribution it makes to the opponent’s
overall utility.

Formally, let F(·) be the frequency function defined as

Fn(v jk) = Fn−1(v jk) + (1 − t)ψ · g(v jk), (17)

where the superscript of F(·) indicates the number of negotiation rounds, ψ is the
parameter reflecting the discounting effect of time, and g(·) is the two-valued function,
whose return is 1 if the specific issue value (i.e., v jk) appears in the counteroffer and 0
otherwise.

With a probability 1 − ε, Dragon then picks the offer whose issue values have the
maximal sum of frequencies according to the frequency function. In the case of the
random action, Dragon constructs a new offer that has an utility within some range
around u′

c. The main motivation behind this choice is twofold: (1) it is possible, in multi-
issue negotiations, to generate a number of offers whose utilities are the same or very
similar to the offering agent, with granting the opposing negotiator different utilities,
and (2) it is sometimes not possible to make an offer whose utility is exactly equivalent
to u′

c. Thus, it is reasonable that an agent selects an offer whose utility is in the narrow
range [(1 – 0.005)u′

c, (1 + 0.005)u′
c]. If no such solution can be found, the agent repeats

the latest bid again in the next round.
One additional step is needed to cope with terminating the negotiation in advance

when θ > 0 and δ 	= 1, because in such a case, failing to reach an agreement leads
to a lower payoff (not that the reservation value is also discounted), which is more
likely to happen in a negotiation against a tough opponent. The responding component
investigates whether the maximum expectation obtained from SPGPs is larger than
θ . If that is true, the agent could expect to gain a better outcome than what the
disagreement solution generates. Otherwise, the agent breaks off the bargaining if the
opponent does not make any compromise in the incoming 10 intervals.

4. EMPIRICAL EVALUATIONS

The performance of Dragon is evaluated by means of the official platform of the
ANAC—GENIUS [Hindriks et al. 2009b]. This simulation environment helps to
facilitate comparing different agents across a variety of application domains under
real-time constraints. Section 4.1 describes the experimental technicalities including
the implementation details of Dragon (referred to as DragonAgent). The competition
results are reported in Section 4.2. Moreover, Section 4.3 summarizes the performance
of negotiating agents.
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Table I. Overview of Test Domains in Ascending Order of Competitiveness

Domain Issues Domain Size Competitiveness

DogChoosing 5 270 0.051
Kitchen 6 15,625 0.063
Animal 5 1,152 0.110
Acquisition 5 384 0.117
Icecream 4 720 0.148
Laptop 3 27 0.160
Planes 3 27 0.165
Outfit 4 128 0.198
Camera 6 3,600 0.219
SmartPhone 6 12,000 0.237
HouseKeeping 5 384 0.281
Wholesaler 7 56,700 0.308
DefensiveCharms 3 36 0.322
Lunch 6 3,840 0.420
Coffee 3 112 0.486
Ultimatum 2 9 0.545
Fifty2013 1 11 0.707
NiceOrDie 1 3 0.840

4.1. Experimental Setup

To assess Dragon in a highly competitive setting, we set up two tournaments where its
implementation (DragonAgent) plays against the well-performing agents of the 2010–
2012 ANAC,4 excluding those best ones (primary tournament), and the winners of
ANACs (advanced tournament). Moreover, the negotiations are conducted in the whole
set of domains created for ANAC 2013. Such a setting avoids advantageous bias, as
they are unknown to any participant. To capture the influence of the discounting factor
δ and the reservation value ϑ on the agents’ performance, different values for these two
parameters are considered. Thus, the experiments are conducted for each domain with
three discounting factors (i.e., δ = {0.5, 0.75, 1.0}) and three reservation values (i.e.,
ϑ = {0, 0.25, 0.5}), which result in nine (3 × 3) different scenarios for every domain.

All domains used in this work are overviewed in Table I, where issue refers to the
number of items under negotiation, competitiveness represents the minimum distance
from all points in the outcome space of a domain to the point leading to a complete
satisfaction for both sides (note that such an ideal solution may not be always available),
and the domain size means the scale of the outcome space of a domain (i.e., the number
of possible agreements). For the results to be statistically significant, each scenario is
repeated 20 times.

DragonAgent simply sets ζ , which is the number of equal intervals into which the
agent divides the whole negotiation, to 180. Note that ζ can be larger than the value;
we use it for the purpose of convenience and robustness. The lead time 
 is limited to
25 intervals, and the parameter α for compromise point is set to 0.1. The parameters
for the expectation function R are set to β = 1.5 and ω = 1.2. Note that this set of
parameters is chosen according to our experience without systematically optimizing
it. In our experiments, Dragon performed well and was very robust for a quite broad
range of parameters.

4Because of the significant change with respect to the competition rules, the agents of ANAC 2013 are
allowed to use historical knowledge. Introduction of them in the experiments will cause unfairness to others,
and this new feature moreover does not meet the requirements of complex negotiation.
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Fig. 2. Average normalized score of negotiating agents in the primary tournament. The error bar indicates
a single standard deviation.

4.2. Experimental Results

4.2.1. Results of Primary Tournament. The results achieved by the agents in the primary
tournament are shown in Figure 2, where a total number of 162 scenarios are consid-
ered, resulting from 18 domains with nine different combinations of discounting factors
and reservation values. As depicted in the figure, DragonAgent demonstrated excellent
performance against a variety of opponents and was the best-performing agent from
the perspective of the mean normalized5 score. More precisely, DragonAgent achieved
a score 10% higher than the mean normalized score of opponents. AgentLG and OMAC
(the second and third best agents of ANAC 2012) followed our agent and on average
obtained a score of 0.634, which is 5% below that of DragonAgent. Gahboninho and
IAMhaggler2011, the second and third in ANAC 2011, presented a lower performance,
at around 87% of ours, and there was a similar performance difference for the agents
from ANAC 2010 (i.e., Nozomi and Yushu).

4.2.2. Results of Advanced Tournament. Figure 3 gives the results of the advanced tour-
nament where only the strongest opponents—the winners of each year’s competition
and an additional agent EMAR [Chen and Weiss 2013]—are included. This setting is
much more challenging than the former. Due to this fact, the performance of DragonA-
gent to some extent dropped. It, however, was still ranked first among other contenders
with a score of 0.627, leading the mean performance of others by a margin of 7.5%. In
addition, its performance experienced the smallest variance. The second best agent of
the advanced tournament was CUHKAgent (the 2012 winner). EMAR lagged behind
CUHKAgent with a tiny difference (within 0.005) and finished third. Then, Hard-
headed (the 2011 winner) and Agent_K (the 2010 winner) took the fourth to fifth place
in sequence. To sum up, DragonAgent managed to outperform other best agents in this
very competitive setting with a notable advantage.

5For convenience of comparing performance across domains, normalization is adopted for the results of all
scenarios and done in the standard way, using the maximum and minimum raw score obtained by all agents.
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Fig. 3. Average normalized score of negotiating agents in the advanced tournament. The error bar indicates
a single standard deviation.

Fig. 4. Comparing performance of the agents in different levels of competitiveness.

4.2.3. Impact of Different Competitiveness. For evaluating how competitiveness affects
agents’ performance, the domains are classified into three groups (each with the same
number of domains) to represent the different level of competitiveness as follows: low
(competitiveness ≤ 0.160), medium (0.160 < competitiveness < 0.32), high (compet-
itiveness ≥ 0.32). Figure 4 demonstrates the comparison of all agents’ performance
under low, medium, and high domain competitiveness. The influence of the discount-
ing factor and the reservation value has been already taken into consideration in the
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Fig. 5. Comparing performance of the agents in different levels of domain size.

manner as mentioned before. Not surprisingly, all agents managed to increase their
profit with a decreasing competitiveness level. DragonAgent was the most successful
agent in all three cases, where the difference to the other agents grew from 5.5% to
11.5% as the level of competitiveness increased. CUHKAgent made second place in
the case of low and medium competitiveness, whereas AgentLG made second place in
highly competitive domains. The performance of IAMhaggler2011 dropped most sig-
nificantly as the competitiveness gets stronger. The results showed that DragonAgent
was the most effect agent regardless of the level of competitiveness.

4.2.4. Impact of Different Outcome Space. To assess the effects of domain outcome space
on agents’ performance, the domains are classified into three classes to represent the
different level of outcome space as follows: small (outcome space ≤ 100), medium (100
< outcome space < 3600), large (outcome space ≥ 3600). The results are shown in
Figure 5, which are averaged over all scenarios of the included domains, as done in
the previous subsection. As can be seen from the figure, these agents tended to achieve
better negotiation results (e.g., higher scores) in medium-size domains than in small
domains. DragonAgent advanced other competitors in all three classes of outcome
space domains. In large domains, CUHKAgent and AgentLG finished in second and
third place, respectively. EMAR and CUHKAgent performed quite well in medium
outcome space domains, which were only second to DragonAgent. EMAR and AgentLG,
following DragonAgent, were ranked second and third in small domains. By considering
the agents’ performance in a plenty of scenarios with various classes of domain outcome
space, Dragon was well suited to domains with a broad range of outcome spaces.

4.3. Performance Summary

According to the overall performance shown in Table II, Dragon was the best negotiat-
ing agent considered in the experiments. The top three agents of ANAC 2012 achieved
a mean score of 0.626, and the best agents of ANAC 2011 and 2010 obtained a similar
mean score around 0.59, which in general presents a decreasing trend. With an average
normalized score of 0.651, our agent led a margin of 8% over the mean score of these
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Table II. Overall Performance of All Agents Across All Scenarios in Descending Order

95% Confidence Interval
Agent Normalized Utility Lower Bound Upper Bound

Dragon 0.651 0.625 0.677
CUHKAgent 0.635 0.611 0.659
EMAR 0.629 0.604 0.654
AgentLG 0.627 0.601 0.652
OMAC 0.616 0.591 0.642
HardHeaded 0.607 0.584 0.630
Nozomi 0.600 0.574 0.625
Gahboninho 0.594 0.572 0.616
Agent K 0.585 0.561 0.608
Yushu 0.584 0.563 0.606
IAMhaggler2011 0.571 0.552 0.590

Note: The letter in bold of each strategy is taken as its identifier for the later EGT
analysis.

opponents. Then, CUHKAgent, EMAR, AgentLG, and OMAC took the second through
fifth place in sequence. In addition, as the confidence intervals of several agents overlap
with Dragon’s confidence interval, Welch’s t-test (with 95% confidence) was applied to
the results to investigate whether the score differences are significant. The test showed
that the score of Dragon was significantly better than the scores achieved by all other
agents. To summarize, Dragon clearly outperformed, with a considerable margin, the
state-of-the-art automated negotiators in a variety of application scenarios. Dragon-
Agent’s ability of learning opponent behavior with high precision and avoiding irra-
tional concession may account for this success.

Moreover, the noticeable performance gap between DragonAgent and IAMhag-
gler2011 is also interesting. Both agents employ GPs or a variant of GPs to model
opponents, but IAMhaggler2011 was the worst-performing one in our experiments.
Unlike our agent, IAMhaggler2011 (1) applies GP as a prediction tool and (2) adapts
its concession rate fully on the basis of global predictions. The empirical evaluation
suggests that one reason for this performance gap lies in the global prediction view.
In more detail, this view seems to be vulnerable to irrational concession induced by
pessimistic predictions. Dragon already avoided such a behavior as explained in Sec-
tion 3.2. The phenomenon of irrational concession becomes increasingly apparent when
IAMhaggler2011 bargains with opponents in nondiscounting domains where other
players have no pressure to make early concession. Another reason may be because
SPGPs are more suitable than GPs in the context of automated negotiation, as SPGPs
are computationally efficient and thus more information can be processed to build the
opponent model.

5. STRATEGY ROBUSTNESS ANALYSIS

Until now, the performance of strategies was studied only from the traditional mean-
scoring perspective. This, however, did not reveal anything about the strategy robust-
ness. For example, how would the results change if the players were free to switch
their strategies for better individual payoffs, or if the mixture of opponent strategies
were different? To address this issue, we analyze strategy robustness of the top six
strategies ranked in the Table II with two cases. The first case concerns a two-player
negotiation game, whereas the second analysis focuses on a spatial game in which a
large number of players switch among the set of negotiation strategies to be better
suited for the environment. For the spatial game, three versions of increasing range of
agent interaction are considered.
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Fig. 6. Deviation analysis for the two-player negotiations among top six strategies. Each node shows a
strategy profile, where the winning strategy that achieves a higher score is marked with a color background.
An arrow indicates a statistically significant deviation to a different strategy profile. The nodes of the best
reply cycle are indicated by a bold frame.

5.1. Robustness Analysis for the Two-Player Negotiation Game

For dealing with strategy robustness in the two-player negotiation game, the technique
of empirical game-theoretic (EGT) analysis [Jordan et al. 2007] is applied to the tour-
nament results. The aim of using EGT is to search for pure Nash equilibria, in which no
agent has an incentive to deviate from its current strategy, or best reply cycle [Young
1993], where there exist a set of profiles (i.e., the combination of strategies chosen
by players) for which a path of deviations exists that connect them, with no deviation
leading to a profile outside of the set. The profiles in both Nash equilibria and best reply
cycle are called empirical stable states. Strategy deviation is conducted following the
ways mentioned in Williams et al. [2011], Baarslag et al. [2013], and Chen and Weiss
[2013]. In such a deviation, one player unilaterally changes the strategy to statistically
improve its own profit given the configuration of opponent strategies.

The abbreviation for each strategy is indicated by its first letter (in bold) in Table II.
A profile (or node) in the resulting EGT graph is defined by the mixture of strategies
used by the players in a state. The first row of a profile lists the strategies employed by
the two players, and the second row shows the average score of the profile. The winning
strategy of a profile is indicated by a color background in the sense that it achieves
a higher score. Because we just concern the strategy mixture, the player order is not
taken into account; otherwise, there are many redundant nodes (e.g., [A‖C] and [C‖A]
in Figure 6) to be denoted, which makes the graph less visible.

The result under this EGT analysis is shown in Figure 6. As can be seen, there only
exists a best cycle that includes three nodes. This best cycle is symmetric, consisting
of three strategies: AgentLG, Dragon, and CUHKAgent. For any other strategy profile
out of this cycle, there exists a path of statistically significant deviations (i.e., strategy
changes) that lead to a profile within the cycle. Moreover, despite the fact that EMAR
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Fig. 7. A locality example in a hexagon model.

is the third best strategy (refer to Table II), it is not contained by any node in the
best reply cycle. Dragon, as the best-performing strategy in the tournaments, is still
very successful since it exists in two thirds of the best-cycle profiles, which is also the
winning strategy of those profiles. By contrast, AgentLG is the winning strategy in
one stable state, and CUHKAgent is not a winning strategy in any empirical stable
states. The EGT analysis suggests that Dragon is strongly robust in the two-player
negotiation game.

5.2. Robustness Analysis in the Spatial Negotiation Game

Locality is an important factor in negotiation problems where neighborhood needs to
be taken into consideration. However, strategy robustness with respect to locality has
not been well studied so far. Thus, this work introduces spatial negotiation games
to discuss the strategy robustness in different ranges of agent interaction. A spatial
negotiation game is a game in which a population of players/agents in a certain area, for
the sake of higher fitness, use a set of negotiation strategies to compete against each
other. To analyze spatial negotiation games, we apply evolutionary game theory—
more precisely, spatial evolutionary game theory [Killingback and Doebeli 1996; Szabó
and Fáth 2007]—to the tournament results. This allows us to study the impact on
fitness (i.e., how well a individual is adapted to a dynamic environment) of each species
(strategy) competing against others locally.

The fitness of an individual or a cell (as it is located at a certain environmental
position) is determined by the average payoff of its own strategy playing against its
neighbors. Take a simple case with three strategies as an example, where the center
cell choosing strategy 1 meets its neighbors as shown in Figure 7(a). The fitness of the
center cell is the average payoff of playing against three opponents using strategy 1 and
three opponents using strategy 2. To put it differently, it has the neighbor distribution
x = (0.5,0.5,0). The payoff matrix of the three strategies is given by matrix A:

A =
[ 4 10 0

1 4 9
3 7 4

]
,
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Fig. 8. Evolution of strategy distribution.

where an entry A(i, j) is the payoff of strategy i against strategy j. Thus, the fitness (ρ)
of the center cell is 5.0, following the equation

ρ = ei AxT , (18)

where ei denotes the ith row of a unit matrix e with the size of the number of strategies
and A denotes the payoff matrix. For clarity, the fitness of every cell is shown in
Figure 7(b).

Our analysis assumes that the players in the game have the freedom to choose one of
the six negotiation strategies as in the two-player negotiation game. There also exists
a payoff matrix suggesting utilities of any pair of strategies (i.e., their scores averaged
across all available scenarios). Each strategy is initialized with a equal number of
100 players, randomly distributed over a two-dimensional hexagon lattice �. A cell (I)
in the lattice represents a player and is occupied by one strategy and bordered with
six adjacent cells—that is, each cell has six neighbors in its local scale. Calculating the
fitness of each cell in the field is simultaneously performed. Each cell then imitates
which one has the highest fitness in its neighborhood (including itself). In this way,
the natural selection process (i.e., how to update the strategy of the cell for the next
generation) is well defined.

Figure 8 provides an example illustrating how the players switch between these
strategies in such a environment. In the first generation (as shown in Figure 8(a)),
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Fig. 9. Strategy distributions over generations when players are allowed to interact with their neighbors.

every cell is randomly assigned with a strategy, and each strategy is indicated by a
distinct color. The shares of the strategies in the population are made equivalent. After
four generations (see Figure 8(b)), there are three strategies surviving in the game,
which correspond to those appearing in the best reply cycle that we have found in
Section 5.1. In the 15th generation (Figure 8(c)), the competition between these three
strategies results in the fading away of CUHKAgent (green), whereas AgentLG (red)
and Dragon (blue) together achieve more shares in the population. As the evolution
continues (see Figure 8(d)), CUHKAgent nearly vanishes, and the other two strategies
coexist well and eventually become the dominant strategies.

The dynamics of strategy distribution, as a topic of central interest for evolution-
ary game theory, serve as a very important indicator of strategy robustness in this
case. To guarantee results with high statistical significance, the simulation was run
10,000 times with random initialization of the location arrangement of the six strate-
gies. Figure 9 shows the variation of strategy proportions over generations when play-
ers interact with their neighbors. In the beginning, Dragon soars up to its maximal
share and then experiences a slump in the population. After this, its proportion slowly
grows again. In contrast, there is a prompt increase in the number of players choosing
AgentLG; later, it oscillates with a rather low amplitude. Other strategies, including
EMAR, OMAC, and HardHeaded, are exterminated in a very short period. After a large
number of generations, when only very few players are left that have an incentive to
change their strategies for better fitness, around 52% of the population choose the
strategy AgentLG, whereas 39% of the agents switch to Dragon. Strategy proportions
reach a “stable” state (in which almost no players would like to change their strategies)
around the 120th generation. Moreover, no equilibrium states, where no players have
the incentive to switch to a different strategy, could be found, as there is only tiny
oscillation in the percentages of the two dominate strategies.

It is also interesting to investigate the results when the interaction range of a cell
is extended to its neighbors’ neighbors. In doing so, we could have a clearer insight
on the impact of interaction range. Toward this end, the nature selection process is
also modified such that a player is permitted to mimic the strategy used by the most
successful player in this wider neighborhood. The results are depicted in the Figure 10.
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Fig. 10. Strategy distributions over generations when players are allowed to interact with their neighbors’
neighbors.

In contrast to the former version, the shares of the three strategies more quickly reach
a stable state. The oscillation between the shares of the two coexisting strategies,
however, becomes more obvious. Moreover, the proportion of Dragon grows larger in
this case. The result is caused by its competitive advantage over the opponents. As a
matter of fact, when further extending the interaction range of a player to all other
players existing in the game, we observe that all cells promptly switch to Dragon—that
is to say, the game converges to a equilibrium state soon where only a single strategy
(Dragon) exists.

6. RELATED WORK

Approximating the opponent’s model in negotiation has been of growing interest in
the agents community (e.g., Zeng and Sycara [1997], Coehoorn and Jennings [2004],
Saha et al. [2005], Narayanan and Jennings [2006], Lin et al. [2008], Hindriks et al.
[2009a], and Hendrikx [2011]). However, most of the proposed approaches are either
restrictive in their assumptions or computationally expensive. For instance, Faratin
et al. [2002] designs a trade-off strategy to increase the offer acceptance rate. Coehoorn
and Jennings [2004] uses kernel density estimation to approximate the opponent’s
preferences. Although successful, the effectiveness of these methods highly depends
on the availability of extra information, such as the negotiation history, the opponent’s
strategy, or certain domain knowledge. Other research efforts adopt a Bayesian
setting to aid learning in automated negotiation. In Lin et al. [2008], for instance, a
reasoning model is introduced to learn the likelihood of an opponent profile. Hindriks
and Tykhonov [2008] present a generic framework to learn the outcome preference
order of an opponent. Further, Rahman et al. [2011] develop an order statistics
Bayesian-mining agent to learn the opponent’s preference in automated negotiation.
To reduce the hypothesis space and enlarge the scalability, previous negotiation traces
are assumed to be accessible for the agent. The main problem behind these approaches
is the computational effort needed to learn in problems of high dimensionality, where

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 16, Publication date: October 2014.



An Intelligent Agent for Bilateral Negotiation 16:21

the computational complexity of Bayesian learning increases exponentially with the
increase in the problem’s dimensionality.

Furthermore, Saha et al. [2005] applies Chebychev polynomials to estimate the
offer acceptance probability in repeated single-issue negotiations. Brzostowski and
Kowalczyk [2006] make use of differentials to perform online prediction of future coun-
teroffers based on the negotiation history, assuming that the opponent strategy is
a weighted combination of two basic negotiation tactics introduced in Faratin et al.
[1998]. Alternatively, Narayanan and Jennings [2006] employ a combined technical
scheme built on Markov chains and Bayesian learning to model the opponent’s strat-
egy in single-issue negotiations. But it makes the assumption that the set of opponent
strategies is prior knowledge. In Carbonneau et al. [2008], an artificial neural network
is constructed to predict future counteroffers. But the training process places demands
on a large amount of previous encounters as well as computational resources. Although
the existing work together advances the field of automated negotiation, it still suffers
from several limitations. These could be summarized as (1) restrictive structural as-
sumption or (2) high computational efforts.

Recent research aiming at solving the assumption problem for the complex nego-
tiation that we define in Section 1 includes Williams et al. [2011]. In this work, the
authors attempt to predict the opponent’s future behavior using GPs. The resulting
model is then used by the agent to adjust its own concession strategy. In addition,
they use empirical game theory to verify the robustness of their strategy against the
best agents from ANAC 2010. Hao and Leung [2012] introduce a negotiation strategy
named ABiNes to deal with negotiations in complex environments. To operate the ne-
gotiation process well, ABiNeS exploits the behavior of the other negotiation party to
determine where to start compromising. In addition, it employs a reinforcement learn-
ing approach to improve the acceptance probability of its proposals. Its implementation
under the name of CUHKAgent was the champion of ANAC 2012. Another noteworthy
work is Chen and Weiss [2012], in which a negotiation approach—OMAC—is proposed
that learns the opponent’s strategy to achieve better outcomes. In more detail, OMAC
first decomposes the received utilities of counteroffers through discrete wavelet decom-
position and then it makes use of cubic smoothing splines to predict future opponent
compromise. With the assistance of the learned model, an effective counterstrategy
to the opponent can be decided. This agent finished second in the qualifying round of
ANAC 2012 and made third place in the final. In a more recent work [Chen and Weiss
2013], the authors solve complex negotiations by means of empirical mode decompo-
sition, which, unlike wavelet decomposition, automatically transforms a time series
into several independent subcomponents (i.e., intrinsic mode functions) with different
frequencies. Each subcomponent is then dealt with an appropriate regression model
to learn the opponent strategy. A detailed comparison to the preceding methods was
conducted in Section 4, where the proposed strategy outperformed the aforementioned
strategies.

Among the currently available negotiation approaches, the one most related to
Dragon is IAMhaggler2011 in that both employ GPs to learn opponent behavior. As can
be seen from the reported results, however, Dragon clearly exceeds IAMhaggler2011
for three main reasons: Dragon adopts a more efficient prediction model (based on
SPGPs), a more sophisticated concession-making strategy, and a more effective re-
sponding scheme. Specifically, SPGPs employed by Dragon are capable of delivering
very similar results but at lower computational cost. Furthermore, the concession-
making mechanism is more reasonable and robust. By using the dynamic conservative
expectation function, Dragon concedes toward an opponent’s demand in a very cau-
tios manner, which helps to avoid the problem of irrational concession from which
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IAMhaggler2011 suffers. Moreover, unlike IAMhaggler2011, which generates offers in
a simple random way, Dragon applies a greedy strategy based on a frequency learning
mechanism to determine best possible future offers.

7. CONCLUSIONS

This work introduced an effective strategy called Dragon for a negotiating agent in com-
plex bilateral multi-issue, no prior knowledge, time-constrained, low computational
load, influence of reservation value scenarios. The comprehensive experiments con-
ducted in our work clearly demonstrated the effectiveness of the proposed negotiating
agent, which is built on SPGPs and an adaptive decision-making scheme. Precisely,
the performance of Dragon was carefully evaluated with respect to the following three
aspects:

—Two tournaments were run to investigate how well DragonAgent performed against
a large number of well-known negotiating agents (the primary tournament) and the
champions of each year’s ANAC plus an additional novel agent (the advanced tour-
nament) in a broad range of negotiation scenarios. Experimental results showed that
DragonAgent generated a mean score statistically higher than all benchmark agents
in both tournaments. The main competitor to the new strategy (i.e., IAMhaggler2011)
was ranked last (see Table II). Based on our investigations, we believe that a major
reason for this performance difference lies in the irrational concession problem that
DragonAgent automatically avoids.

—The impact of different levels of domain competitiveness and outcome space on Drag-
onAgent’s performance was assessed as well. According to the results, DragonAgent
won all sub-tournaments regardless of the level of domain competitiveness or out-
come space.

—Strategy robustness was discussed in the two-player negotiation and spatial nego-
tiation game, respectively. The first game highlights the robustness of a strategy in
bilateral negotiation encounters; the second one concerns the case where a popula-
tion of players compete for a higher individual payoff. The analysis based on game
theory manifested that Dragon is a robust strategy in both games. Moreover, this
strategy became increasingly successful as the agent interaction range grew in the
spatial negotiation game.

Overall, based on an advanced technical framework, DragonAgent outperformed state-
of-the-art negotiating agents, both from the standard mean-score perspective as well
as a game-theoretic perspective.

The exceptional results justify and investment of further research effort into this ap-
proach. In the future, we plan on comparing the opponent modeling scheme with other
approaches available to complex negotiation. Second, the extension of this framework to
other negotiation settings, such as concurrent negotiation or multilateral negotiation,
is another interesting avenue to exploit. As well, it is of great interest to investigate the
performance of this automated negotiation strategy against human negotiators. Then,
integrating a more powerful preference learning technique into our agent may lead to
a significant improvement in negotiation power. Last, but not least, to further aid the
learning performance, we consider incorporating transfer learning techniques into the
proposed strategy.
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