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a b s t r a c t

A complex and challenging bilateral negotiation environment for rational autonomous agents is where
agents negotiate multi-issue contracts in unknown application domains with unknown opponents under
real-time constraints. In this paper we present a negotiation strategy called EMAR for this kind of
environment that relies on a combination of Empirical Mode Decomposition (EMD) and Autoregressive
Moving Average (ARMA). EMAR enables a negotiating agent to acquire an opponent model and to use
this model for adjusting its target utility in real-time on the basis of an adaptive concession-making
mechanism. Experimental results show that EMAR outperforms best performing agents from the recent
Automated Negotiating Agents Competitions (ANAC) in a wide range of application domains. Moreover,
an analysis based on empirical game theory is provided that shows the robustness of EMAR in different
negotiation contexts.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous agents that act and interact to reach their design
objectives are of importance for a broad spectrum of potential
applications in domains and fields such as task and service
allocation (Dang and Huhns, 2006), electronic commerce and
electronic markets (Lau et al., 2008; Ragone et al., 2008), dis-
tributed multi-project scheduling (Adhau et al., 2012), supply
chain management (Wang et al., 2009), and pervasive computing
(Park and Yang, 2008). In these agent-mediated applications,
automated negotiation is central for efficiently establishing con-
tracts about goods or services between agents that have conflict-
ing interests. The work described in this paper focuses on
automated bilateral multi-issue negotiation (e.g., Lai et al., 2004).
A key feature of this negotiation form is that two agents negotiate
with the intention to agree on a profitable contract for a product or
service, where the contract consists of multiple issues which are of
conflictive importance for the negotiators. Examples of such issues
are price and quality. Specifically, this paper concentrates on
realistic scenarios for bilateral multi-issue negotiations which are
particularly complex for the following three reasons. First, the
negotiating agents do not know each other (i.e., they have not

encountered before) and thus have no information about the
preferences or strategies of their respective opponents. This makes
it difficult to efficiently reach an agreement, especially because
none of the agents knows what offers the respective other agent
may consider as attractive. Second, we concentrate on negotiation
with deadline and discount, that is, the negotiation is under real-
time constraints (the agents thus should take into consideration at
each time point the remaining negotiation time) and the final
utility decreases over time according to some discounting factor,
which means that unnecessary delays would result in negative
effects on the negotiation outcome. And third, computational
efficiency is important because agents may have very limited
computing resources. Negotiation scenarios showing these char-
acteristics are particularly challenging but common in reality. For
example, in the case of open electronic sales platforms an agent
may be engaged in bilateral multi-issue negotiations with a
content service provider agent which it has never met before,
and if the negotiation agent runs on a small mobile device then
computational efficiency may be particularly crucial. Moreover, it
may be that an agreement has to be achieved within short time
because the provider may switch to other requests and because
the agent may benefit from an early finish in terms of a discounted
price or an extended service time. An environment showing the
above features obviously places high demands upon the negotia-
tion abilities of the agents, and we thus refer to negotiations
running in such environments as complex negotiations.

Automated negotiation requires from the agents to have a high
level of decision autonomy, so that they can decide on their own in
real-time when and under what conditions they should perform
what actions in order to reach a satisfactory agreement. This
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objective is, however, difficult to achieve in practice, mainly due to
the lack of sufficient knowledge about the opponents. Although
methods have been proposed for solving this problem, they are
typically based on simplifying assumptions regarding the opponent
models used by the individual negotiating agents (see Section 2).
Against this background, this paper presents a negotiation strategy
called EMAR for the type of complex scenarios described above that
aims at avoiding unrealistic assumptions. EMAR integrates two
aspects that are known to be essential to successful negotiation
among humans: efficient opponent modeling and adaptive conces-
sion making. Opponent modeling realized by EMAR predicts the
utilities of the opponent's future counter-offers through two stan-
dard mathematical techniques, namely, Empirical Mode Decompo-
sition (EMD, e.g., Hunag et al., 1998) and Autoregressive Moving
Average (ARMA, e.g., Box et al., 1994). As the above underlining
shall indicate that the acronym EMAR is composed of “EM” and
“AR”. Adaptive concession making is achieved by dynamically
adapting the concession rate (i.e., the degree at which an agent is
willing to make concessions in its offers) on the basis of the utilities
of future counter-offers which can be expected according to the
learned opponent model. EMAR combines these techniques to
achieve agreements that maximize the own benefit specifically in
complex negotiation environments (as characterized above) in any
kind of domain such as electronic commerce or automated trading.

The remainder of this paper is structured as follows. Section 2
overviews important related work. Section 3 describes the stan-
dard negotiation environment underlying the described research.
Section 4 presents EMAR in detail. Section 5 offers a detailed
experimental analysis of EMAR. Section 6 identifies some impor-
tant research lines induced by the described work and concludes
the paper.

2. Related work

An early influential work in the field of automated negotiation
is Faratin et al. (1998). This work raised awareness of issues related
to concession making and tactical negotiation that are also
relevant to the approach described here. Based upon this early
work and subsequent research it triggered, it had been realized
that successful negotiation needs to be based in one way or
another on opponent modeling. Today various approaches are
available that aim at generating and utilizing opponent models in
order to optimize an agent's negotiation behavior (see Hendrikx,
2011 for a good overview).

Available approaches can be classified into two groups. First,
approaches that aim at learning the opponent's preference profile,
including, e.g., the opponent's reservation value (i.e., the minimum
utility an agent wants to obtain) and issue weight/value ordering.
An example of such an approach is Coehoorn and Jennings (2004),
which exploits kernel density estimation as an approximation
technique for making negotiation trade-offs, thereby reaching a
profitable outcome with less concession. Another example is Lin
et al. (2008), where a Bayesian learning is used to approximate the
opponent preference profile. A critical drawback of preference
modeling is that it tends to quickly become computationally
intractable for complex domains having a complicated domain
structure or a large outcome space, i.e., the number of possible
agreements is huge (especially if real-time constraints apply).

Second, approaches that aim at learning the opponent's nego-
tiation strategy. For instance, Hou (2004) employs non-linear
regression to predict the opponent's tactic (though in the context
of single-issue negotiation), supposing that the opponent uses a
pure tactic as introduced in Faratin et al. (1998) and that the types
of tactics are also fixed. Saha et al. (2005) make use of Chebychev
polynomials to estimate the chance that the negotiation partner

accepts an offer in the context of repeated single-issue negotia-
tions. Brzostowski and Kowalczyk (2006) investigate the predic-
tion of future counter-offers online on the basis of the previous
negotiation encounters by using differentials, thereby assuming
that the opponent strategy is based on a mix of time- and
behavior-dependent one. In Carbonneau et al. (2008) an artificial
neural network is constructed with three layers to predict future
counter-offers in a specific domain, and the performance was fairly
good competing against a human negotiator. Its training process
however requires a very large database of previous encounters and
thus only off-line mode can be applied. In general, these
approaches to negotiation strategy learning tend to suffer from
relying on simplifying assumptions (as described above) and are
therefore limited in their usage for complex negotiations.

An example of recent research addressing this complexity issue
is Williams et al. (2011): Gaussian processes are applied to predict
the future opponent concession before the deadline of negotiation
is reached and to set the agent's “optimum” concession rate
accordingly. This approach performed better than the best nego-
tiating agents of ANAC 2010 and made the third place in ANAC
2011 (ANAC stands for International Automated Negotiating
Agents Competition). Chen and Weiss (2012a) proposed the
negotiation approach called OMAC that learns an opponent's
strategy in order to predict future utilities of counter-offers by
means of discrete wavelet decomposition and cubic smoothing
splines. Another example is Hao and Leung (2012), where a
negotiation strategy named ABiNeS was introduced for negotia-
tions in complex environments. ABiNeS adjusts the time to stop
exploiting the negotiating partner and also employs a
reinforcement-learning approach to improve the acceptance prob-
ability of its proposals. An agent based on ABiNeS, called CUHKA-
gent, was the winner of ANAC 2012.

The proposed approach, EMAR, which belongs to the “negotia-
tion strategy learning” class, is designed for complex negotiations.
It is able to predict the opponent's future moves in an ongoing
negotiation and then to optimize its expected payoff, thereby
relying on adaptive decision-making without requiring any prior
knowledge about the opponents and the negotiation domains.

3. Negotiation environment

We adopt a basic bilateral multi-issue negotiation setting
which is widely used in the agents field (e.g., Coehoorn and
Jennings, 2004; Faratin et al., 1998) and the negotiation protocol
we use is based on a variant of the alternating offers protocol
proposed in Rubinstein (1982). Let I¼ fa; bg be a pair of negotiating
agents, i represents a specific agent (iA I), J be the set of issues
under negotiation, and j be a particular issue (jAf1;…;ng, where n
is the number of issues). The goal of a and b is to establish a
contract for a product or service. Thereby a contract consists of a
package of issues such as price, quality and quantity. Each agent
has a lowest expectation for the outcome of a negotiation; this
expectation is called reservation value ϑ. wj

i (jAf1;…;ng) denotes
the weighting preference in which agent i assigns to issue j, where
the issue weights of an agent are normalized (i.e., ∑n

j ¼ 1ðwi
jÞ ¼ 1 for

each agent i). During negotiation agents (a and b) act in conflictive
roles which are specified by their preference profiles. In order to
reach an agreement they exchange offers O in each round to
express their demands. An offer is a vector of values, with one
value for each issue. The utility of an offer for agent i is calculated
by the utility function defined as

UiðOÞ ¼ ∑
n

j ¼ 1
ðwi

j � Vi
jðOjÞÞ ð1Þ
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where wj
i and O are as defined above and Vj

i is the evaluation
function for i, mapping every possible value of issue j (i.e., Oj) to a
real number.

Following Rubinstein's alternating bargaining model (Rubinstein,
1982), each agent makes, in turn, an offer in the form of a contract
proposal. Negotiation is time-limited instead of being restricted by a
fixed number of exchanged offers; specifically, each negotiator has a
hard deadline by when it must have completed or withdraw the
negotiation. The negotiation deadline of agents is denoted by tmax.
In this form of real-time constraints, the number of remaining
rounds is not known and the outcome of a negotiation depends
crucially on the time sensitivity of the agents' negotiation strategies.

This holds, in particular, for discounting domains, that is, domains in
which the utility is discounted with time. As usual for discounting
domains, we define a so-called discounting factor δ (δA ½0;1�) and
use this factor to calculate the discounted utility as follows:

DðU; tÞ ¼U � δt ð2Þ
where U is the (original) utility and t is the standardized time. As an
effect, the longer it takes for agents to come to an agreement the
lower is the utility they can obtain.

After receiving an offer from the opponent, Oopp, an agent
decides on acceptance and rejection according to its interpretation
Iðt;OoppÞ of the current negotiation situation. For instance, this

Fig. 1. Flowchart of EMAR.
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Fig. 2. Illustrating the resulting components achieved by the application of EMD, where R0 is the original signal, the i-th IMF is given as Ci and the residue is shown by R3.
R0 is offered by the agent IAMhaggler2011 in domain England vs Zimbabwe. (Details of the agent and the domain are given in Section 5.1.)
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decision can be made in dependence on a certain threshold Thresi:
agent i accepts if UiðOoppÞZThresi, and rejects (and proposes a
counter-offer) otherwise. As another example, the decision can be
based on utility differences. Negotiation continues until one of the
negotiating agents accepts or withdraws due to timeout.

4. EMAR

EMAR includes two core stages – opponent modeling and adaptive
concession making – as described in detail in Sections 4.1 and 4.2,
respectively. A third important stage, namely, its response mechanism
to counter-offers, is described in Section 4.3. An overview of EMAR is
given in Algorithm 1 and its flowchart is shown in Fig. 1. The
individual steps of Algorithm 1 are explained in the following.

Algorithm 1. The EMAR approach. Let tc be the current time, δ the
time discounting factor, tmax the deadline of negotiation and ϑ the
reservation value. Oopp is the latest offer of the opponent and Oown

is a new offer to be proposed by EMAR. χ is the time series
composed of the maximum utilities over intervals. ξ is the lead
time for prediction and ω is the estimated central tendency of χ.
ci is the i-th IMF component and rn is the final residue (more details
will be given in the following text). E is the predicted received utility
series. ures is the dynamic reservation utility, specifying the lowest
expectation to negotiation payoff, and emin is the conservative
estimation of opponent concession. R is the dynamic conservative
expectation function. u′ is the target utility at time tc.

1: Require: R; δ; ξ;ϑ; tmax

2: while tco ¼ tmax do
3: Oopp ( receiveMessage;
4: recordBidsðtc;OoppÞ;
5: if TimeToUpdate(tc) then
6: χ ( preprocessDataðtcÞ;
7: ðc0;…; cn; rnÞ ( decomposeðχÞ;
8: ðω; EÞ ( forecastðc0;…; cn; rn; ξÞ;
9: ðures; eminÞ ( updateResðω; χ;ϑ; tcÞ;
10: R ( ðures; eminÞ;
11: end if
12: u′¼ getTargetðtc; E; δ;RÞ;
13: if isAcceptableðu′;Oopp; tc; δÞ then
14: acceptðOoppÞ;
15: else
16: Oown ( constructOfferðu′Þ;
17: proposeNewBidðOownÞ;
18: end if
19: end while

4.1. Opponent modeling

Opponent modeling realized by EMAR aims at predicting the
future moves of the negotiating opponents. The process of oppo-
nent modeling corresponds to the lines 2–11 in Algorithm 1. When
receiving a new bid from the negotiation opponent at the time tc,
the agent records the time stamp tc and the utility UðOoppÞ this bid
offers according to its utility function. The maximum utilities in
consecutive equal time intervals and the corresponding time
stamps are used periodically as input for predicting the opponent's
behavior (lines 5 and 6). The reasons for periodical updating are
twofold. First, this reduces the computation complexity of EMAR
so that the response speed is improved. Assume that all observed
counter-offers were taken as input, then it would be necessary to
deal with perhaps many thousands of data points at once. This
computational load would have a clear negative impact on the

quality of negotiation in a real-time setting. Second, the effect of
noise can be reduced. This is important because in multi-issue
negotiations a small change in utility of the opponent can result in
a large utility change for the other agent – and this can easily
result in a fatal misinterpretation of the opponent's behavior.

The general idea behind opponent modeling realized by EMAR
is to apply the “divide-and-conquer” principle to construct a reason-
able forecasting methodology. Opponent modeling is mainly based
on a combination of Empirical Mode Decomposition (EMD, e.g.,
Hunag et al., 1998; Huang and Shen, 2005; Flandrin et al., 2004) and
Autoregressive Moving Average (ARMA, e.g., Box et al., 1994). In more
detail, EMD is first employed to decompose the time series given by
the utilities of past counter-offers into a finite number of components
in order to make the prediction task simplified, and then ARMA is
applied to predict future values of these sub-components.

EMD, which is based on the Hilbert–Huang transform (HHT), is
a decomposition technique which relies on time-local character-
istics of data and can deal with nonlinear and non-stationary time
series in an adaptive manner. It has been widely applied as a
powerful data analysis tool in a broad scope of fields such as
finance, image processing, ocean engineering and solar studies. A
main advantage of EMD as a decomposition method is that it is
very suitable for analyzing complicated data and is fully data
driven (thus requiring no additional decomposition information) –
this makes EMD an effective and efficient decomposition method.
Compared to traditional Fourier and wavelet decompositions, EMD
has several distinct advantages (Huang et al., 2003; Yu et al.,
2008). First of all, fluctuations within a time series are automati-
cally selected from the time series. Second, EMD can adaptively
decompose a time series into several independent components
called Intrinsic Mode Functions (IMFs). With the usage of the IMFs
a residue can be calculated which captures the main trend of the
time series. Lastly, unlike wavelet decomposition, no filter base
function needs to be determined beforehand – which is particu-
larly helpful when there is no prior knowledge about which filters
work properly.

The IMFs satisfy the following conditions:

1. In the whole data set (time series), the number of extrema and
the number of zero crossings must either equal or differ at most
by one.

2. At any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima
is zero.

Any data series can be decomposed into IMFs according to the
following sifting procedure (let kZ1, k indicates the iterative
decomposition level):

1. Take signal rk�1 as input, with r0 representing the original
signal χðtÞ.
(a) Identify all local extrema of the signal rk�1.
(b) Construct the upper envelop Uppðrk�1Þ and the lower

envelop Lowðrk�1Þ by interpolating via a cubic spline the
maximum and minimum values, respectively.

(c) Approximate the local average by the envelop mean
Meanðrk�1Þ ¼ ðUppðrk�1ÞþLowðrk�1ÞÞ=2.

(d) Compute the candidate implicit mode hkn ¼ rk�1�
Meanðrk�1Þ.

(e) If hkn is an IMF, then calculate rk as rk ¼ rk�1�hkn. Otherwise
replace rk�1 with hkn and repeat sifting.

2. If rk has an implicit oscillation mode, set rk as input signal and
repeat step 1.

This sifting process serves two purposes: to eliminate riding waves
and to make the wave profiles symmetric.
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The decomposition procedure can be repeated on all subse-
quent components rj, and the result is

r0�c1 ¼ r1; r1�c2 ¼ r2;…; rn�1�cn ¼ rn: ð3Þ
This procedure terminates when (1) the latest residue rk becomes
a monotonic function (from which no more IMFs can be extracted)
or (2) the IMF component ck or the residue becomes less than the
predetermined value of substantial consequence. Overall, c1 con-
tains the signal at a fine-grained time scale and subsequent IMFs
include information at increasingly longer time periods (i.e., lower
frequencies). Eventually, the data series χðtÞ can be expressed by

χðtÞ ¼ ∑
n

i ¼ 1
ciþrn ð4Þ

where n is the total decomposition layer (i.e., the number of IMFs),
ci is the i-th IMF component and rn is the final residue (which
represents the main trend of the data series). With that EMAR is
able to achieve a decomposition of the data into n empirical modes
and one residue (refer to line 7). The IMFs contained in each
frequency band are independent and nearly orthogonal to each
other (with all having zero means) and they change with variation
of the data series χðtÞ, while the residue part captures the central
tendency. An example can be found in Fig. 2, which shows χ and
resulting IMFs along with the residue part. Observation can clearly
tell that the frequency characteristic of these IMFs is becoming
increasingly lower, leading to the last term, i.e., r3, just remaining
the core tendency of the original signal.

In the next stage, ARMA is used to predict all resulting
components, and then ensemble them to forecast opponent
behaviors (shown in line 8). ARMA is a common regression
analysis model widely used in many fields, with the formal
expression as follows:

1þ ∑
p

i ¼ 1
ϕiL

i

 !
Xt ¼ 1þ ∑

q

i ¼ 1
θiL

i

 !
ϵi ð5Þ

where L is the lag operator, ϕi are parameters for the p-order
autoregressive term, θ are parameters for the moving average
term with q order, and ϵ is a parameter capturing white noise. The
parameters p and q are then chosen via the Akaike information
criterion (AIC). AIC is a measure of the relative goodness of fit of a

statistical model. For a through discussion of it, interested reader is
advised to refer to Ljung (1999).

Eq. (5) is applied with appropriate parameters for each com-
ponent extracted via EMD (i.e., ci and the residue) for the purpose
of making accurate prediction, and then EMAR ensembles them to
predict the future counter-offers of the opponent. Fig. 3 exempli-
fies this methodology, depicting the prediction power achieved
through ARMA with a lead time of six intervals. Further details of
usage are given in Section 4.2.

4.2. Adaptive decision-making

EMAR adjusts the concession rate on the basis of the generated
opponent model. Thereby a dynamic conservative expectation R(t)
is used to avoid “irrational concession” caused by inaccurate or,
more importantly, over-pessimistic predictions. This makes sense
in the case of negotiation opponents that are “sophisticated and
tough” and aim at avoiding (or maximally delaying) concession
making in bargaining: in this case prediction can lead to a
misleading, very low expectation about the utility offered by the
opponent and this, in turn, could result in an adverse concession
behavior. Furthermore, using global prediction could make this
situation even worse. (This phenomenon is also considered in
Section 5.2.)

R(t) guarantees the desired minimum utility at each step,
yielding values which are taken as the lower bound of the agent's
expected utilities. For the purpose of adaptation to complex
negotiation sessions, R(t) requires two parameters emin and ures.
They are both periodically updated depending on the forecast of
the opponent concession (see line 10). emin is defined as the
minimum expectation of the compromise suggested by the oppo-
nent. Specifically, emin is set to the maximum value of ψ lowðtÞ,
which is the estimated lower bound of the predicted χ given by
the central trend. Formally:

ψ lowðtÞ ¼ωðtÞðeðr½0;tl �Þ�sðr½0;tl �ÞÞ ð6Þ
where ω is the predicted main tendency of χ, r½0;tl� is the series
including the ratio between ω over χ within [0,tl], the operator e is
the expected value and s the standard deviation.

Having obtained ψ low, emin can be defined as follows:

emin ¼
ϑ if ϑ4Maxðψ lowðtcþξÞÞ
Maxðψ lowðtcþξÞÞ otherwise

(
ð7Þ

where MaxðxÞ returns the maximum value of input vector x and ϑ
is the reservation value. Because counter-offers with utilities
indicated by ψ low have already been received or can be expected
in the future opponent moves, the use of the maximum value
assures an increase of the agent's potential profit at low risk of a
failure.

The variable ures is the dynamic reservation utility specifying
the lowest expectation of the eventual benefit at the time point tl.
Formally this is captured by

ures ¼
ϑ if ϑ4Maxðψ lowðtlÞÞ
1
2
ðMaxðψ lowðtlÞÞþϑÞ otherwise

8><
>: ð8Þ

Because the final negotiation outcome (failure or agreement) is
more sensitive to ures than emin, EMAR adopts a cautious and
conservative way to specify it, where only ψ lowðtlÞ is considered.

Based on the above specifications, the dynamic conservative
expectation function, in principle, should concede over time and
dynamic reservation utility (ures), whereas it is proportional to the
minimum expectation (emin) and the discounting factor (note a
small value of discounting factor means larger time pressure).
Thus R(t) can be characterized as a dynamic conservative
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Fig. 3. Illustrating the prediction power of EMAR based on ARMA. The original time
series χ, represented by the thick solid line, is received from negotiation with agent
Agent_K2 in domain Camera. The prediction is depicted by the thin solid line, and
the two dashed lines show the estimated upper and lower bounds of χ. The vertical
thick dash–dot line indicates the time point at which EMAR calculated the
prediction, and the circles right to this line are the utilities actually received in
the subsequent negotiation phase.
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expectation function that carefully estimates utilities. R(t) can be
instantiated in different ways, for example:

RðtÞ ¼ δη cos
1�δ
1:1

tλ
� �

ð1�t1=βÞðgetMaxUðPÞ�uresÞ

þemin�ures

2
ð1�t5δÞþemin ð9Þ

where β and λ are concession factors affecting the concession rate,
getMaxUðPÞ is the function specifying the maximum utility
dependent on a given preference P, δ is the discounting factor,
and η is the risk factor which reflects the agent's optimal
expectation about the maximum utility it can achieve. The cosine
function is used because it is a monotone decreasing function over
[0,1] with the codomain being between 0.5 and 1, and the
discounting factor is multiplied by 5 to avoid quick concession
already in the early negotiation stage.

The subsequent process is then to decide the target utility
EMAR expects to gain, represented by line 12. The ensemble of all
predicted components provides useful information about the
opponent behavior in the lead time. This is essential because
the observation of ω (and its estimated bound ψ ) only gives the
ambiguous area where opponent would make a compromise
(rather than how the move might look like). Let the predicted
utility series be E(t), given as follows:

EðtÞ ¼ ∑
n

i ¼ 1
f iðciðtÞ; ξÞþ f nþ1ðrnðtÞ; ξÞ ð10Þ

where f iðx; yÞ is the corresponding prediction model for compo-
nents ci (the IMFs) and rn (the residue). The first parameter
corresponds to the input data, the second is the lead time for
prediction.

Assume that the future expectation we have obtained from E(t) is
optimistic (i.e., there exists an interval {T jTa∅; TD ½tc; ts�}), that is,
EðtÞZRðtÞ; tAT ð11Þ
where ts is the end point of the predicated series and tsrtmax. In the
present case the time t̂ at which the maximal expectation û is
reached is set as follows:

t̂ ¼ argmax
tAT

EðtÞ ð12Þ

Moreover, in this case û is defined as

û ¼ Eðt̂ Þ ð13Þ
On the other hand, now assume that the estimated opponent

concession is below the agent's expectations (according to R(t)),
that is, there exists no such time interval T as in the “optimistic
case”. Then it is necessary to define the probability of accepting
the best possible utility that can be achieved under this pessimistic
expectation. This probability should be inversely proportional
to the minimum adjusted difference between DðRðtνÞ; tνÞ and
DðEðtνÞ; tνÞ, and the discounting factor, which is formulated here as

φ¼ 1� DðRðtνÞ; tνÞ�DðEðtνÞ; tνÞ
ρ �

ffiffiffiffiffiffiffiffiffiffi
1�δ

p
DðgetMaxUðPÞδη; tνÞ

; tνA ½tc; ts� ð14Þ

where ρ indicates the acceptance tolerance for the pessimistic
forecast and tν is given by

tν ¼ argmin
tA ½tc ;ts �

ðjDðE; tÞ�DðR; tÞjÞ ð15Þ

Depending on the probability φ the best possible outcome in the
“pessimistic” scenario is chosen as the target utility. The rationale
behind it is that if the agent rejects the “locally optimal” counter-
offer (which is not too negative in accordance with ρ), it probably
gives up the opportunity to reach a fairly good agreement. In the
acceptance case, û and t̂ are defined as EðtνÞ and tν, respectively.
Otherwise, û is defined as �1, meaning it does not take an effect,
and RðtcÞ is used to set the target utility u′. When the agent expects

to achieve a better outcome (see Eq. (11)), it chooses the optimal
estimated utility û as its target utility (see Eqs. (12) and (13)).

Obviously, it is not rational and smart to concede immediately
to û when ulZ û, or it is appropriate for an agent to shift to û
without delay if ulo û (especially because the predication may be
not very accurate). To deal with this, EMAR simply concedes
linearly. More precisely, the concession rate is dynamically
adjusted in order to be able to “grasp” every chance to maximize
profit. Overall, u′ is calculated as follows:

u′¼
RðtcÞ if û ¼�1

ûþðul�ûÞtc�t̂
tl�t̂

otherwise

8><
>: ð16Þ

where ul is the utility of last bid before EMAR performs prediction
process at time tl.

4.3. Response to counter-offers

This stage corresponds to lines 13–18 in Algorithm 1. When the
expected utility u′ has been determined, the agent needs to
examine whether the utility of the latest counter-offer UðOoppÞ is
better than u′ or whether it has already proposed this offer in the
earlier negotiation process. If either of these two conditions is
satisfied, the agent accepts this counter-offer and finishes the
current negotiation session. Otherwise, the agent constructs a new
offer which has a utility within some range around u′. There are
two main reasons for this kind of consideration. First, in negotia-
tions with multiple issues it is possible to generate a number of
offers whose utilities are the same or very similar for the offering
agent, but have very different utilities the opposing negotiator.
(Note that in real-time constraints environment there are no limits
for the number of negotiation rounds, which means that an agent
in principle can construct a large amount of offers having a utility
close to u′ and, thus, has the opportunity to explore the utility
space with the purpose of improving the acceptance chance of its
proposals.) Second, it is sometimes impossible to make an offer
whose utility is exactly equivalent to u′. It is thus reasonable that
an agent selects any offer whose utility is in the range
½ð1�0:005Þu′; ð1þ0:005Þu′�. If no such solution can be constructed,
the agent makes its latest bid again in the next round. Moreover,
with respect to negotiation efficiency, if u′ drops below the utility
provided by the best counter offer, the agent chooses that best
counter offer as its next offer. This makes much sense because this
counter offer can well satisfy the expected utility of the opponent
who then will be inclined to accept it.

5. Experimental analysis

In order to evaluate the performance of EMAR, the General
Environment for Negotiation with Intelligent multipurpose Usage
Simulation (GENIUS) (Hindriks et al., 2009) is used as the testing
platform. GENIUS is the standard platform for the annual Interna-
tional Automated Negotiating Agents Competition (ANAC) (Fujita
et al., 2013). In this environment an agent can negotiate with other
agents in a variety of domains, where the utility function is
defined by the preference of each negotiating party. The perfor-
mance of an agent (its negotiation strategy) can be evaluated via
its utility achievements in negotiation tournaments which include
a possibly large number of negotiation sessions over a variety of
negotiation domains. Section 5.1 describes the overall experimen-
tal setting and Sections 5.2 and 5.3 then present the experimental
results in the context of tournament performance. Furthermore, an
empirical game theoretic evaluation is applied to study the
robustness of the proposed method. The results of this evaluation
are presented in Section 5.4.
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5.1. Environmental setting

EMAR is compared against the best winners (i.e., the top five
agents) of ANAC 2011 instead of all ANAC 2011 agents in order to
make the setting more competitive; these are HardHeaded,
Gabhoninho, IAMhaggler2011, BRAMAgent and Agent_K2 (des-
cending order in ANAC 2011, and for technicalities of these agents
refer to Baarslag et al., in press). Moreover, we use nine standard
domains created for ANAC as testing scenarios. Around half of
these domains were used in ANAC 2010 and others were from later
ANAC competitions. It makes the setting avoid advantageous bias
for EMAR (note that the developers of the 2011 winners knew the
ANAC 2010 domains and could optimize their agents accordingly).
Additionally, to evaluate the performance in domains where agent
performance are affected by time-discounting factors, we equip
the domains with a discounting factor. Each domain thus has two
versions, that is, a non-discounting and a discounting version. The
domains used for the experimental analysis are carefully chosen so
that they cover a very broad range of important domain features.
Specifically, the domains vary w.r.t. level of competition/opposi-
tion, size of outcome space, and time pressure. Moreover, the set of
chosen domains includes many test domains used in recent
related works (e.g., see Williams et al., 2011; Hao and Leung,
2012; Chen and Weiss, 2012a), which makes EMAR directly
comparable to other approaches. The application domains are
overviewed in Table 1 with respect to four key aspects. For each

version of the domains, we run a tournament consisting of six
agents (i.e., the five 2011 winners and the EMAR agent) 10 times to
get results with high statistical confidence, where each agent
negotiates against all other agents in different roles. These roles
are predefined in ANAC domains and correspond to conflictive
preferences like “buyer” and “seller”. The agents do not have any
information about their opponents’ strategies and they are pro-
hibited to take advantage of knowledge they might have acquired
in previous negotiation sessions about their opponents. The
duration of a negotiation session is 180 s.

Furthermore, the experiments are also done using the top
agents from ANAC 2012 as benchmarks. The 2012 competition,
as the latest international negotiation competition so far, was held
later than the finalization of EMAR. It is therefore of interest to
compare how EMAR performs playing against those most recent
and advanced agents. The results are presented in Section 5.3 in
addition to the primary results (with the best winners of ANAC
2011) given in Section 5.2.

The EMAR agent divides the overall duration of a session into
100 consecutive intervals of 1.8 s each. The lead time ξ is 6, the
pair concession coefficients of ðβ; λÞ is (0.04,3) and the risk factor η
is 0.2, the tolerance coefficient ρ is 0.05. These values work well in
practice, but we have not intended to tweak them to stay away the
issues of over-fitting and unfair competition.

5.2. Primary competition results

We show the experimental results achieved by each agent in
terms of raw score (i.e. the score or utility from the experimental
results without being normalized) averaged over the non-
discounting and discounting version of each domain in Fig. 4.
As depicted in the figure, the results clearly highlight the excellent
bargaining skills of EMAR. Precisely, EMAR wins in all 10 domains,
with achieving a mean score of 18% higher than that of the other
five competing agents. Most notably and impressively, it outper-
forms others in the domain with the largest outcome space–
Energy, by a margin of 31% over the mean score of the ANAC 2011
agents.

Table 2 shows the mean (raw) scores of all agents averaged
over the non-discounting and discounting versions of the
domains. Our agent, on average, is the best, both in the context
of negotiations where the time-discounting pressure takes effect
or not. In more detail, in the non-discounting domains, the average

Table 1
Overview of application domains.

Domain Issues Size Opposition Discounting factor

Non-dis.
version

Dis.
version

Travel 7 188,160 Medium 1.0 0.4
Itex vs Cypress 4 180 Strong 1.0 0.5
SuperMarket 6 98,784 Strong 1.0 0.5
England vs

Zimbabwe
5 576 Medium 1.0 0.6

Energy 8 390,625 Strong 1.0 0.6
NiceOrDie 1 3 Strong 1.0 0.6
Amsterdam party 6 3024 Medium 1.0 0.7
Grocecy 6 1600 Weak 1.0 0.7
Camera 5 3600 Weak 1.0 0.89

Travel Itex vs Cyp. SuperMarketEng. vs Zim. Energy NiceOrDie Ams. Party Grocecy Camera
0.1
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EMAR
Gahboninho
BRAMAgent
HardHeaded
IAMhaggler2011
Agent_K2

Fig. 4. Raw scores of all agents in the 10 domains, averaged over the respective non-discounting and discounting domains. The vertical axis gives the scores and the
horizontal axis shows the domains.
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performance of the five opponents reaches 82.6% of ours, and
EMAR outperforms the other agents by 14% across the discounting
version of the domains. Moreover, EMAR shows the smallest
standard deviation among all agents. The overall performance is
summarized in Table 3. Normalization is done in the standard way,
using the maximum and minimum utilities obtained by all agents.
According to the overall performance shown in this table, EMAR is
ranked number one, with an average normalized score of 0.718.
This is 15.2% above the second best agent – HardHeaded – and 30%
above the mean score of all five opponents. Moreover, the
performance of EMAR is the most stable, with merely 54.2% of
the mean standard deviation of the other agents. EMAR is followed
by HardHeaded and Gahboninho; these two agents made the first
two places in ANAC 2011. Agent_K2, which is an updated version
of the champion (named Agent_K) in ANAC 2010, made the fourth
place. We notice that the ranking is somewhat different from the

final results of ANAC 2011 for other agents. Based on the experi-
mental results we think that this is mainly caused by the
participation of EMAR, leading to changes in the relative strength
among the negotiating agents. To sum up, these results show that
EMAR is pretty efficient and significantly outperforms in a variety
of negotiation scenarios the state-of-the-art automated negotia-
tors (resp. negotiation strategies) currently available.

An interesting observation is that there is the noticeable gap
between EMAR and IAMhaggler2011. More specifically, this agent
only achieves 70.6% of the performance of EMAR in terms of
normalized utility. As described in Williams et al. (2011), similar to
EMAR IAMhaggler2011 aims at predicting an opponent's future in
order to be able to adjust its own behavior appropriately. Unlike
EMAR, IAMhaggler (i) applies Gaussian process as prediction tool
and (ii) adapts its concession rate on the basis of a global
prediction view (i.e., on the basis of the whole preceding negotia-
tion process). Our experimental studies suggest that a main reason
for this performance gap lies in the global prediction view: this
view seems to be vulnerable to “irrational concession making”
induced by pessimistic predictions (see also Section 4.2). The
phenomenon of irrational concession becomes increasingly appar-
ent when IAMhaggler2011 bargains with “sophisticated and
tough” opponents like HardHeaded, Gahboninho, and EMAR. For
instance, when competing against these opponents in a highly
competitive domain (i.e., Itex vs Cypress), IAMhaggler2011 only
achieves a utility of 0.313 while the three opponents achieve 0.903
on average.

5.3. Additional competition results

The above setting focuses on non-discounting domains. As an
additional evaluation of the negotiation performance of EMAR in
discounting settings, we ran a tournament with the five best
winners of ANAC 2012; these agents are CUHKAgent, AgentLG,
OMACagent, TheNegotiator reloaded, and BRAMAgent_2. For this
tournament, we sampled the discounting factor of each domain
from a uniform distribution in the interval [0.5,1] to obtain
conclusive performance results for different time-pressure scenar-
ios. Note that we do not mix ANAC 2011 and 2012 agents, because
the concept of reservation values was not yet used in the 2011
competition and the agents thus were not sensitive to this
concept. Instead, we isolate the effect of reservation value on the
agents’ performance by averaging over the results for the same
reservation value. The reservation values ϑ used here are 0, 0.25

Table 2
Average raw score of each agent for the non-discounting and discounting domains.

Agent Non-discounting domains Discounting domains

Mean Standard deviation Mean Standard deviation

EMAR 0.801 0.0038 0.579 0.0026
Gahboninho 0.776 0.0085 0.481 0.0081
HardHeaded 0.744 0.0138 0.523 0.0063
Agent_K2 0.622 0.0083 0.505 0.0061
IAMhaggler2011 0.582 0.0044 0.524 0.0027
BRAMAgent 0.582 0.0078 0.506 0.0069

Table 3
Overall performance. The bounds are based on the 95% confidence interval. The
initial letter (bold) of each strategy is taken as the identifier for the later EGT
analysis.

Agent Normalized score

Mean Standard deviation Lower bound Upper bound

EMAR 0.718 0.0058 0.706 0.729
HardHeaded 0.623 0.0128 0.598 0.649
Gahboninho 0.617 0.0119 0.593 0.641
Agent_K2 0.520 0.0107 0.498 0.541
IAMhaggler2011 0.507 0.0063 0.494 0.519
BRAMAgent 0.494 0.0118 0.471 0.518

OMACagent CUHKAgent EMAR BRAMAgent 2 AgentLG TheNegotiator
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Fig. 5. Agent performance under different levels of reservation value when the ANAC 2012 agents are considered.
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and 0.5. Fig. 5 shows the mean score of each agent for each value
of ϑ. All agents, unsurprisingly, manage to achieve more profit as
the reservation value increases. EMAR is the dominating agent
regardless of the value of ϑ. The top three agents of ANAC 2012 –

CUHKAgent, AgentLG and OMACagent – finish second for different
reservation values. Table 4 summarizes the outcome of this
tournament. As can be seen from this table, EMAR is superior to
the other agents in that it achieves the highest score among all
strategies; overall, it exceeds the performance averaged over the
best winning strategies of ANAC 2012 by a margin of 3.6%.

5.4. Empirical game theoretical analysis

The experimental studies analyze the strategy performance
from the common competition perspective (i.e., in terms of the
mean scores achieved by the agents). This analysis is limited in
that it does not provide a clear indication of the robustness of
these strategies. In particular, it does not answer the question
whether a strategy is so robust that it keeps its performance level
in negotiation settings where the opponents are allowed to
deviate, i.e., to switch to another strategy in search for a better
outcome. To address this robustness criterion, empirical game
theory (EGT) analysis (Jordan et al., 2007), which was initially
developed to analyze the Trading Agent Competition (TAC), is
applied to the competition results. We consider the statistically
significant deviations as in Williams et al. (2011), where there is an
incentive for an agent to unilaterally change its strategy in order to
achieve a statistically significant increase of its own profit. The aim
of using EGT is to search for pure Nash equilibria, in which no
agent has an incentive to deviate from its current strategy.

We investigated strategy robustness by means of EGT in the
two following scenarios:

1. a single negotiation between two players, and
2. a tournament consisting of six agents, each using one of the top

three strategies reported in Table 3.

The former scenario captures bilateral agent–agent negotiation
situations (i.e., with only two players participating in the game),
and the latter captures such a kind of negotiation in the context of

tournaments (i.e., with more than two players being involved).
In the following, we do the game-theoretic analysis on the basis of
the primary competition results shown in Section 5.2. The initial
letter of each strategy is used as the strategy identifier (e.g., H
means Hardheaded). The strategy set, S, is thus given by S¼{E, G,
B, H, I, A}.

For the first scenario, each agent is allowed to choose one
strategy from S. We define a profile as the two strategies used by
the players in the game (note that they may use the same
strategy). Furthermore, the score of a specific strategy in a
particular profile is calculated as its averaged payoff achieved
when playing against the other strategy. The payoff matrix is given
in Table 5, where each entry is a pair of scores composed of the
score for the row player and the score of the column player. Using
this payoff matrix, the results are generated and depicted in Fig. 6.
The first row of each node represents a strategy profile being a mix
of two strategies from S, and the second row shows the average
score of the two strategies. This score is used as a measure of the
social welfare achieved by the strategies, which can represent the
overall benefit brought by a profile to the whole set of participants.
An arrow indicates the statistically significant deviation between
strategy profiles. For instance, the most left arrow in the figure
means that there is a switch from the strategy profile (H,I) to (E,I);
as a consequence, the agent deviating from strategy H (with utility
0.748 according to Table 5) to E (with utility 0.796) achieves a
utility increase of 0.048. According to the EGT analysis, there exists
one pure Nash equilibrium, namely, the strategy profile (E⋆ versus
E⋆). The equilibrium thus contains only EMAR. From this it follows
that for any non-Nash equilibrium strategy profile there exists a
path of statistically significant deviations (strategy changes) that
leads to this equilibrium. This shows that EMAR is the most robust
strategy in this scenario.

As a second scenario, we consider tournaments consisting of
six agents, where each agent is permitted to choose one of the top
three strategies shown in Table 3. The results of the EGT analysis of
these tournaments are shown in Fig. 7. Here a profile is defined as
the mixture of strategies used by the six players in a tournament.
The nodes consist of two rows: the top row shows the set of
strategies selected by agents in the tournament, and the second
row shows the number of agents choosing each strategy. As can be
seen from Fig. 7, just like in the previous scenario there only exists
one pure Nash equilibrium and in this equilibrium all agents use
EMAR. This means, in particular, that for any non-Nash equilibrium
strategy profile there exists a path of statistically significant
deviations leading to this equilibrium. With that the results for
the second scenario also confirm the high robustness of EMAR.

We also conducted the EGT analysis for the unrestricted
scenario of 6-agent tournaments with all strategies. The achieved
results confirm the outcome of the two simpler scenarios
described above. Due to the large number of profiles involved in
the unrestricted scenario, a clear visualization of the results in an
EGT graph is not possible (this graph contains ðjpjþ jsj�1

jpj Þ ¼ ð116 Þ ¼ 462
distinct nodes, where jpj means the number of players and jsj the
number of strategies).

Table 4
Overall performance averaged across all domains with the best agents of ANAC
2012 included.

Agent Mean 95% Confidence interval

Lower bound Upper bound

EMAR 0.551 0.541 0.561
OMACagent 0.542 0.529 0.556
CUHKAgent 0.540 0.527 0.576
AgentLG 0.539 0.526 0.552
TheNegotiator reloaded 0.537 0.523 0.551
BRAMAgent_2 0.503 0.483 0.522

Table 5
Agent-pair payoff matrix, where the score pair in each entry is averaged over all domains, with the first score representing the row player and the second for the column
player. (The first letter of each agent, in bold, is used as the identifier.)

Strategy EMAR Gahboninho BRAMAgent HardHeaded IAMhaggler2011 Agent_K2

EMAR (0.542,0.542) (0.673,0.508) (0.655,0.382) (0.640,0.532) (0.796,0.444) (0.684, 0.487)
Gahboninho (0.508,0.673) (0.639,0.639) (0.645,0.468) (0.539,0.592) (0.790,0.526) (0.662,0.581)
BRAMAgent (0.382,0.655) (0.468,0.644) (0.544,0.544) (0.556,0.613) (0.661,0.604) (0.654,0.548)
HardHeaded (0.533,0.640) (0.592,0.539) (0.613,0.556) (0.578,0.578) (0.748,0.526) (0.683,0.495)
IAMhaggler2011 (0.444,0.796) (0.526,0.790) (0.604,0.661) (0.526,0.748) (0.658,0.658) (0.663,0.708)
Agent_K2 (0.487,0.684) (0.581,0.662) (0.548,0.654) (0.495,0.683) (0.708,0.664) (0.627,0.627)
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6. Conclusion

This paper introduced an effective strategy called EMAR for
automated bilateral negotiation in complex environments (multi-
issue, time-constrained, unknown opponents, and no prior
domain knowledge). EMAR outperforms state-of-the-art agents

chosen from the International Automated Negotiation Agents
Competition 2011 and 2012, both from the perspective of mean-
score analysis and EGT analysis.

Research described in this paper opens several interesting
research avenues and questions, and we consider the following
three questions as most promising. First, are there opponent
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modeling techniques which are more efficient than the one used
by EMAR under the considered negotiation framework? Techni-
ques that can be considered here are, for instance, Gaussian
processes or GMDH networks (Madala and Ivakhnenko, 1994). As
regards Gaussian processes, recently Chen et al. (2013) proposed a
method using sparse pseudo-input Gaussian processes to reduce
the computational complexity of a opponent modeling. To com-
pare this method and EMAR w.r.t. their effectiveness and applic-
ability under different negotiation circumstances can yield
valuable insights on automated bilateral negotiation, and this
comparison is on our current research agenda. Next, is it possible
to extend opponent modeling of EMAR, which focuses on model-
ing the opponents’ negotiation strategies, toward modeling of the
opponents’ preferences? We believe that such an extension would
lead to a significant increase in negotiation power. And, last but
not least, how can an agent transfer knowledge it gained in a
negotiation task or domain to other, possibly new negotiation
tasks and domains? In our current work we approach this question
from the perspective of transfer reinforcement learning.
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