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Abstract

This paper proposes hierarchical reinforcement learnRig) (methods for
communication in multiagent coordination problems maetblas Markov Deci-
sion Processes (MDPs).

To bridge the gap between the MDP view and the methods useeétifgcom-
munication protocols in multiagent systems (using logicaiditions and proposi-
tional message structure), we utilis¢eraction framess powerful policy abstrac-
tions that can be combined with case-based reasoning teemiAlso, we exploit
the fact that breaking communication processes down to geafde “chunks” of
interaction sequences (as suggested by the interactiorefrapproach) naturally
corresponds to methods proposed in the area of hierardRical

The approach is illustrated and validated through experima a complex
application domain which prove that it is capable of hargllarge state and action
spaces.

1 Introduction

Communication is central to coordination and cooperatiommiultiagent systems
(MASSs) [13]. Unlike “physical” action that manipulates tle@vironment in which
agents are situated, communication may be used both in igight (e.g. to exchange
information) as well as to agree on the joint, coordinateztexion of physical actions.
The latter is possible because of the fact that the cost amzettbe risk associated with
communication is low compared to that of physical actions.

In the context of using communication to achieve coordishdtehaviour, we can
view agents’ decision-making processesrasliatedoy communication, i.e. the utility
of communicative decisions depends on the physical adjdhét result from them.
This allows us to develop models of communicative decisiaking in the frame-
work of Markov Decision Processes (MDPs; e.g., see [7])hghat reinforcement
learning (RL; e.g., see [11]) techniques are suited to dexivoptimatommunication
policy. Learning such policies is essential to the design of ada@gents iropen
MASSs, where adherence to interaction and communicatiotopots cannot be taken
for granted, and the need arises for agents to learn how & gebssibly predefined)
communication patterns can be applied strategically.

In this paper, we follow this interpretation and applgrarchicalRL methods [2] to
the problem of communication learning. As we will see, theesthods are well-suited



for communication-mediated multiagent MDPs, and we wifpgort this intuition by
experimental results in a complex domain. To induce hidiiaat structure on the orig-
inal MDP, powerful policy abstractions calléateraction frameg10] are applied that
allow for a generalisation over communication strategi#sce interaction frames are
capable of handling speech-act-based [1] agent commigridahguages (ACLs) with
propositional content, they bridge the gap between ACL anttiagent RL (MARL)
research, so that this paper also contributes to the integraf knowledge-based agent
and agent communication design with machine learning igcies.

However, we donot claim the suggested methods for learning strategic be-
haviour in communication to provide an optimal solution i@ bverall (i.e. phys-
ical+communicational) MARL problem. Rather, we developrhichical RL-based
heuristics for dealing with a set of communication pattepeacified (as is commonly
done in MAS communication design) in terms of logical coiudtis and propositional
message structure, thereby contributing to the agentrpsidplem for communication
learning problems.

The remainder of this paper is structured as follows. Secfiagives a short
overview of RL and the hierarchical RL framework gtions In section 3, we in-
troduce interaction frames and present how this data sireictan be combined with
the RL techniques of section 2 to learn the effective use ef afscommunication pat-
terns. Experimental results in a complex application donaaé reported on in section
4, and section 5 rounds off with some conclusions and an akittm possible future
work.

2 Reinforcement learning and theoptions framework

Standard RL is based on the MDP model of sequential decismeepses. An MDP is
defined by a finite sef of statesand finite sets4 of admissible actionfor each state
s € §. Transition probabilities

ply = P(st41 = §'|st = s,ar = a) Q)

andexpected rewards
re = E(reyilse = s,ar = a). 2

specify the system’s behaviour if actiane A, is taken in state € S and time step
t. In multiagent settings, the environment dynamidacludes the behaviour of other
agents.

Agent behaviour is represented by means of a (stochastigy = : S X
U,es As — [0,1], meaning that action is executed with probabilityt (s, a) when-
ever states is perceived. According to thexpected discounted infinite-horizon reward
maximisationcriterion which we follow here, an optimal poliey* is one that max-
imises the expected suEh(Zjio v’re4;) of discounted future rewards, wherg. ; is
the reward obtaineg steps in the future an@l < ~ < 1 is a geometric discount factor.

Based on that, the objective of RL is to learn an optimal ydlig sampling state
transitions and rewards. Q-learning [12] solves this pobby learning the value
Q* (s, a) of taking actioru in states and followings* thereafter. For this, an approxi-
mation@ is updated according to

Qls,0) — (1-)Q(s,a) +a |r +7 max Q(s',a)

/



for a sampled transition fromto s’ due to actioru and with associated reward For
a learning ratex appropriately decaying over time and using an exploraticategy
which ensures that in the limit each action is executed ifipioften in each state,
Q-learning can be shown to converged. An optimal policy is then given by letting
m*(s,a*) = 1for a* = argmaxy 4, Q*(s,a’) andn*(s,a) = 0 for all othera.

To allow fortemporal abstraction RL, we use theptionsframework [2] which
is based on augmenting the sets of admissible “primitive” actions by sets of so-
called “options”. An option is a triple = (Z, =, 3) consisting of an input séf C S,

a (stationary, stochastic) policy over primitive actions, and a termination condition
8 :8 — [0,1]. Optiono is admissible in a stateiff s € Z. If invoked, o will behave
according torr until it terminates stochastically with probability (we assume that
{s]8(s) < 1} C I). O, is used to denote the set of admissible options in statdich
may or may not include some or all of the primitive actiongdin If an option’s policy

m is Markov, i.e. action probabilities depend solely on treesof the core MDP, the
option itself is called &arkov option

For greater flexibility with respect to action selection aoedconsider policies
p: S X Uses Os — [0,1] over options, however, so-callegmi-Markov options
are required. These build on the theoryseimi-Markov decision process¢€aMDPs;
e.g., see [7]). In contrast to MDPs, the durationf an action within an SMDP is a
random variable, such that temporally extended coursestimiracan be modelled. In
the case of options; is the number of time steps from the invocation of an option to
its termination.

Since the core MDP together with a €2tof options constitutes an SMDP, SMDP
learning methods can be used to learn an optimal policy ©ven turn, with the core
MDP serving as an explicit representation of the SMDP, topton policies can be
evaluated and learned. The SMDP version of Q-learning epfiie update equation

Q(s,0) — (1 —a)Q(s,0) +a |r+~7 Jnax Q(s',0")
after optiono has been running for time steps betweer and s’. r denotes the
cumulative discounted reward over this time, which coulddoeputed as~ =
r1 4+ yra + - -+ +~" 1. from the individual rewards;. However, in an SMDP only
the complete rewar® obtained from executing in s is known. Assuming an equal
distribution of R over ther steps yields

T

R ~+" -1 R
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Q (s, 0) can be shown to converged (s, o) for all s € S ando € O under conditions
similar to those for conventional Q-learning.

3 Interaction frames

Interaction framesre a key concept of the abstract social reasoning architgoEFrA
proposed in [10]. There, they describe patterns of interastthat can be used strate-
gically by knowledge-based agents to guide their commtinehehaviour based on a
reasoning process callé@ming

For the scope of this paper, it suffices to look at (interajtivpames agolicy
abstractions(in the sense of MDP policies). This interpretation forme thasis of



a formal model ofinFFrA calledm’InFFrA (where thent stands for “Markov-square”
and hints at the underlying hierarchical two-level MDP vjedetails of which can be
foundin [9].

In m’InFFrA, a frame describes a set of two-party, discrete, turn-takiteraction
encountersvhich can be thought of as conversations between two ag&msisquence
of message patterns calle@jectory specifies the surface structure of the encounters
described by the frame, while a list sfibstitutionscaptures the values of variables
in the trajectory in previously experienced interactiosach substitution also cor-
responds to a set of logicabnditionsthat were required for and/or precipitated by
execution of the trajectory in the respective encountanaliyi, trajectory occurrence
andsubstitution occurrenceounters record the frequency with which the frame has
occurred in the past. This leads to the following formal dééin of m’InFFrA frames:

Definition 1
Aframeis a tupleF = (T,0,C, hr, he), where

e T = (p1,p2,...,pn) iS asequence of message pattegns M, thetrajectory
of the frame,

e O=(V,...,9,) is an ordered list ofvariable substitutions

e C = (c1,...,cy) is an ordered list ofcondition setssuch thate; € 2€ is the
condition set relevant under substitution,

e hr € NITlis atrajectory occurrence countést counting the occurrence of each
prefix of the trajectoryl” in each of the previous encounters (even if the frame
was not itself executed), and

e he € NI®lis asubstitution occurrence countiést counting the occurrence of
each member of the substitution I8tin previous encounters (where the frame
was actually executed).

Thereby,M is a language of speech-act like message and action patiettms form
perf(A, B, X) ordo(A, Ac). In the case of messagesrf is a performative symbol
(request, inform etc.), A/B are agent identifiers or agent variables aXids the
propositional content of the message taken from a logicgeduageL. In the case
of physical actions with the special “performativé, Ac is the action executed by
A (an action has no recipient as it is assumed to be observgtd@pagent in the
system). BothX and Ac may contain non-logicadubstitutionvariables that are used
for generalisation purposes. We further uge. C M to denote the language of actual
(ground) messages that agents use in communication (issages that do not contain
variables other than “content variables” used in a logieakg).

Writing T'(F'), ©(F), etc. for functions that return the respective elements of a
frame F’, its semantics can informally be summed up as follows: Thenatpwn-
ing” F' has experiencely (F')[1] encounters which started with a message matching
the first elementn; = T'(F)[1] of the trajectory.hr (F)[2] of these encounters con-
tinued with a message matching, = 7T'(F)[2], and so on.®, hg andC provide
more information about specific past encounters:iFar|©|, F' representée[i] past
encounters matching(F)©(F)[i], andC(F)O©(F)[i] held during each of these en-
counters. Agents are assumed to maintain a knowledgefBsencoded in the same
propositional languagg that is used as a content language for messages.



From the standpoint of RL, ground instances of a frame careée as temporally
extended policies that (like options) range over sequentestions. Moreover, by
virtue of generalisation over possible variable substing, a frame captures a whole
set of such policies.

3.1 Frame-based options

After this general account, we will now describe how intéiat frames can be in-
tegrated with the options framework. For this, we view aggrhmunication as an
MDP with a setS of states, which is derived using some kindstdte abstractiorthat
partitions the current knowledge base cont&iit and the perceivedncounter prefix
w € M (the sequence of messages exchanged so far during an esjduiat equiv-
alence classes denoted Qy, ). A = M. is used as the set of primitive actions.

For a frameF’ to induce an optiony € O, o = (Zp,nr,Fr), Over the core
MDP given byS and.A, we need to defin€r, 7r andSr appropriately based oR.
Obviously, a frame can be selected iff there exists a suitistit to enact it under. Thus,
we have

Ir = {S(w,KB) es | GPOSS(F,w, KB) 7& @} ,

where ©,,,.s(F, w, KB) is the set of substitutiond' can be enacted under given

encounter prefixv and knowledge bas&B. ©,., can effectively be computed

by unifying w with the appropriate prefix of (F') (which yields a “fixed” substi-

tution ¥, (F,w)) and restricting the variable bindings for the correspongdpostfix

post(T'(F),w) (to whichd; has already been applied) to those executable ufider
As for the termination 0b, several reasons are imaginable:

=

. or will definitely terminate if the end of the trajectofy( F') has been reached.
2. o will also terminate if'(F') no longer matches the encounter prefix

3. Changesto the knowledge base may prohibit the executtbe cemaining steps
of F. As above, this is verified by checking whettt&y,,s (F, w, KB) = (.

4. The remaining steps df may be rendered undesirable due to changes to the
agent’s knowledge base.

5. Actions by the peer may prohibit execution of the framearride most desirable
substitution.

Items 2, 3 and 4 concern tivalidity, adequacyanddesirabilityof F', respectively [10].
Item 5 can be viewed as concerning the desirability'ais well as the validity of the
most desirable substitution.

If we assume that desirability (conditions 4 and 5) corresisoto the profit the
agent will obtain from executing a message/action sequenaeder knowledge base
KB which it can estimate using a utility function: M} x KB — R, then a boolean
desirability criteriond (F, w, KB) can be defined which determines desirability-based
option termination:

1 if Oposs (F,w, KB) =10
Br(8(w,xB)) = or§(F,w, KB)
0 otherwise.



As [2] points out, optimal policies over the set of availadyeions are in general subop-
timal policies of the core MDP, if not all primitive actioase A, remain admissible in
s. This is obvious for the special case of frame-based optginse a frame’s expected
reward may change during the enactment, rendering angtimaefmore desirable. As
we have already said, we are willing to accept this drawbackihfe sake of complex-
ity reduction, all the more in the domain of multiagent iigtion another benefit may
arise: If agents accept frames as an established meangaddtibn and follow them
normatively to a certain extent rather than constantlyidg\or optimal actions, this
will make them more comprehensible and dependable, thewshycing the contin-
gency inherent in interactions. As a result, agents shadiéee to a frame as long as
possible.

What now remains to be specified is the intra-option pofigycorresponding to a
frame F'. From a rational actor’s point of view, the agent should tieebest possible
action according to its utility functiom, considering the restrictions imposed by the
active frame. This yields the (greedy, deterministiohctment policy

1 if m=m"(F,w, KB)
0 otherwise,

7TF(S('LU,I(B)vTn) = {

wherem*(F,w, KB) is the optimal action given encounter prefixand knowledge
baseK B and restricted by framé&'. A concrete definition ofn* will be given in the
following section.

To ensure convergence of Q-learning, we canRdiizmann exploratioto obtain
a stochastic frame selection criterion with a temperafutieat decreases over time:

eQ(S(w,kB),0r)/T

eQ(S(w,kB):0p1)/T

P(F|lw, KB) =
2260us (F' w0, KB)£0

One might argue that by using single-agent RL instead of"“MARL like Markov
games, convergence would only be achieved if peer agefdw/fd a stationary policy.
This is not the case however, since our approach allowsrdiffgolicies to be learned
for different policies of the peer, so these are virtualBtisnary within a current en-
counter.

3.2 Frame enactment

To determine the optimal action* we should seleatithin a frame, we apply expected
utility maximisation within the temporal scope of the reniag trajectory steps, since,
in general, the postfix df (F') with respect tav can contain unbound variables so that
the utility of its execution is not ex ante deterministic.

From the framing view, both the agent itself and the peeriiitiracting with have
the freedom to substitute concrete values for free varsathlat occur first in one of
their trajectory steps. We will writ®, ando,, for the sets of possible substitutions the
agent and the peer can apply respectively @nendd,, for specific elements of these
sets. Then, the expected utility of executing the remaistegs ofl’(F') is given by

E[u(195|F,w, KB)] = Z U’Y(pOSt(T(F)aw>19Sl9PaKB) ’ P(§p|1957F7w)’
9,€0,

where post (T (F),w) again denotes the postfix d@f(F) with respect to prefixw,
u(w, KB) is the discounted utility of executing a message sequenesth initial



knowledge basé{B and P(9,|ds, F,w) is the probability with which the peer will
conditionally choose a substitutiahy depending on the agent’s own choite Based
on that, the optimal action is given by

m*(F,w, KB) = T(F)[|lw| + 1]0* (F, w, KB),

where
9 (F,w, KB) = arg max Elu(9s|F,w, KB)].

To compute the probability?(9, |9, F, w) in accordance with the model provided
by the frameF', we will compare the (projected) message sequence of treepre
encounter with those of the (past) encounters stordd in

According to the consequentialist and empirical view of cmmication, the fu-
ture probability for the occurrence of any message sequsinoeld be equal to the
frequency with which it has been observed in the past. How&d") can be very ab-
stract, an it is unlikely that all the past cases storef i@re equally relevant for every
new encounter prefix that matchE§F). Intuition suggests that this relevance should
be expressed using some notiorsohilarity between message patterns in the vein of
case-based reasonirjg]. To formally capture this notion, we introduce a realued
similarity measurer : M* x M* — [0, 1] on sequences of messages, allowing us to
compare the (perceived) encounter prefix with the past cdee=d in a frame. In gen-
eral, the definition ot will be domain-dependant. A very simple default choice that
proves viable in many cases is to define sequence similagtyrsively as the average
pairwise similarity of sequence elements and their argusieAt the term/operator
level, a strict equality criterion can be applied while gasig a similarity of 1 to
term/variable and variable/variable pairs.

Based on this similarity measure on message sequencesmiteisy of a substi-
tution 9 to a frameF' can be defined as

o(F)]
o, F) = Y o(T(F),T(F)OF)[]) - he(F)i] - ¢(C(F)i,d, KB).

i=1

wherec(C, 9, KB) is 1 if C¢ holds underKB and0 else (where obvious from the
context, we omitK' B for readability). The probability that a franmfé is enacted under
a specific substitution? is then computed as the similarity ofto F' relative to all
substitutions irB ., i.€.
PUOIF ) {)\.a(ﬂ,F) i 0 € Opous (F, w, KB) @)
otherwise

for a normalisation constant
To determineP(dJ,|J,, F, w) we can use the Bayesian product rule

POy, NIs|Fow) = P(9p|0s, F,w) - P(Us|F,w),

whered, A ¥, denotes the event of the peer selectijge ©, and the agent selecting
¥s € O, such thatF' is enacted under the complete substitution that resulta fro
combining the fixed substitutiof; with ¢, andd,.

On the other hand, the probability that the agent has preljiaosen substitution
J5 is given by the sum of the probabilities for the occurrenceafiplete substitutions



thatv, is part of, such that

P, ANOJFw) P (F,w)d.0,|F,w)
PF.w) Sy PO, (F,w)09|F,w)’

P(0p|0s, F,w) =

Applying equation 3 to both numerator and denominator fingklds

oWy (F,w)9.9,, F)
P(0p[9s, Fw) = S, 00 (F,w)d, 9, F)’

provided that ; (F, w)ds0, € ©ss(F,w, KB) (observe that the denominator is con-
stant inY, and does not need to be computed to determiiié’, w, KB)).

To sum up, a framé’ is enacted by executing the next step of the trajecty)
under the substitution that promises the highest expeditty for the complete tra-
jectory suffix, while computation of the occurrence protigsbior each substitution is
based solely on its similarity to the past cases storéd im [4], this form of reasoning
about communication as well as the underlying concept ofiecapcommunication
semantics are examined with greater detail.

4 Experimental results

The learning approach presented in the previous sectioasbhan tested in the
multiagent-based link exchange syst&fBSON. In this system, agents representing
Web sites engage in communication to negotiate over muiledde with the end
of increasing the popularity of one’s own site and that okotireferred sites.

Available physical actions in this domain are the additiod deletion of numeri-
cally rated links originating from one’s own site and the rificetion of ratings (where
the probability of attracting more traffic through a link @eyls on the rating value).

LIESCN provides a highly dynamic and complex interaction testloethfe following
reasons:

e Agents only have a partial and incomplete view of the linkwegk. In partic-
ular, agents engage in non-communicative goal-orientédram between en-
counters, so that the link network (and hence the agenigyituation) may
change while a conversation is unfolding.

e The number of possible link configurations is vast, and agean only predict
possible utilities for a very limited number of hypothetifiure layouts.

e There is no notion of commitment — agents choose frames iff-éngerested
way and may or may not execute the physical actions thattrésuh them.
Also, they may undo their effects later on.

LIESON agents consist of a non-social BDI [8] reasoning kernel grajects future
link network configurations and prioritises goals accogdia utility considerations.
If these goals involve actions that have to be executed bgrathents, then'InFFrA
component starts a framing process which runs until the gbebmmunication has
been achieved or no adequate frame can be found. We reportpatireents in
which these agents were equipped with frames with the fatigveix trajectories:
request(A,B,X) —accept(B,A,X)  —-confirm(A,B,X) —do(B,X)

request(A,B,X) —propose(B,AY) —accept(AB,Y) —do(B,Y)



request(A,B,X) —prop-also(B,A,Y) —accept(A,B,Y) —do(B,X) —do(A,Y)
request(A,B,X) —reject(B,A,X)

request(A,B,X) —propose(B,A,Y)  —reject(B,A)Y)

request(A,B,X) —prop-also(B,A,Y) —reject(B,A)Y)

The first three frames allow faiccept ing to perform aequest ed actionX', making

a countempropose al in whichY is suggested instead &f, or usingprop-also  to
suggest thaB3 executesX if A agrees to executg. The last three frames can be used
to explicitly reject  a request or proposal. In thaXl andY are link modification
actions; each message is available in every state and ia@wst that is almost negli-
gible compared to the utilities gained or lost through liggactions (yet high enough
to ensure no conversation goes on forever). Also, agentaleays send atop action

to indicate that they terminate an encounter if they canndtdi suitable frame.

After termination, encounters are stored in the frame fromhictv
they have originated. For example, agemt would store the encounter
request(ay, as, add(az,a1,2)) — reject(ai,as, add(az,a1,2)) by adding a
substitution[A/a1, B/as, X/add(a2,a1,2)] to the respective frame together with
an automatically generated list of conditions that wereuiegl for physical action
execution.

As state abstraction, we represent the physical actioesresf to in an encounter
using statements of the forfif|l}({I, R},{I,R,T},{+,—,7}). 1 and | stand
for a positive/negative link modification (i.e. additiorldtion of a link or an in-
crease/decrease of its rating valuB)R for the initiator/responder of the encounter,
T for a third party;+/—/7 indicates whether the (learning) agent likes/dislikessitot
know the target site of the link modification. For examplegifanda, talk about
do(ay, deleteLink(aq,ag)) in an encounter initiated by; (while the learning agent
ay is the responder and likes;'s site) this is abstracted to(I,7,+). If in the
same conversatiom, suggests to modify his own link towakd (whom he does not
like) from a rating value ofl to 3, the state (visubjec} of the encounter becomes
{l(I,T,+),7(R,I,—)}. The intuition behind this state abstraction method is @ ca
ture, in a generalised form, tlgwal of the conversation that can currently be realised
while at the same time reducing the state space to a reasosiabél

Figure 1 shows a comparison for a system with ten agents wittiemtical profile
of private ratings (preferences) towards other agent$(blots show the performance
of the best and the worst agentin the group as well as thegwetdity over all agents,
averaged over ten independentruns). In the first plot, agenploy BDI reasoning and
additionally send requests to others whenever they faueougion of someone else’s
action according to their BDI queue. These requests aregthgueued by the recipient
as if he had “thought of” executing the respective actionddth Thus, it depends
on the recipient’s goal queue and on his utility consideratiwhether the request will
be honoured or not. As one can see, after a certain amoumhefagents no longer
execute any of the actions requested by others, and candatrfinprofitable action to
execute themselves, either. The system converges to a stals.

The second plot shows the results of a simulation with theess@tup as above
but usingm’inFFrA agents. Again, agents issue requests whenever they il émif
someone else could do something useful. After this initieksage, the framing pro-
cedure takes over. Quite clearly, despite the fact thaetien greater variation in
maximal/minimal/average agent utility, the average ardibst agent perform signifi-
cantly better than in the BDI case, while the weakest agenfibpas just as good as in
the BDI case on the average.
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Figure 1: Performance plots.

While on first glance the performance mfinFFrA agents might not be strikingly
different from that of plain BDI agents, it should be notedttthe results establish a
lower bound on the performance gained by usifigrFFrA. In environments with (pos-
sibly) non-benevolent peer agents showing non-statiob@naviour, the performance
of agents using prespecified communication protocols armasgy a fixed semantics
of communication can become arbitrarily bad, whifénFFrA includes the ability to
learn what to expect from a given peer in a specific interactituation. To allow for
any quantitative statements, however, additional expaErtswill be necessary.

More interesting still is that the average utility lies witithe range of the two
horizontal lines in the plot. These denote the averagdiasifor two very interesting
linkage configurations: the lower of the two corresponds tollg connected linkage
graph, in which each agent (honestly) displays the ratiridgsoout-links, i.e. reveals
his true opinions about others. The slightly higher utiktyown by the upper line is
attained if agents do not lay any links toward agents theljkdisIt is an interesting
property of the utility function used IHESON, that being “politically correct” is slightly
better than being honest. The fact that agent utilitiesvevatound these benchmarks
indicates that they truly strive to make strategic commativm moves and to exploit
the advantages of concealing certain beliefs.



5 Conclusions

In this paper, we have proposed hierarchical RL methodsfmning communication
strategies in multiagent coordination, usinteraction framess a rich representation
for policy abstractions.

We have formally defined frames in théinFFrA framework as sets of encounter
patterns supplemented with logical conditions, variabillessitutions and occurrence
counters. By virtue of the options framework, frames hawenhe-interpreted as tem-
poral abstractions in the sense of hierarchical RL. Alsaafylying similarity criteria,
they can be seen as case abstractions in terms of case-baseding. We have de-
fined a two-level hierarchical decision-making apparatrsiéarning and reasoning
with frames and underlined its usefulness through experisi@ a complex multia-
gent domain.

A major advantage of our approach is that it combines thes@etitheoretic power
of RL models with the knowledge-based aspects of symbokntagommunication,
interaction protocols and ACL research in general. Contptrether approaches that
use hierarchical RL to learn communication policies (e5§), [it is much closer to the
relational and situated nature of communication and ictera in a MAS and allows
for an explicit representation of first-order message aandéad logical conditions.
It is this aspect that makes rational action and learningiptesfor high-level agent
architectures that employ logical reasoning.

Future work includes investigations into how interacticanfies can be constructed
from scratch (first steps in this direction concerning theaadenation of frames have
been described in [3]). Developing the theoryhaérarchical options(built around
a policy over options) [2] into “meta-frames” that allow fan online combination
of different interaction patterns and subgoals seems to pmmising idea for the
construction of frames for longer-term interactions. Aldte issue of some general
form of state abstraction is still largely unresolved andestees our attention in the
future.
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