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Abstract Automatednegotiationhas beengained amass of attentionmainly because
of its broad application potential in many fields. This work studies a prominent class
of automated negotiations – multi-lateral multi-issue negotiations under real-time
constraints, where the negotiation agents are given no prior information about their
opponents’ preferences over the negotiation outcome space. A novel negotiation
approach is proposed that enables an agent to obtain efficient agreements in this
challenging multi-lateral negotiations. The proposed approach achieves that goal by,
(1) employing sparse pseudo-input Gaussian processes (SPGPs) tomodel opponents,
(2) learning fuzzy opponent preferences to increase the satisfaction of other parties,
and (3) adopting an adaptive decision-making mechanism to handle uncertainty in
negotiation.

1 Introduction

Negotiation is ubiquitous in our daily life and serves as an important approach
to facilitate conflict-resolving and reaching agreements between different parties.

This paper is a shortened version of our previous work [6].
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Development of automated negotiation techniques enables software agents to per-
form negotiations on behalf of human negotiators. This can not only significantly
alleviate the huge efforts of human negotiators, but also aid human in reaching bet-
ter negotiation outcomes by compensating for the limited computational abilities of
humans when they deal with complex negotiations [13].

During negotiations, an agent usually keeps its strategy and preference as private
information, in order to avoid possible exploitation. Thus one major research chal-
lenge is to effectively estimate the negotiation partner’s preference profile [2, 10, 14,
21] and predicate its decision function [15, 20]. On one hand, through getting a better
understanding of partners’ preferences, it would increase the possibility of reaching
mutually beneficial outcomes. On the other hand, with effective strategy prediction
it enables negotiation agents to maximally exploit their negotiating partners and thus
receive as much benefit as possible [9]. Until now, fruitful research efforts have
been devoted to developing automated negotiation strategies and mechanisms in a
variety of negotiation scenarios [4, 7, 13–15, 19]. However, most research efforts
have been devoted to bilateral negotiation scenarios, which only models the strategic
negotiation among two parties. However, in real life the more common and general
way of negotiations usually involve multiple parties. It is in common agreement
from the automated negotiation research community that more attention should be
given to multilateral negotiations and investigate effective negotiation techniques for
multilateral negotiation scenarios.

In this work, a novel negotiation approach is proposed for intelligent agents to
negotiate in multilateral multi-issue real-time negotiation. During negotiation, the
agents’ negotiation strategies and preference profiles are their private information,
and the available information about the negotiating partner is its past negotiation
moves [12]. Due to the huge strategy space that a negotiating partner can consider, it
is usually hard to predict which specific strategy the agent is employing based on the
very limited amount of information. Toward this end, instead of predicting the exact
negotiation strategies of the opponents, we adaptively adjust the non-exploitation
point λ to determine the perfect timing that we should stop further exploits the
opponents, and then determine the aspiration level (or the target utility) for proposing
offers to opponents before and after the non-exploitation point following different
rules. The value of λ is determined as the timing when the estimated expected future
utility we can obtain over all opponents is maximized. The future utility that each
opponent offers can be efficiently predicted using the Sparse Pesudo-inputs Gaussian
Process (SPGP) technique by dividing the negotiation history into a number of atomic
intervals.

Given the aspiration level for offering proposals, another important question is
how should we select an optimal proposal to reach efficient agreements with other
parties, which can also improve the possibility of accepting this offer by the negoti-
ating partners. In this work, we measure the efficient degree of an outcome from a
practical perspective – the social welfare of participants. We propose modeling the
preferences of each opponent using the least square error regression technique on
the basis of negotiation history. After that, the offer with the highest social welfare
is selected as the offer to be proposed with certain exploration.
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The remainder of the work is organized as follows. Section2 introduces the mul-
tilateral negotiation model given in this work. In Sect. 3, our negotiation approach is
then introduced in details. Finally, conclusion and future work are given in Sect. 4.

2 Multilateral Negotiation Model

To govern the complex process of a multilateral negotiation, we adopt an extension
of a basic bilateral negotiation protocol [17] which is widely used in the agents
field [5, 6, 8, 11, 19]. The participating agents try to establish a contract for a
product (service) or reach consensus on certain matter on behalf of their parties [6].
Precisely, let A = {a1, a2, . . . , ai , . . . , am} be the set of negotiating agents, J be the
set of issues under negotiation with j a particular issue ( j ∈ {1, . . . , n} where m is
the number of issues) [3, 5, 6, 8]. Following the alternating bargainingmodel of [17],
each agent, in turn, has a chance to express its opinion about the ongoing negotiation.
The opinion can be communicated in a form of a contract proposal (e.g., a new offer),
or an acceptance of the latest offer on the table (note that previous offers would not be
accepted once there exists a new proposal), or terminating the negotiation according
to its interpretation of the current negotiation situation. A simple illustration of the

Fig. 1 Multilateral negotiation protocol
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multilateral negotiation process is shown in Fig. 1. Due to space constraints we refer
the interested reader to the work [1] for further details [3, 5, 6, 8].

An offer is taken as a vector of values, with one value for each issue. The utility
of an offer for agent i is calculated by the utility function defined as follows:

U i (O) =
n∑

j=1

(wi
j · V i

j (O j,k)) (1)

where wi
j and O are as defined above and V i

j is the evaluation function of agent i for
issue j , mapping every possible value of issue j (i.e., O j,k) to a real number [3, 5, 6,
8]. The weight vector w denotes the weighting preference of an agent, in which wi

j
represents its preference for issue j . The issue weights of an agent are normalized
(i.e.,

∑n
j=1 wi

j = 1 for each agent i). In addition an agent has a lowest expectation
for the outcome of a negotiation – the reservation value ϑ [3, 5, 6, 8].

In this work we consider negotiation being conducted in a real-time way. Each
negotiator has a hard deadline by when it must have completed or withdraw the
negotiation [3, 5, 6, 8]. The negotiation deadline is simply denoted by tmax. For
domains where the value of agreements is discounted over time, the discounting
factor δ (δ ∈ [0, 1]) is defined to calculate the discounted utility as follows:

D(U, t) = U · δt (2)

whereU is the (original) utility and t is the standardized time. As an effect, the longer
it takes for agents to come to an agreement the lower is the utility they can obtain [3,
5, 6, 8].

3 Negotiation Approach

The proposed approach consists of three core components: deciding aspiration level,
generating new offers and respondingmechanism, all of which are described in detail
in this section. We first give an overview of our approach shown in Algorithm 1.
Following that, each step of Algorithm 1 is explained in details.

3.1 Deciding Aspiration Level

Aspiration level indicates the target utility of an agent in the negotiation process. In
order to respond to uncertainty in a negotiationwhere opponents’ private information
is unknown, the aspiration level is updated due to the environment (e.g., available
negotiation time anddiscounting effect) andopponent behaviors. The agent can there-
fore predict opponent future moves to assist its decision by analyzing past moves
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Algorithm 1 The overview of the proposed negotiation approach. Let tc be the current time point,
δ the time discounting factor, and tmax the deadline of negotiation. Oopp is the latest opponent offer,
Ωi the previous offers of opponent i and Oown a new offer to be proposed by our agent. χ is the
time series including the average utilities over intervals. E denotes the expected utility of incoming
counter-offers. λ is the non-exploitation time point and u′ the target utility. W denotes the set of
learnt opponent weight vectors [3, 5, 6, 8].

1: Require: ϑ, δ, tmax
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: Ωi ⇐ recordOfferSet(tc, Oopp, i);
5: if myTurn(tc) then
6: if updateModel(tc) then
7: χ ⇐ preprocessData(tc)
8: E ⇐ Predict(χ,Ω);
9: (λ, Umin) ⇐ updateParas(tc);
10: W = updatePrefreenceModels();
11: end if
12: end if
13: u′ = getTargetUtility(tc, E, λ);
14: Oown ⇐ constructOffer(u′, W) ;
15: if isAcceptable(u′

c, Oopp, tc, δ) then
16: accept(Oopp);
17: else
18: checkTermination();
19: proposeNewBid(Oown);
20: end if
21: end while

of the opponent. The prediction technique we use here is a computationally effi-
cient variant of standard Gaussian Processes (GPs) – Sparse Pseudo-inputs Gaussian
Processes (SPGPs), which proves effective in negotiation context [8]. Another advan-
tage of SPGPs over other type of regression techniques is that it not only provides
accurate prediction but also the measure of confidence in the prediction.

Following the notation of GPs in [16], given a data set D = {x(i), y(i)}n
i=1 where

x ∈ R
d is the input vector, y ∈ R the output vector and m the number of available

data points when a function is sampled according to a GP, so we write, f (x) ∼
GP(m(x), k(x, x′)), where m(x) is the mean function and k(x, x′) the covariance
function, fully specifying a GP. Learning in a GP setting involves maximizing the
marginal likelihood of Eq.3 [3, 5, 6, 8].

log p(y|X) = −1

2
yT

(
K + σ 2

n I
)−1

y − 1

2
log |K + σ 2

n I| − n

2
log 2π, (3)

where y ∈ R
m×1 is the vector of all collected outputs, X ∈ R

m×d is the matrix of
the data set inputs, and K ∈ R

m×m is the covariance matrix with |.| representing the
determinant.

The problem with GPs is that maximizing Eq.3 is computationally expensive due
to the inversion of the covariance matrix K ∈ R

n×n where n is the number of data
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points. For this specific reasonwe employ a fast andmore efficient learning technique
– SPGPs. The most interesting feature of SPGPs is that these approximators are
capable of attaining very close accuracy in both learning and prediction to normal
GPs with only a fraction of the computation cost. Using only a small amount of
pseudo-inputs, SPGPs are capable of attaining very similar fitting and prediction
results to normal GPs [3, 5, 6, 8].

When a counter-proposal from agent i arrives at time tc, our agent records the time
stamp tc and the utilityU (Oi ) that is evaluated in our agent’s utility space. To reduce
misinterpretation of the opponent’s behavior as much as possible that is caused by
the setting of multi-issue negotiations, the whole negotiation is divided into a fixed
number (denoted as ζ ) of equal intervals. The average utilities at each interval with
the corresponding time stamps, are then provided as inputs to the SPGPs. Results
in [18] show a complexity reduction in the training cost (i.e., the cost of finding the
parameters of the covariance matrix) to O(M2N ) and in the prediction cost (i.e.,
prediction on a new set of inputs) to O(M2) [3, 5, 6, 8].

After learning a suitablemodel, SPGPsmakes forecast about the future concession
of the opponent as shown in line 7 of Algorithm 1. Our agent keeps track of the
expected discounted utility based on the predictive distribution at a new input t
,
which is given by:

p(u∗|t
,D, X̄) =
∫

p(u
|t
, X̄, f̄)p(f̄|D, X̄)d f̄ = N (u
|μ
, σ
2
∗ ), (4)

where

μ
 = kT

 Q

−1
M (Λ + σ 2I)−1u

σ 2

 = K

 − kT


 (K−1
M − Q−1

M )k
 + σ 2

QM = KM + KM N (Λ + σ 2I)−1KN M

With given probability distribution over future received utilities and the effect of
the discounting factor, the expected utility Et
 is then formulated by

Et = 1

C

∫ 1

0
D(u · p(u;μt , σt ), t)du (5)

where μ
 and σ
 are the mean and standard deviation at time t
, and the normalizing
constant C is introduced to preserve a valid probability distribution [3, 5, 6, 8].

Our agent employs the target utility function as given in Eq.6 to determine the
aspiration level over time. The function adopts a tough manner (i.e., slowly con-
ceding) before the non-exploitation time point (λ) for seeking higher expected prof-
its, then it quickly goes to the expected minimal utility such that negotiation fail-
ure/disagreement could be avoided. λ is tweaked according to the behavior of the
negotiation participants. More precisely, the higher the average opponent concession
(measured in the our own utility space), the later our agent begins to compromise.
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u′ =
⎧
⎨

⎩

Umax − Δ
( tc

λ

)1+δ
when tc ≤ λ,

(Umax − Δ)
(
1 − tc−λ

tmax−λ

)1+δ

otherwise
(6)

whereUmax is the maximal utility,Umin is the minimal utility (Umin = max(ϑ, γ ) and
γ the received lowest opponent concession), constant Δ is the maximal concession
amount (i.e., Umax − Umin), with

λ = argmax
t∈T

1

|A| − 1

∑

i∈A\o

1

Ci

∫ 1

0
Dδ(u · p(u;μt , σt ), t)du (7)

with o representing our agent and T ∈ [tc, tmax].

3.2 Generating Offers

Given an aspiration utility level to achieve, our agent next needs to consider what
offer to send such that the likelihood of an offer being accepted could be maximized.
Performing this task would require certain knowledge about opponents’ preferences.
However, negotiation opponents unfortunately have nomotivation to reveal their true
likings over proposals (or their utility functions) to avoid exploitation. In order to
address this problem, we model the opponent concession tactics as time-dependent
tactics (originated in [11]) shown in Eq.8, which are classic tactic in the current
literature.

ũ = Umax − (Umax − ϑ)(tc/tmax)
α (8)

where α is the concession factor controlling the style of concessive behavior (for
example, boulware behavior (α < 1) or conceder behavior (α > 1)). Time-dependent
tactics are widely used in automated negotiation community to decide concession
toward opponents since an negotiator needs to make more or less compromise over
time so as to resolve conflicts of the parties. In more detail, boulware tactic maintains
the target utility level until the late stage of a negotiation process, whereupon it con-
cedes to the reservation utility. By contrast, conceder tactic makes quick compromise
to other parties once a negotiation session starts. For linear tactic, it simply reduces
the target utility from the maximal utility to the reservation utility in a linear way.

Learning opponent preferences, while useful, is indeed challenging because infor-
mation about opponent preferences over different issues (e.g., the weight vector w)
is severely lacking. To tackle this issue, researchers typically assume that opponent
concession tactic is fully known or preferences follow a certain distribution. In many
real-world applications, it is however difficult or costly to acquire the exact infor-
mation about opponent concession.1 Therefore we make a mild assumption that we

1Note that the opponent concession is the amount of concession measured in the utility space of
the opponent instead of ours.
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Fig. 2 A toy example of opponent concession ranges given by the pairs of concession factors (0.5,
2) at time 0.3, (0.5, 4) at 0.5 and (2, 0.25) 0.7, respectively

could enquire of domain experts about the approximate concession range of an oppo-
nent. This fuzzy knowledge is provided in form of a pair of concession factors that
indicate the upper and lower concession an opponent makes at each time point. This
idea is illustrated in Fig. 2. Thus, the agent can estimate opponent preferences with
the aid of the fuzzy information about opponent concession. Specifically, the pref-
erences are learnt through minimizing the loss function L , which gives the expected
loss associated with estimating opponent concession based on a weight vector. The
loss function is constructed as in Eq.10. The loss is calculated by the difference
between the mean of concession and the utility of an offer based on a weight vector
w; moreover an additional penalty is imposed by ϕ when an expected utility for w
excesses the upper and lower bounds of opponent concession. When calculating an
offer’s utility for opponent i , yet the valuation of each issue choice is needed.We here
simply assume that the importance order of issue choices is known, and approximate
the valuation like [14] as follow,

V i
j,k(O j,k) = 2r i

j,k

K (K + 1)
(9)

where K is the number of possible choices for issue j , while r i
j,k denotes the ranking

of the issue choice O j,k .
Let the opponent utility of an offer for a weight vectorw be ûw. With the opponent

concession tactic given in Eq.8 and the two concession factors (which denote the
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approximate concession range suggested by experts), our agent can estimate the
weight vector of opponent i by means of linear least squares. This can be achieved
by minimizing the following loss function,

Li (w) =

⎧
⎪⎪⎨

⎪⎪⎩

| (ui
upper+ui

lower)

2 − ûw| + ϕ(ui
lower, ûw), ûw ≤ ui

lower

| (ui
upper+ui

lower)

2 − ûw| + ϕ(ûw, ui
upper), ui

upper ≤ ûw

| (ui
upper+ui

lower)

2 − ûw|, otherwise

(10)

with ui
upper and ui

lower being the upper and lower bound of concession made by
opponent i at time t, and ϕ the penalty function as below,

ϕ(x, y) = β|x − y| 1
2 (11)

where β denotes the confidence of the expert, and the lower the value, the more
confidence the expert has about the perdition (to limit further complexness, we let β
be 1).

After the estimation of weight vectors of other parties has been done, our agent
chooses an offer being capable of maximizing the social welfare (e.g., the sum of the
utility of all participants in the negotiation) given a aspiration level, shown as below:

argmax
O

1

|A| − 1

∑

i∈A\o

(ûi
w(O) − ϑ)2

subject to

U o(O) ≥ u′

(12)

Although opponent preferences could be learnt on the basis of the provided con-
cession tactics, it sometimes may be ineffective due to the fuzzy nature of the infor-
mation; therefore our agent needs an alternative approach to choosing new offers.
Fortunately, a real-time negotiation typically allows agents to exchange a large num-
ber of offers, thereby giving them many opportunities to explore the outcome space.
Therefore, the proposed approach generates a new offer for next round following an
ε-greedy strategy. The strategy selects either a greedy action (i.e., exploit) with 1-ε
probability (ε ∈ [0, 1]) or a random action with a probability of ε [3, 5, 6, 8]. It is
worth noting that random action means choosing one offer from the set whose utility
is above the given aspiration level by chance. The greedy action aims at choosing an
offer that are expected to satisfy other sides’ preferences most in order to improve
their utilities over the negotiation outcome and the chance of the offer being accepted
through fuzzy preference learning. With a probability 1 − ε, the approach randomly
picks one of those offer whose utility is equal or larger than the given aspiration
level. In the latter case, the agent just chooses a new offer that has an utility within
some range around u′.
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3.3 Responding Mechanism

This responding mechanism of the proposed approach corresponds to lines 15–20 of
Algorithm 1. After receiving a counter-proposal, the agent should decide whether to
accept the proposal by checking two conditions. Firstly the agent validates whether
the utility of the latest offer from opponents is higher than u′, while in the second,
the agent needs to determine whether it had already proposed this very offer (i.e., the
opponent’s counter-offer) earlier. If either one of these two conditions is satisfied, the
agent then accepts the offer as shown in line 16 and the negotiation will be completed
if the proposal is also supported by the remaining agents [3, 5, 6, 8].

Moreover, when the negotiation situation becomes hard and might offer our agent
a utility even lower than the reservation utility, the agent should consider whether
to leave the negotiation course to receive the predefined reservation utility or not.
Thus the reservation value is taken as an alternative offer from opponents with a
constant utility. Thus the agent needs to check if the aspiration utility is smaller than
the reservation utility. If positive, our agent is going to leave the negotiation table in
the next round. If our agent decides neither to accept the latest counter-proposal nor
to leave the negotiation, it proposes a new offer following the steps of lines 19 of
Algorithm 1.

4 Conclusion

This work introduced a novel approach for multilateral agent-based negotiation in
complex environments (i.e., multiple issues, real time-constrained, and unknown
opponents). Our proposed approach, based on the adaptive decision-making scheme
and the effective preference learning method, outclassed recent top ANAC agents.
Empirical evaluation (see [6]) shows that our agent ont only generates a higher mean
individual utility but also leads to better social welfare compared to the state-of-the-
art negotiation agents, and further game-theoretic analysis clearly manifests the high
robustness of the proposed approach.
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