
Hierarchical Reinforcement Learning for
Communicating Agents

Michael Rovatsos Felix Fischer Gerhard Weiss
School of Informatics Department of Informatics

University of Edinburgh Technical University of Munich
Edinburgh EH8 9LE, Scotland, UK 85748 Garching, Germany

mrovatso@inf.ed.ac.uk {fischerf,weissg }@cs.tum.edu

Abstract

This paper proposes hierarchical reinforcement learning (RL) methods for
communication in multiagent coordination problems modelled as Markov Deci-
sion Processes (MDPs).

To bridge the gap between the MDP view and the methods used to specify com-
munication protocols in multiagent systems (using logicalconditions and proposi-
tional message structure), we utiliseinteraction framesas powerful policy abstrac-
tions that can be combined with case-based reasoning techniques. Also, we exploit
the fact that breaking communication processes down to manageable “chunks” of
interaction sequences (as suggested by the interaction frames approach) naturally
corresponds to methods proposed in the area of hierarchicalRL.

The approach is illustrated and validated through experiments in a complex
application domain which prove that it is capable of handling large state and action
spaces.

1 Introduction

Communication is central to coordination and cooperation in multiagent systems
(MASs) [13]. Unlike “physical” action that manipulates theenvironment in which
agents are situated, communication may be used both in its own right (e.g. to exchange
information) as well as to agree on the joint, coordinated execution of physical actions.
The latter is possible because of the fact that the cost and hence the risk associated with
communication is low compared to that of physical actions.

In the context of using communication to achieve coordinated behaviour, we can
view agents’ decision-making processes asmediatedby communication, i.e. the utility
of communicative decisions depends on the physical action(s) that result from them.
This allows us to develop models of communicative decision-making in the frame-
work of Markov Decision Processes (MDPs; e.g., see [7]), such that reinforcement
learning (RL; e.g., see [11]) techniques are suited to derive an optimalcommunication
policy. Learning such policies is essential to the design of adaptive agents inopen
MASs, where adherence to interaction and communication protocols cannot be taken
for granted, and the need arises for agents to learn how a set of (possibly predefined)
communication patterns can be applied strategically.

In this paper, we follow this interpretation and applyhierarchicalRL methods [2] to
the problem of communication learning. As we will see, thesemethods are well-suited



for communication-mediated multiagent MDPs, and we will support this intuition by
experimental results in a complex domain. To induce hierarchical structure on the orig-
inal MDP, powerful policy abstractions calledinteraction frames[10] are applied that
allow for a generalisation over communication strategies.Since interaction frames are
capable of handling speech-act-based [1] agent communication languages (ACLs) with
propositional content, they bridge the gap between ACL and multiagent RL (MARL)
research, so that this paper also contributes to the integration of knowledge-based agent
and agent communication design with machine learning techniques.

However, we donot claim the suggested methods for learning strategic be-
haviour in communication to provide an optimal solution to the overall (i.e. phys-
ical+communicational) MARL problem. Rather, we develop hierarchical RL-based
heuristics for dealing with a set of communication patternsspecified (as is commonly
done in MAS communication design) in terms of logical conditions and propositional
message structure, thereby contributing to the agent design problem for communication
learning problems.

The remainder of this paper is structured as follows. Section 2 gives a short
overview of RL and the hierarchical RL framework ofoptions. In section 3, we in-
troduce interaction frames and present how this data structure can be combined with
the RL techniques of section 2 to learn the effective use of a set of communication pat-
terns. Experimental results in a complex application domain are reported on in section
4, and section 5 rounds off with some conclusions and an outlook on possible future
work.

2 Reinforcement learning and theoptions framework

Standard RL is based on the MDP model of sequential decision processes. An MDP is
defined by a finite setS of statesand finite setsAs of admissible actionsfor each state
s ∈ S. Transition probabilities

pa
ss′ = P (st+1 = s′|st = s, at = a) (1)

andexpected rewards
ra
s = E(rt+1|st = s, at = a). (2)

specify the system’s behaviour if actiona ∈ As is taken in states ∈ S and time step
t. In multiagent settings, the environment dynamicsp includes the behaviour of other
agents.

Agent behaviour is represented by means of a (stochastic)policy π : S ×
⋃

s∈S As → [0, 1], meaning that actiona is executed with probabilityπ(s, a) when-
ever states is perceived. According to theexpected discounted infinite-horizon reward
maximisationcriterion which we follow here, an optimal policyπ∗ is one that max-
imises the expected sumE(

∑∞
j=0 γjrt+j) of discounted future rewards, wherert+j is

the reward obtainedj steps in the future and0 ≤ γ < 1 is a geometric discount factor.
Based on that, the objective of RL is to learn an optimal policy by sampling state

transitions and rewards. Q-learning [12] solves this problem by learning the value
Q∗(s, a) of taking actiona in states and followingπ∗ thereafter. For this, an approxi-
mationQ is updated according to

Q(s, a)← (1− α)Q(s, a) + α

[

r + γ max
a′∈As′

Q(s′, a′)

]



for a sampled transition froms to s′ due to actiona and with associated rewardr. For
a learning rateα appropriately decaying over time and using an exploration strategy
which ensures that in the limit each action is executed infinitely often in each state,
Q-learning can be shown to converge toQ∗. An optimal policy is then given by letting
π∗(s, a∗) = 1 for a∗ = arg maxa′∈As

Q∗(s, a′) andπ∗(s, a) = 0 for all othera.
To allow for temporal abstractionin RL, we use theoptionsframework [2] which

is based on augmenting the setsAs of admissible “primitive” actions by sets of so-
called “options”. An option is a tripleo = (I, π, β) consisting of an input setI ⊆ S,
a (stationary, stochastic) policyπ over primitive actions, and a termination condition
β : S → [0, 1]. Optiono is admissible in a states iff s ∈ I. If invoked,o will behave
according toπ until it terminates stochastically with probabilityβ (we assume that
{s|β(s) < 1} ⊆ I). Os is used to denote the set of admissible options in states, which
may or may not include some or all of the primitive actions inAs. If an option’s policy
π is Markov, i.e. action probabilities depend solely on the state of the core MDP, the
option itself is called aMarkov option.

For greater flexibility with respect to action selection andto consider policies
µ : S ×

⋃

s∈S Os → [0, 1] over options, however, so-calledsemi-Markov options
are required. These build on the theory ofsemi-Markov decision processes(SMDPs;
e.g., see [7]). In contrast to MDPs, the durationτ of an action within an SMDP is a
random variable, such that temporally extended courses of action can be modelled. In
the case of options,τ is the number of time steps from the invocation of an option to
its termination.

Since the core MDP together with a setO of options constitutes an SMDP, SMDP
learning methods can be used to learn an optimal policy overO. In turn, with the core
MDP serving as an explicit representation of the SMDP, intra-option policies can be
evaluated and learned. The SMDP version of Q-learning applies the update equation

Q(s, o)← (1− α)Q(s, o) + α

[

r + γτ max
o′∈Os′

Q(s′, o′)

]

after optiono has been running forτ time steps betweens and s′. r denotes the
cumulative discounted reward over this time, which could becomputed asr =
r1 + γr2 + · · · + γτ−1rτ from the individual rewardsri. However, in an SMDP only
the complete rewardR obtained from executingo in s is known. Assuming an equal
distribution ofR over theτ steps yields

r =

τ
∑

i=1

γi−1 R

τ
=

γτ − 1

γ − 1
·
R

τ
.

Q(s, o) can be shown to converge toQ∗(s, o) for all s ∈ S ando ∈ O under conditions
similar to those for conventional Q-learning.

3 Interaction frames

Interaction framesare a key concept of the abstract social reasoning architectureInFFrA
proposed in [10]. There, they describe patterns of interactions that can be used strate-
gically by knowledge-based agents to guide their communicative behaviour based on a
reasoning process calledframing.

For the scope of this paper, it suffices to look at (interaction) frames aspolicy
abstractions(in the sense of MDP policies). This interpretation forms the basis of



a formal model ofInFFrA calledm
2

InFFrA (where them2 stands for “Markov-square”
and hints at the underlying hierarchical two-level MDP view), details of which can be
found in [9].

In m
2

InFFrA, a frame describes a set of two-party, discrete, turn-taking interaction
encounterswhich can be thought of as conversations between two agents.A sequence
of message patterns calledtrajectoryspecifies the surface structure of the encounters
described by the frame, while a list ofsubstitutionscaptures the values of variables
in the trajectory in previously experienced interactions.Each substitution also cor-
responds to a set of logicalconditionsthat were required for and/or precipitated by
execution of the trajectory in the respective encounter. Finally, trajectory occurrence
andsubstitution occurrencecounters record the frequency with which the frame has
occurred in the past. This leads to the following formal definition of m

2

InFFrA frames:

Definition 1

A frameis a tupleF = (T, Θ, C, hT , hΘ), where

• T = 〈p1, p2, . . . , pn〉 is a sequence of message patternspi ∈ M, thetrajectory
of the frame,

• Θ = 〈ϑ1, . . . , ϑm〉 is an ordered list ofvariable substitutions,

• C = 〈c1, . . . , cm〉 is an ordered list ofcondition sets, such thatcj ∈ 2L is the
condition set relevant under substitutionϑj ,

• hT ∈ N
|T | is a trajectory occurrence counterlist counting the occurrence of each

prefix of the trajectoryT in each of the previous encounters (even if the frame
was not itself executed), and

• hΘ ∈ N
|Θ| is a substitution occurrence counterlist counting the occurrence of

each member of the substitution listΘ in previous encounters (where the frame
was actually executed).

Thereby,M is a language of speech-act like message and action patternsof the form
perf(A, B, X) or do(A,Ac). In the case of messages,perf is a performative symbol
(request, inform etc.), A/B are agent identifiers or agent variables andX is the
propositional content of the message taken from a logical languageL. In the case
of physical actions with the special “performative”do, Ac is the action executed by
A (an action has no recipient as it is assumed to be observable by any agent in the
system). BothX andAc may contain non-logicalsubstitutionvariables that are used
for generalisation purposes. We further useMc ⊂M to denote the language of actual
(ground) messages that agents use in communication (i.e. messages that do not contain
variables other than “content variables” used in a logical sense).

Writing T (F ), Θ(F ), etc. for functions that return the respective elements of a
frameF , its semantics can informally be summed up as follows: The agent “own-
ing” F has experiencedhT (F )[1] encounters which started with a message matching
the first elementm1 = T (F )[1] of the trajectory.hT (F )[2] of these encounters con-
tinued with a message matchingm2 = T (F )[2], and so on.Θ, hΘ andC provide
more information about specific past encounters: Fori ≤ |Θ|, F representshΘ[i] past
encounters matchingT (F )Θ(F )[i], andC(F )Θ(F )[i] held during each of these en-
counters. Agents are assumed to maintain a knowledge baseKB encoded in the same
propositional languageL that is used as a content language for messages.



From the standpoint of RL, ground instances of a frame can be seen as temporally
extended policies that (like options) range over sequencesof actions. Moreover, by
virtue of generalisation over possible variable substitutions, a frame captures a whole
set of such policies.

3.1 Frame-based options

After this general account, we will now describe how interaction frames can be in-
tegrated with the options framework. For this, we view agentcommunication as an
MDP with a setS of states, which is derived using some kind ofstate abstractionthat
partitions the current knowledge base contentKB and the perceivedencounter prefix
w ∈M∗

c (the sequence of messages exchanged so far during an encounter) into equiv-
alence classes denoted bys(w,KB). A =Mc is used as the set of primitive actions.

For a frameF to induce an optionoF ∈ O, o = (IF , πF , βF ), over the core
MDP given byS andA, we need to defineIF , πF andβF appropriately based onF .
Obviously, a frame can be selected iff there exists a substitution to enact it under. Thus,
we have

IF =
{

s(w,KB) ∈ S | Θposs(F, w,KB) 6= ∅
}

,

where Θposs(F, w,KB ) is the set of substitutionsF can be enacted under given
encounter prefixw and knowledge baseKB . Θposs can effectively be computed
by unifying w with the appropriate prefix ofT (F ) (which yields a “fixed” substi-
tution ϑf (F, w)) and restricting the variable bindings for the corresponding postfix
post(T (F ), w) (to whichϑf has already been applied) to those executable underKB .

As for the termination ofoF , several reasons are imaginable:

1. oF will definitely terminate if the end of the trajectoryT (F ) has been reached.

2. oF will also terminate ifT (F ) no longer matches the encounter prefixw.

3. Changes to the knowledge base may prohibit the execution of the remaining steps
of F . As above, this is verified by checking whetherΘposs(F, w,KB) = ∅.

4. The remaining steps ofF may be rendered undesirable due to changes to the
agent’s knowledge base.

5. Actions by the peer may prohibit execution of the frame under the most desirable
substitution.

Items 2, 3 and 4 concern thevalidity, adequacyanddesirabilityof F , respectively [10].
Item 5 can be viewed as concerning the desirability ofF as well as the validity of the
most desirable substitution.

If we assume that desirability (conditions 4 and 5) corresponds to the profit the
agent will obtain from executing a message/action sequencew under knowledge base
KB which it can estimate using a utility functionu :M∗

c × KB → R, then a boolean
desirability criterionδ(F, w,KB) can be defined which determines desirability-based
option termination:

βF (s(w,KB)) =











1 if Θposs(F, w,KB) = ∅

or δ(F, w,KB)

0 otherwise.



As [2] points out, optimal policies over the set of availableoptions are in general subop-
timal policies of the core MDP, if not all primitive actionsa ∈ As remain admissible in
s. This is obvious for the special case of frame-based options, since a frame’s expected
reward may change during the enactment, rendering another frame more desirable. As
we have already said, we are willing to accept this drawback for the sake of complex-
ity reduction, all the more in the domain of multiagent interaction another benefit may
arise: If agents accept frames as an established means of interaction and follow them
normatively to a certain extent rather than constantly driving for optimal actions, this
will make them more comprehensible and dependable, therebyreducing the contin-
gency inherent in interactions. As a result, agents should adhere to a frame as long as
possible.

What now remains to be specified is the intra-option policyπF corresponding to a
frameF . From a rational actor’s point of view, the agent should takethe best possible
action according to its utility functionu, considering the restrictions imposed by the
active frame. This yields the (greedy, deterministic)enactment policy

πF (s(w,KB), m) =

{

1 if m = m∗(F, w,KB )

0 otherwise,

wherem∗(F, w,KB) is the optimal action given encounter prefixw and knowledge
baseKB and restricted by frameF . A concrete definition ofm∗ will be given in the
following section.

To ensure convergence of Q-learning, we can addBoltzmann explorationto obtain
a stochastic frame selection criterion with a temperatureT that decreases over time:

P (F |w,KB) =
eQ(s(w,KB),oF )/T

∑

Θposs(F ′,w,KB) 6=∅ eQ(s(w,KB),oF ′ )/T

One might argue that by using single-agent RL instead of “real” MARL like Markov
games, convergence would only be achieved if peer agents followed a stationary policy.
This is not the case however, since our approach allows different policies to be learned
for different policies of the peer, so these are virtually stationary within a current en-
counter.

3.2 Frame enactment

To determine the optimal actionm∗ we should selectwithin a frame, we apply expected
utility maximisation within the temporal scope of the remaining trajectory steps, since,
in general, the postfix ofT (F ) with respect tow can contain unbound variables so that
the utility of its execution is not ex ante deterministic.

From the framing view, both the agent itself and the peer it isinteracting with have
the freedom to substitute concrete values for free variables that occur first in one of
their trajectory steps. We will writeΘs andΘp for the sets of possible substitutions the
agent and the peer can apply respectively andϑs andϑp for specific elements of these
sets. Then, the expected utility of executing the remainingsteps ofT (F ) is given by

E[u(ϑs|F, w,KB)] =
∑

ϑp∈Θp

uγ(post(T (F ), w)ϑsϑp,KB) · P (ϑp|ϑs, F, w),

wherepost(T (F ), w) again denotes the postfix ofT (F ) with respect to prefixw,
uγ(w,KB) is the discounted utility of executing a message sequencew with initial



knowledge baseKB andP (ϑp|ϑs, F, w) is the probability with which the peer will
conditionally choose a substitutionϑp depending on the agent’s own choiceϑs. Based
on that, the optimal action is given by

m∗(F, w,KB) = T (F )[|w|+ 1]ϑ∗(F, w,KB),

where
ϑ∗(F, w,KB) = arg max

ϑs∈Θs

E[u(ϑs|F, w,KB)].

To compute the probabilityP (ϑp|ϑs, F, w) in accordance with the model provided
by the frameF , we will compare the (projected) message sequence of the present
encounter with those of the (past) encounters stored inF .

According to the consequentialist and empirical view of communication, the fu-
ture probability for the occurrence of any message sequenceshould be equal to the
frequency with which it has been observed in the past. However, T (F ) can be very ab-
stract, an it is unlikely that all the past cases stored inF are equally relevant for every
new encounter prefix that matchesT (F ). Intuition suggests that this relevance should
be expressed using some notion ofsimilarity between message patterns in the vein of
case-based reasoning[6]. To formally capture this notion, we introduce a real-valued
similarity measureσ :M∗ ×M∗ → [0, 1] on sequences of messages, allowing us to
compare the (perceived) encounter prefix with the past casesstored in a frame. In gen-
eral, the definition ofσ will be domain-dependant. A very simple default choice that
proves viable in many cases is to define sequence similarity recursively as the average
pairwise similarity of sequence elements and their arguments. At the term/operator
level, a strict equality criterion can be applied while assigning a similarity of 1 to
term/variable and variable/variable pairs.

Based on this similarity measure on message sequences, the similarity of a substi-
tutionϑ to a frameF can be defined as

σ(ϑ, F ) =

|Θ(F )|
∑

i=1

σ
(

T (F )ϑ, T (F )Θ(F )[i]
)

· hΘ(F )[i] · c
(

C(F )[i], ϑ,KB
)

.

wherec(C, ϑ,KB) is 1 if Cϑ holds underKB and0 else (where obvious from the
context, we omitKB for readability). The probability that a frameF is enacted under
a specific substitutionϑ is then computed as the similarity ofϑ to F relative to all
substitutions inΘposs , i.e.

P (ϑ|F, w) =

{

λ · σ(ϑ, F ) if ϑ ∈ Θposs(F, w,KB)

0 otherwise
(3)

for a normalisation constantλ.
To determineP (ϑp|ϑs, F, w) we can use the Bayesian product rule

P (ϑp ∧ ϑs|F, w) = P (ϑp|ϑs, F, w) · P (ϑs|F, w),

whereϑp ∧ ϑs denotes the event of the peer selectingϑp ∈ Θp and the agent selecting
ϑs ∈ Θs, such thatF is enacted under the complete substitution that results from
combining the fixed substitutionϑf with ϑp andϑs.

On the other hand, the probability that the agent has previously chosen substitution
ϑs is given by the sum of the probabilities for the occurrence ofcomplete substitutions



thatϑs is part of, such that

P (ϑp|ϑs, F, w) =
P (ϑp ∧ ϑs|F, w)

P (ϑs|F, w)
=

P (ϑf (F, w)ϑsϑp|F, w)
∑

ϑ P (ϑf (F, w)ϑsϑ|F, w))
.

Applying equation 3 to both numerator and denominator finally yields

P (ϑp|ϑs, F, w) =
σ(ϑf (F, w)ϑsϑp, F )

∑

ϑ σ(ϑf (F, w)ϑsϑ, F )
,

provided thatϑf (F, w)ϑsϑp ∈ Θposs(F, w,KB) (observe that the denominator is con-
stant inϑp and does not need to be computed to determineϑ∗(F, w,KB)).

To sum up, a frameF is enacted by executing the next step of the trajectoryT (F )
under the substitution that promises the highest expected utility for the complete tra-
jectory suffix, while computation of the occurrence probability for each substitution is
based solely on its similarity to the past cases stored inF . In [4], this form of reasoning
about communication as well as the underlying concept of empirical communication
semantics are examined with greater detail.

4 Experimental results

The learning approach presented in the previous sections has been tested in the
multiagent-based link exchange systemLIESON. In this system, agents representing
Web sites engage in communication to negotiate over mutual linkage with the end
of increasing the popularity of one’s own site and that of other preferred sites.

Available physical actions in this domain are the addition and deletion of numeri-
cally rated links originating from one’s own site and the modification of ratings (where
the probability of attracting more traffic through a link depends on the rating value).

LIESON provides a highly dynamic and complex interaction testbed for the following
reasons:

• Agents only have a partial and incomplete view of the link network. In partic-
ular, agents engage in non-communicative goal-oriented action in between en-
counters, so that the link network (and hence the agents’ utility situation) may
change while a conversation is unfolding.

• The number of possible link configurations is vast, and agents can only predict
possible utilities for a very limited number of hypothetical future layouts.

• There is no notion of commitment – agents choose frames in a self-interested
way and may or may not execute the physical actions that result from them.
Also, they may undo their effects later on.

LIESON agents consist of a non-social BDI [8] reasoning kernel thatprojects future
link network configurations and prioritises goals according to utility considerations.
If these goals involve actions that have to be executed by other agents, them2

InFFrA
component starts a framing process which runs until the goalof communication has
been achieved or no adequate frame can be found. We report on experiments in
which these agents were equipped with frames with the following six trajectories:
request(A,B,X) →accept(B,A,X) →confirm(A,B,X) →do(B,X)

request(A,B,X) →propose(B,A,Y) →accept(A,B,Y) →do(B,Y)



request(A,B,X) →prop-also(B,A,Y) →accept(A,B,Y) →do(B,X) →do(A,Y)

request(A,B,X) →reject(B,A,X)

request(A,B,X) →propose(B,A,Y) →reject(B,A,Y)

request(A,B,X) →prop-also(B,A,Y) →reject(B,A,Y)

The first three frames allow foraccept ing to perform arequest ed actionX , making
a counter-propose al in whichY is suggested instead ofX , or usingprop-also to
suggest thatB executesX if A agrees to executeY . The last three frames can be used
to explicitly reject a request or proposal. In that,X andY are link modification
actions; each message is available in every state and incursa cost that is almost negli-
gible compared to the utilities gained or lost through linkage actions (yet high enough
to ensure no conversation goes on forever). Also, agents canalways send astop action
to indicate that they terminate an encounter if they cannot find a suitable frame.

After termination, encounters are stored in the frame from which
they have originated. For example, agenta1 would store the encounter
request(a1, a2, add(a2, a1, 2)) → reject(a1, a2, add(a2, a1, 2)) by adding a
substitution [A/a1, B/a2, X/add(a2, a1, 2)] to the respective frame together with
an automatically generated list of conditions that were required for physical action
execution.

As state abstraction, we represent the physical actions referred to in an encounter
using statements of the form{↑|↓}({I, R}, {I, R, T }, {+,−, ?}). ↑ and ↓ stand
for a positive/negative link modification (i.e. addition/deletion of a link or an in-
crease/decrease of its rating value),I/R for the initiator/responder of the encounter,
T for a third party;+/−/? indicates whether the (learning) agent likes/dislikes/doesn’t
know the target site of the link modification. For example, ifa1 anda2 talk about
do(a1, deleteLink (a1, a3)) in an encounter initiated bya1 (while the learning agent
a2 is the responder and likesa3’s site) this is abstracted to↓(I, T, +). If in the
same conversationa2 suggests to modify his own link towarda1 (whom he does not
like) from a rating value of1 to 3, the state (vizsubject) of the encounter becomes
{↓(I, T, +), ↑(R, I,−)}. The intuition behind this state abstraction method is to cap-
ture, in a generalised form, thegoal of the conversation that can currently be realised
while at the same time reducing the state space to a reasonable size.

Figure 1 shows a comparison for a system with ten agents with an identical profile
of private ratings (preferences) towards other agents (both plots show the performance
of the best and the worst agent in the group as well as the average utility over all agents,
averaged over ten independent runs). In the first plot, agents employ BDI reasoning and
additionally send requests to others whenever they favour execution of someone else’s
action according to their BDI queue. These requests are thenenqueued by the recipient
as if he had “thought of” executing the respective action himself. Thus, it depends
on the recipient’s goal queue and on his utility considerations whether the request will
be honoured or not. As one can see, after a certain amount of time agents no longer
execute any of the actions requested by others, and cannot find any profitable action to
execute themselves, either. The system converges to a stable state.

The second plot shows the results of a simulation with the same setup as above
but usingm

2

InFFrA agents. Again, agents issue requests whenever they identify that
someone else could do something useful. After this initial message, the framing pro-
cedure takes over. Quite clearly, despite the fact that there is a greater variation in
maximal/minimal/average agent utility, the average and the best agent perform signifi-
cantly better than in the BDI case, while the weakest agent performs just as good as in
the BDI case on the average.
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Figure 1: Performance plots.

While on first glance the performance ofm
2

InFFrA agents might not be strikingly
different from that of plain BDI agents, it should be noted that the results establish a
lower bound on the performance gained by usingm

2

InFFrA. In environments with (pos-
sibly) non-benevolent peer agents showing non-stationarybehaviour, the performance
of agents using prespecified communication protocols or assuming a fixed semantics
of communication can become arbitrarily bad, whilem

2

InFFrA includes the ability to
learn what to expect from a given peer in a specific interaction situation. To allow for
any quantitative statements, however, additional experiments will be necessary.

More interesting still is that the average utility lies within the range of the two
horizontal lines in the plot. These denote the average utilities for two very interesting
linkage configurations: the lower of the two corresponds to afully connected linkage
graph, in which each agent (honestly) displays the ratings of his out-links, i.e. reveals
his true opinions about others. The slightly higher utilityshown by the upper line is
attained if agents do not lay any links toward agents they dislike. It is an interesting
property of the utility function used inLIESON, that being “politically correct” is slightly
better than being honest. The fact that agent utilities evolve around these benchmarks
indicates that they truly strive to make strategic communication moves and to exploit
the advantages of concealing certain beliefs.



5 Conclusions

In this paper, we have proposed hierarchical RL methods for learning communication
strategies in multiagent coordination, usinginteraction framesas a rich representation
for policy abstractions.

We have formally defined frames in them
2

InFFrA framework as sets of encounter
patterns supplemented with logical conditions, variable substitutions and occurrence
counters. By virtue of the options framework, frames have been re-interpreted as tem-
poral abstractions in the sense of hierarchical RL. Also, byapplying similarity criteria,
they can be seen as case abstractions in terms of case-based reasoning. We have de-
fined a two-level hierarchical decision-making apparatus for learning and reasoning
with frames and underlined its usefulness through experiments in a complex multia-
gent domain.

A major advantage of our approach is that it combines the decision-theoretic power
of RL models with the knowledge-based aspects of symbolic agent communication,
interaction protocols and ACL research in general. Compared to other approaches that
use hierarchical RL to learn communication policies (e.g. [5]), it is much closer to the
relational and situated nature of communication and interaction in a MAS and allows
for an explicit representation of first-order message content and logical conditions.
It is this aspect that makes rational action and learning possible for high-level agent
architectures that employ logical reasoning.

Future work includes investigations into how interaction frames can be constructed
from scratch (first steps in this direction concerning the concatenation of frames have
been described in [3]). Developing the theory ofhierarchical options(built around
a policy over options) [2] into “meta-frames” that allow foran online combination
of different interaction patterns and subgoals seems to be apromising idea for the
construction of frames for longer-term interactions. Also, the issue of some general
form of state abstraction is still largely unresolved and deserves our attention in the
future.
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