
A MultiAgent System for Physically based

Rendering Optimization

Carlos Gonzalez-Morcillo1,2, Gerhard Weiss2, Luis Jimenez1,
David Vallejo1, and Javier Albusac1

1 Escuela Superior de Informatica,
University of Castilla-La Mancha, Spain
2 Software Competence Center GmbH

Hagenberg, Austria
Carlos.Gonzalez@uclm.es,Gerhard.Weiss@scch.at,Luis.Jimenezo@uclm.es,

David.Vallejo@uclm.es,JavierAlonso.Albusac@uclm.es

http://oreto.inf-cr.ulcm.es - http://www.scch.at

Abstract. Physically based rendering is the process of generating a 2D
image from the abstract description of a 3D Scene. Despite the develop-
ment of various new techniques and algorithms, the computational re-
quirements of generating photorealistic images still do not allow to render
in real time. Moreover, the configuration of good render quality param-
eters is very difficult and often too complex to be done by non-expert
users. This paper describes a novel approach called MAgarRO (standing
for “Multi-Agent AppRoach to Rendering Optimization”) which utilizes
principles and techniques known from the field of multi-agent systems
to optimize the rendering process. Experimental results are presented
which show the benefits of MAgarRO -based rendering optimization.

Key words: MultiAgent, Rendering, Global Illumination, Optimization

1 Introduction

The process of constructing an image from a 3D model comprises several phases
such as modelling, setting materials and textures, placing the virtual light sources,
and finally rendering. Rendering algorithms take a description of geometry, ma-
terials, textures, light sources and virtual cameras as input and produce an image
or a sequence of images (in the case of an animation) as output. There are dif-
ferent rendering algorithms – ranging from simple and fast to more complex
and accurate ones – which simulate the light behavior in a precise way. Such
methods are normally classified in two main categories, namely, local and global
illumination algorithms. High-quality photorealistic rendering of complex scenes
is one of the key goals and challenges of computer graphics. Unfortunately this
process is computationally intensive and may require a huge amount of time in
some cases (especially when global illumination algorithms are used), and the
generation of a single high quality image may take several hours up to several
days, even on fast computers. As pointed out by Kajiya [1], all rendering algo-
rithms aim to model the light behavior over various types of surfaces and try to



2 A multiAgent System for Rendering Optimization

solve the so-called rendering equation (which forms the mathematical basis for
all rendering algorithms). Because of the huge amount of time it requires, the

rendering phase is often considered to be a crucial bottleneck in photorealistic

projects. In addition, the selection of the input parameters and variable values of
the scene (number of samples per light, depth limit in ray tracing, etc.) is very
complex. Typically a user of a 3D rendering engine tends to “over-optimize”,
that is, to choose values that increase the required rendering time considerably
without affecting the perceptual quality of the resulting image.

This paper describes a novel optimization approach called MAgarRO based
on principles, techniques and concepts known from the area of multi-agent sys-
tems. Specifically, MAgarRO is based on design principles of the FIPA standards
(http://www.fipa.org), employs adaptation and auctioning, and utilizes expert
knowledge. The key advantages of this approach are robustness, flexibility, scala-
bility, decentralized control (autonomy of the involved agents), and the capacity
to optimize locally.

The paper is structured as follows. The following section overviews the state
of the art and the current main research lines in rendering optimization. Thereby
the focus is on the most promising issues related to parallel and distributed ren-
dering. This section also surveys approaches which aim at applying Artificial
Intelligence methods to rendering optimization and, more specifically, it points
to related work on rendering based on multi-agent technology. The next sec-
tion describes MAgarRO in detail. Then, in the next section empirical results
are shown that have been obtained for different numbers of agents and input
variables. The final section offers a careful discussion and concluding remarks.

2 Related Work

There are a lot of rendering methods and algorithms with different characteris-
tics and properties (e.g., [13, 1, 12]). Common to these algorithms is that different
levels of realism of the rendering are always related in one way or another to
the complexity and computation time required. Consequently, a key problem in
realistic computer graphics is the time required for rendering due to the compu-
tational complexity of the related algorithms. Chalmers et al. [3] expose various
research lines in the rendering optimization issues.

Optimization via Hardware. Some researchers use programmable GPUs
(Graphics Processing Units) as massively parallel, powerful streaming processors
than run specialized portions of code of a raytracer [6]. Other approaches are
based on special-purpose hardware architectures which are designed to achieve
maximum performance in a specific task [14]. These hardware-based approaches
are very effective and even the costs are low if manufactured in large scale.
The main problem is the lack of generality: the algorithms need to be designed
specifically for each hardware architecture. Against that, MAgarRO works at a
very high level of abstraction and runs on almost any existing rendering engine
without changes.



A MultiAgent System for Rendering Optimization 3

Optimization using parallel/distributed computing. If the rendering
task is divided into a number of smaller tasks (each of which solved on a separate
processor), the time required to solve the full task may be reduced significantly.
In order to have all processing elements fully utilized, a task scheduling strategy
must be chosen. This task constitutes the elemental unit of computation of the
parallel implementation approach [3], and its output is the application of the
algorithm to a specified data item. There are many related approaches such
as [4] which use Grid systems for rendering over the Internet. Compared to
these parallel-computing approaches, MAgarRO uses dynamical in combination
with non-centralized load balancing, and this makes MAgarRO more efficient
especially when the number of nodes (thus the coordination overhead) increases.

Knowledge about the cost distribution across the scene (i.e., across the
different parts of a partitioned scene) can significantly aid the allocation of re-
sources when using a distributed approach to rendering. In fact, an estimated
cost distribution is crucial in commercial rendering applications which other-
wise could not be realized due to their enormous complexity. There are many
approaches based on knowledge about cost distribution; a good example is [8].

Distributed Multi-Agent Optimization. The inherent distribution of
multi-agent systems and their properties of intelligent interaction allow for an al-
ternative view of rendering optimization. The work presented by Rangel-Kuoppa
et al. [7] uses a JADE-based implementation of a multi-agent platform to dis-
tribute interactive rendering tasks (rasterization) across a network. The distri-
bution of the tasks is realized in a centralized client-server style (the agents
send the results of the rasterization of objects to a centralized server). Although
this work employs the multi-agent metaphor, essentially it does not make use of
multi-agent technology itself. In fact, the use of the JADE framework is only for
the purpose of realizing communication between nodes, but this communication
is not knowledge-driven and no “agent-typical” mechanism such as learning and
negotiation is used.

The work on stroke-based rendering (a special method of Non Realistic Ren-
dering) proposed by Schlechtweg et al. [9] makes use of a multi-agent system
for rendering artistic styles such as stippling and hatching. The environment of
the agents consists of a source image and a collection of buffers. Each agent
represents one stroke and executes his painting function in the environment.

2.1 Comparison to MAgarRO

MAgarRO , the multi-agent approach to rendering proposed in this paper, sig-
nificantly differs from all related work on rendering in its unique combination of
the following key features:

– Decentralized control. MAgarRO realizes rendering in a decentralized
way through a group of agents coordinated by a master, where the group
can be formed dynamically and most services can be easily replicated. (As
regards decentralized control, MAgarRO follows the principle of volunteer
computing [2].)



4 A multiAgent System for Rendering Optimization

– Higher level of abstraction. While other approaches typically realize par-
allel optimization at a low level of abstraction that is specific to a particular
rendering method, MAgarRO works with any rendering method. All that is
required by MAgarRO are the input parameters of the render engine to be
used.

– Use of expert knowledge. MAgarRO employs Fuzzy Set Rules and their
descriptive power [11] in order to enable easy modelling of expert knowledge
about rendering and the rendering process.

– Local optimization. Each agent involved in rendering can employ different
models of expert knowledge. In this way, and by using a fine-grained decom-
position approach, MAgarRO allows for local optimization of each rendering
(sub-)task.

In combining these features, MAgarRO exploits and integrates some ideas from
related approaches to parallel rendering. For instance, MAgarRO ’s cost pre-
diction map (called Importance Map and described below) combines prediction
principles described in [5, 9] with elements of Volunteer Computing as proposed
in [2] and demand driven auctioning known from agent-based task allocation.

3 The MAgarRO Approach

MAgarRO is a system which gets a 3D Scene as input and produces a resulting
2D image. From the point of view of the user the system works in the same way
as local render engines do, but the rendering in fact is made by different agents
spread over the Internet.

MAgarRO uses the ICE middleware (http://www.zeroc.com). The location
service IceGrid is used to indicate in which computers the services reside. Glacier2
is used to solve the difficulties related with hostile network environments, making
available agents connected through a router and a firewall.

The overall architecture of MAgarRO is based on the design principles of
the FIPA standard. In figure 1 the general class diagram for the architecture is
shown. There are some top-level general services (Start Service, Agent Manage-

ment System, Directory Facilitator and Agent Communication Channel) avail-
able to all involved agents. On start-up, an agent is provided with a root service
that describes or points to all the services available in the environment.

3.1 Architectural Overview

In MAgarRO a StartService offering two operations is available: an operation
called getServiceRoot to obtain directly a description of all basic services, and
another operation called supplyBasicService that enables the registration of a
new basic service in the system. In accordance with FIPA, a basic service is
defined by a unique Service Identifier (string in our case), at least one list of
Transport Addresses and a description of Service Type.

The Agent Management System (AMS) is a general service that manages the
events that occurs on the platform. This service also includes a naming service



A MultiAgent System for Rendering Optimization 5

Fig. 1. MAgarRO general Class diagram.

for White Pages which allow agents to find one another. The basic functionality
of the AMS is to register, to modify a subscription, to unregister agents, and to
search for agents.

A basic service called Directory Facilitator (DF) provides Yellow Pages for
the agents. As suggested by the FIPA standard, the operations of this service
are related to the services provided by an agent, the interaction protocols, the
ontologies, the content languages used, the maximum live time of registration
and visibility of the agent description in DF.

Finally, MAgarRO includes a basic service called Agent Communication Chan-

nel that receives and sends messages between agents. In MAgarRO only the
receive functionality is employed, because the send operation is implemented as
part of the agents. In accordance to FIPA standard, the data structure of each
message is composed of two parts: the content of the message and the envelope
(with information about the receiver and the sender of the message). The Agent
Communication Language used in MAgarRO is based on XML and uses DTD
as specified in the FIPA standard.

Each agent must implement a basic set of standard operations to be able
to run in the MAgarRO environment. This operations are suspend, terminate,
resume and receive a message.

In addition to the basic FIPA services described above, MAgarRO includes
specific services related to Rendering Optimization. Specifically, a service called
Analyst studies the scene in order to enable the division of the rendering task.
A blackboard is used to represent some aspects of the common environment of
the agents. The environmental models processed by the agents are managed by
the Model Repository Service. Finally, a master service called (Master) handles



6 A multiAgent System for Rendering Optimization

dynamic groups of agents who cooperate by fulfilling subtasks. The Figure 2
illustrates this.

Fig. 2. General workflow and main architectural roles.

Figure 2 also illustrates the basic workflow in MAgarRO (the circled numbers
in this figure represent the following steps). 1 – The first step is the subscription
of the agents to the system. This subscription can be done at any moment; the
available agents are managed dynamically. When the system receives a new file to
be rendered, it is delivered to the Analyst service. 2 – The Analyst analyzes the
scene, making some partitions of the work and extracting a set of tasks. 3 – The
Master is notified about the new scene which is sent to the Model Repository. 4
– Some of the agents available at this moment are managed by the Master and
notified about the new scene. 5 – Each agent obtains the 3D model from the
repository and an auction is started. 6 – The (sub-)tasks are executed by the
agents and the results are sent to the Master. 7 – The final result is composed
by the Master using the output of the tasks previously done. 8 – The Master
sends the rendered image to the user. Key issues of this workflow are described
in the following.

3.2 Agent Subscription

As shown in Figure 1, a Render Agent is a specialization of a standard Agent,
so all the functionality and requirements related with FIPA are inherited in
his implementation. There are two actions that could be done by an agent: to
add a subscription or to unsubscribe from a group of rendering agents. These



A MultiAgent System for Rendering Optimization 7

operations are related to a Master agent. The subscribe operation requires two
parameters: the name of the agent and the proxy that represents the agent as
a client. Using this proxy the Master could execute remote operations on the
agent side. An agent can drop the association with a specific master by means
of an unsubscribe operation.

The first time an agent subscribes to the system, he runs a benchmark to
obtain an initial estimation of his computing capabilities. This initial value is
adapted during rending in order to obtain a more accurate prediction.

3.3 Analysis of the Scene based on Importance Maps

MAgarRO employs the idea to estimate the complexity of the different tasks in
order to achieve load-balanced partitining. Complexity analysis is done by the
Analyst agent prior to (and independent of) all other rendering steps.

Fig. 3. Importance maps. Left: Blind partitioning (First Level). Center: Join zones
with similar complexity (Second Level). Right: Balancing complexity/size ratio (Third
Level).

The main objective in this partitioning process is to obtain tasks with similar
complexity to avoid the delay in the final time caused by too complex tasks. This
analysis may be done in a fast way independently of the final render process.

At the beginning, the Analyst makes a fast rasterization of the scene using
an importance function to obtain a grey scale image. In this image (called Im-

portance Map) the dark zones represents less complex areas and the white zones
the more complex areas. In our current implementation a simple function is used
(it only takes in account the recursion levels in mirror and transparent surfaces).
As it is shown in Figure 3 , the glass is more complex than the dragon because
it has a higher number of ray interactions. The table is less complex because
it does not have any of these properties. More advanced importance functions
could be used in this grey scale image generation, using perception-based render-
ing algorithms (based on visual attention processes) to construct the importance
map [10].

Once the importance map is generated, a partition is constructed to obtain
a final set of tasks. These partitions are formed hierarchically at different levels,
where at each level the partitioning results obtained at the previous level are
used. At the first level, the partition is made taking care of the minimum size



8 A multiAgent System for Rendering Optimization

and the maximum complexity of each zone. With these two parameters, the
Analyst makes a recursive division of the zones (see Figure 3). At the second
level, neighbor zones with similar complexity are joined. Finally, at the third level
the Analyst tries to obtain a balanced division where each zone has nearly the
same complexity/size ratio. The idea behind this division is to obtain tasks that
all require roughly the same rendering time. As shown below in the experimental
results, the quality of this partitioning is highly correlated to the final rendering
time.

3.4 Rendering Process

Once the scene is available in the Model Repository, the Master assigns agents
to the individual tasks identified by the Analyst. These agents, in turn, apply in
parallel a technique called profiling in order to get a more accurate estimation
of the complexity of each task.1 Specifically, the agents make a low resolution
render (around 5% of the final number of rays) of each task and announce on
the Blackboard the estimated time required to do the final rendering on the
blackboard.

Blackboard service The blackboard used by the agents to share their knowl-
edge about the rendering task is implemented as a service offering a set of read
and write operations. The basic blackboard data structure (as shown in Figure
2) has 7 fields labelled as follows. IdWork is a unique identifier for each scene,
IdZone is a unique identifier for each task of each work, Size is the number of
pixels of each task (width x height), Complexity is the estimated complexity of
this task, calculated by means of the importance map, Test is the Estimated Time
calculated through profiling by the agents, Treal is the actual time required to
finish a task, and Agent is the name of the agent who is responsible for rendering
this task.

Adaptation As said above, the estimated time is represented in the same way
by all agents. More precisely, each agent has an internal variable that represents
his relative computational power (Vcp). For example, assume that V cp = 1 is
chosen as a reference value. If a task TA requires 5 minutes to be done by a
particular agent A who has Vcp = 0.5, he annotates on the blackboard that the
time required to complete TA is 10 minutes (i.e., the agent takes into account
that he runs on a relatively fast machine). On the other hand, if another agent
B running on a slow machine (Vcp = 2) announces that she needs 2 minutes to
complete task TB, then agent A can infer from this information that it would
take him 30 seconds to complete TB on his machine.

During run time, each agent adapts the value of his variable Vcp to obtain a
more accurate estimation of the required processing time as follows. Whenever

1 Profiling is a technique which traces a small number of rays in a global illumination
solution and uses the time taken to compute this few rays to predict the overall
computation time.



A MultiAgent System for Rendering Optimization 9

there is a difference between the estimated time Test and the actual completion
time T of a task, then an agent updates his internal variable Vcp according to

Vcp = (1 − k) × Vcp + k × (T − Test) (1)

where k a constant. Small values of k assure a smooth adaptation. (k is set
to 0.1 in the experiments reported below.) This mechanisms should be improved
with a more complex learning method that takes in account the historical behav-
ior and the intrinsic characteristics of the task (type of scene, rendering method,
etc...).

Auctioning At every moment during execution, all agents who are idle take
part in an auction for available tasks. It is assumed that the agents try to obtain
more complex tasks first. If two or more agents bid for the same task, the Master
assigns it on the basis of the so called credits of these agents. The credit of an
agent represents his the success and failure w.r.t. previous tasks: an agent is said
to have success w.r.t. a task if he completes it in no more time than Test, and
otherwise he is said to fail w.r.t. this task. The amount added to, or subtracted
from, an agent’s credit is proportional to the time difference w.r.t. Test.

Using Expert Knowledge When a task is assigned to an agent, a fuzzy rule
set is used in order to model the expert knowledge and optimize the rendering
parameters for this task. Fuzzy rule sets are known to be well suited for expert
knowledge modeling due to their descriptive power and easy exensibility. The
output parameters (i.e., the consequent part of the rules) are configured so that
the time required to complete rendering is reduced and the loss of quality is
minimized. Each agent may model (or capture) different expert knowledge with
a different set of fuzzy rules. In the following, the rule set we used for Pathtracing
rendering is described. The output parameters of the rules are:

– Recursion Level [Rl], defined over the linguistic variables [15] {VS, S, N,
B, VB}2. This parameter defines the global recursion level in raytracing
(number of light bounces).

– Light Samples [Ls], defined over the linguistic variables {VS, S, N, B, VB}.
This parameter defines the number of samples per light in the scene. The
biggest, the more quality in the scene and the higher rendering time.

– Interpolation Band Size [Ibs], defined over the linguistic variables {VS,
S, N, B, VB}. This parameter defines the size of the interpolation band in
pixels, and it is used in the final composition of the image (as we will see in
the next section).

The previous parameters have a strong dependency with the rendering method
chosen (in this case Pathtracing). Against that, the following parameters, which
are the antecedents of the rules, can be used for other rendering methods as well.

2 The notation used for the linguistic variables is typical in some works with Fuzzy
Sets. This is the correspondence of the linguistic variables: VS is Very Small, S is
Small, N is Normal, B is Big and finally VB is Very Big.



10 A multiAgent System for Rendering Optimization

– Complexity [C], defined over the linguistic variables {VS, S, N, B, VB}.
This parameter represents the complexity/size ratio of the task.

– Neighbor Difference [Nd], defined over the linguistic variables {VS, S,
N, B, VB}. This parameter represents the difference of complexity of the
current task in relation to its neighbor tasks.

– Size [S], defined over the linguistic variables {S, N, B}. This parameter
represents the size of the task in pixels (calculated as width x height).

– Optimization Level [Op], defined over the linguistic variables {VS, S, N,
B, VB}. This parameter is selected by the user, and determines the level of
optimization (more or less aggressive with initial parameters indicated by
the user).

Fig. 4. Definition of the output variables.

The definition of the fuzzy sets of input variables is done dynamically in
that the intervals of this sets are calculated in runtime. For example, in a highly
complex scene VS is higher than VB is in a simple scene. The partition of these
variables is made by linear distribution. The same occurs with other parameters
like Size and Neighbor difference. In the case of the Pathtracing method, the
rule set is defined as follows (only two of 28 rules are shown, all rules have been
designed by an expert in PathTracing):

– R1: If C is {B,VB} ∧ S is B,N ∧ Op is VB

then Ls is VS ∧ Rl is VS

– R22: If Nd is VB then Ibs is VB

The output variables have their own fuzzy sets; we use trapezoidal functions as
shown in Figure 4.

3.5 Final Result Composition

With the results generated by the different agents, the Master composes the final
image. A critical issue w.r.t. composition is that there may be slight differences
(e.g., in coloring) between the neighboring parts obtained from different agents;
these differences result from the random component which PathTracing contains
as a Monte Carlo based method. Figure 5 (Left) illustrates this problem. For that



A MultiAgent System for Rendering Optimization 11

Fig. 5. Left: Without interpolation undesirable artefacts appear between neighboring
parts. Linear interpolation solves this problem (at a price of slightly higher rendering
costs). Right: Diagram of task decomposition and interpolation band situation.

reason, the Master smoothes the meeting faces of neighboring parts through a
linear interpolation mask. More precisely, as shown in Figure 5 (Right) smooth-
ing between neighboring parts is done in a zone called Interpolation Band.

In MAgarRO the size of the Interpolation Band is an output parameter of
the rule set. In particular, the parameter gets a higher value if the difference
between the quality of neighboring zones is important. To reduce rendering time,
this parameter should be kept as small as possible to avoid unnecessary ”‘double
work”’ done by different agents. This is particularly important if the zone is very
complex, as this also implies high costs for rendering the interpolation band. (In
our applications the amount of time required by MAgarRO for interpolation was
between 2% and 5% of the overall rendering time.)

4 Experimental Results

The results reported in this section have been generated with the implementation
of MAgarRO 3. Moreover, these results are based on the following computer and
parameter setting: eight identical computers were connected to run in parallel
(Pentium Intel Centrino 2 Ghz, 1GB RAM and Debian GNU/Linux); as a ren-
dering method Pathtracing (Yafray 0.0.9 render engine (http://www.yafray.org))
was used; eight oversampling levels; eight recursion levels in global configuration
of raytracing; and 1024 Light samples by default. The scene to be rendered con-
tains more than 100.000 faces, 5 levels of recursion in mirror surfaces and 6 levels
in transparent surfaces (the glass). With this configuration, rendering on a single
machine without any optimization took 121 minutes and 17 seconds (121:17 for
short, below the amount of time needed for rendering is sometimes expressed in
the format Minutes:Seconds).

Table 1 shows the time required using different partitioning levels. These
times ha have been obtained using the N (Normal) optimization level (Figure 6
Left). Using a simple first-level partitioning, a good render time can be obtained

3 Download at (http://code.google.com/p/masyro06/) under GPL Free Software Li-
cense



12 A multiAgent System for Rendering Optimization

Fig. 6. Left: First/second/third level of partitioning with the N (Normal) optimization
level. Right: Different optimization levels (all with third level of partitioning).

with just a few agents in comparison to third-level partitioning. The time re-
quired in the third partitioning level is larger because more partitions in areas
having higher complexity (i.e., in the glasses) are needed. This higher partition
level requires the use of interpolation bands and as an effect some complex parts
of the image are rendered twice. For example, the rendering time with one agent
is 105 minutes in the third level and 93 minutes in first level. However, when
the number of agents grow, the overall performance of the system increases be-
cause the differences in the complexity of the tasks are relatively small. In first-
and second-level partitioning, there are complex tasks that slow down the whole
rendering process even if the number of agents is increased (the time required
with four or eight agents is essentially the same). On the other hand, the third
partitioning level works better with a higher number of agents.

Table 2 shows the time required to render the scene using different levels
of optimization but always third-level partitioning (Figure 6 Right). By simply
using a Small level of optimization results are obtained that are better than the
results for rendering without optimization. The time required with Very Small

optimization is exceeds the time to render the original scene. This is because
additional time is required for communication and composition.

Excellent results are also obtained when only four agents are used. For in-
stance, in the case of Normal level optimization, the time required to render
the scene is just about 26 minutes (whereas the original rendering time is 120
minutes). Figure 7 shows the results of rendering obtained for different configu-
rations.

Table 1. Different partitioning with Normal optimization level.

Agents 1st Level 2nd Level 3rd Level

1 92:46 82:36 105:02

2 47:21 41:13 52:41

4 26:23 23:33 26:32

8 26:25 23:31 16:52



A MultiAgent System for Rendering Optimization 13

Table 2. Third level of partitioning with different Number of Agents and level of
optimization.

Agents VS S N B VB

1 125:02 110:50 105:02 85:50 85:06

2 62:36 55:54 52:41 42:55 42:40

4 31:10 27:11 26:32 22:50 22:40

8 23:43 20:54 16:52 16:18 15:58

Fig. 7. Result of the rendering using different optimization levels. (a) No optimization
and render in one machine. (b) Very Small (c) Small (d) Normal (e) Very Big (f)
Difference between (a) and (e) (the lighter colour, the smaller difference).

As a final remark, note that optimization may result in different quality
levels for different areas of the overall scene. This is because more aggressive
optimization levels (i.e., Big or Very Big) may result in a loss of details. For
example, in Figure 7.e, the reflections on the glass are not so detailed as in
Figure 7.a.

The difference between the optimal render and the most aggresive optimiza-
tion level (Figure 7.f) is minimal4.

5 Discussion and Conclusion

The media industry is demanding high fidelity images for their 3D scenes. The
computational requirements of full global illumination are such that it is practi-

4 In this example, the difference between the optimal render (Figure 7.a) and the image
obtained with the Very Big optimization level (see Figure 7.e) is 4.6% including the
implicit noise typical to monte carlo methods (around 1.2% in this example).



14 A multiAgent System for Rendering Optimization

cally impossible to achieve this kind of rendering in reasonable time on a single
computer. MAgarRO has been developed in response to this challenge.

The experimental results show that MAgarRO achieves excellent optimiza-
tion results. The use of the importance map assures an initial time estimation
that minimizes the latency of the latest task. In particular, as a result of op-
timization MAgarRO achieves overall rendering times that are below the time
required by one CPU divided by the number of agents. Most important, MA-

garRO is a novel multi-agent rendering approach that offers several desirable
features which together make it unique and of highest practical value. In partic-
ular:

– It is FIPA-compliant.
– Due to the use of ICE Grid middleware layer, MAgarRO can be used in

heterogeneous hardware platforms and under different operating systems
(including GNU/Linux, MacOSX, Windows, etc.) without any changes in
the implementation.

– It enables importance-driven rendering through its use of importance maps.
– It employs effective auctioning and parameter adaptation, and it allows the

application of expert knowledge in form of flexible fuzzy rules.
– It applies the principles of decentralized control and local optimization, and

thus is scalable and very robust e.g. against hardware failures. The services
are easily replicable, thus possible bottlenecks in the final deploy can be
minimized.

– In presence of failures (e.g. an agent does not complete an assigned task or
obtain a wrong result), it is easy to apply the typical techniques of volunteer
computing systems [2].

MAgarRO is pioneering in its application of multi-agent principles to 3D re-
alistic rendering optimization. This opens several interesting research avenues.
Specifically, we think it is very promising to extend MAgarRO toward more so-
phisticated adaptation and machine learning techniques. The open technology
used in the development of MAgarRO allow the agents to reside and run on dif-
ferent machines around the world. Such a Grid version is a very effective answer
to the challenge of handling the enormous complexity of real-world rendering
applications.

In our current work, we concentrate on two research lines. First, the combi-
nation of different rendering techniques within the MAgarRO framework. Due
to the high abstraction level of MAgarRO , in princple different render engines
can be combined to jointly generate an image, using complex techniques only
if needed. Second, we are exploring the possibilities to equip MAgarRO with
agent-agent real-time coordination schemes that are more flexible than auction-
ing.

6 Acknowledgments

This work has been funded by the Junta de Comunidades de Castilla-La Mancha
under Research Project PBC06-0064.



A MultiAgent System for Rendering Optimization 15

References

1. Kajiya J. T.: The Rendering Equation. Computer Graphics 20(4): 143-150. Pro-
ceedings of SIGGRAPH 1986.

2. Anderson, D. P., Fedak, G: The computational and storage potential of volunteer
computing. In Sixth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID’06), 73-80, 2006.

3. Chalmers, A., Davis, T., Reinhard, E.: Practical Parallel Rendering. Ed. AK Peters
(2002).

4. Fernandez-Sorribes, J. A., Gonzalez-Morcillo, C., Jimenez-Linares, L: Grid archi-
tecture for distributed rendering. In Proc. SIACG ’06, 141-148 (2006).

5. Gillibrand, R., Debattista, K., Chalmers, A: Cost prediction maps for global illumi-
nation. In Proceedings of Theory and Practice of Computer Graphics 2005, 97-104.

6. Hachisuka, T.: GPU Gems 2: Programming Techniques for High Performance
Graphics and General-Purpose Computa tion. Addison-Wesley Professional (2005).

7. Kuoppa, R. R., Cruz, C. A., Mould, D: Distributed 3D rendering system in a multi-
agent platform. In Proc. ENC’03 (2003), 8.

8. Reinhard, E., Kok, A. J. F., Jansen, F. W.: Cost Prediction in Ray Tracing. In
Proceedings of the Seventh Eurographics Workshop on Rendering, 41?50. New York
(1996).

9. Schlechtweg, S., Germer, T., Strothotte, T: Renderbots multiagent systems for direct
image generation. In Computer Graphics Forum 2005, volume 24, 137-148.

10. Sundstedt, V., Debattista, K., Longhurst, P., Chalmers, A.: Visual attention for
efficient high-fidelity graphics. In Spring Conference on Computer Graphics (SCCG
2005), 162-168.

11. Tanaka, K. An introduction to fuzzy logic for practical applications. Springer
(1998).

12. Veach, E., Guibas, L. J: Metropolis light transport. In SIGGRAPH ’97, 65-76. New
York (1997).

13. Whitted, T.: An improved illumination model for shaded display. In SIGGRAPH
’79, 14. New York (1979).

14. Woop, S., Schmittler, J., Slusallek, P: Rpu: a programmable ray processing unit
for realtime ray tracing. In ACM SIGGRAPH 2005, 434-444. New York.

15. Zadeh, L. A. The concept of a linguistic variable and its applications to approxi-
mate reasoning. part i, ii, iii. Information Science (1975).


