
A Schema for Specifying Computational

Autonomy

Matthias Nickles, Michael Rovatsos, and Gerhard Weiß

Institut für Informatik, Technische Universität München,
D-85748 Garching, Germany

{nickles,rovatsos,weissg}@in.tum.de

Abstract. A key property associated with computational agency is au-
tonomy, and it is broadly agreed that agents as autonomous entities (or
autonomous software in general) have the capacity to become an en-
abling technology for a variety of complex applications in fields such
as telecommunications, e/m-commerce, and pervasive computing. This
raises the strong need for techniques that support developers of agent-
oriented applications in specifying the kind and level of autonomy they
want to ascribe to the individual agents. This paper describes a speci-
fication schema called RNS (“Roles, Norms, Sanctions”) that has been
developed in response to this need. The basic view underlying RNS is that
agents act as owners of roles in order to attain their individual and joint
goals. As a role owner an agent is exposed to certain norms (permissions,
obligations and interdictions), and through behaving in conformity with
or in deviation from norms an agent becomes exposed to certain sanc-
tions (reward and punishment). RNS has several desirable features which
together make it unique and distinct from other approaches to auton-
omy specification. In particular, unlike other approaches RNS is strongly
expressive and makes it possible to specify autonomy at a very precise
level. Moreover, RNS is domain- and application-independent, and is of
particular value for agent-oriented requirements elicitation and analysis.

1 Introduction

A key property associated with computational agency is autonomy. As an au-
tonomous entity, an agent possesses action choice and is able to act under self-
control within the bounds of its design objectives. Compared to other basic
properties usually associated with agency such as behavioral flexibility (covering
both reactivity and pro-activeness) and high-level interactivity (based on com-
munication and negotiation with the purpose of cooperation or competition), it
is autonomy that makes agent orientation most distinct from traditional soft-
ware and systems development paradigms. These paradigms, relying on concepts
such as objects or components, simply are not intended to capture the notion of
computational autonomy – to the contrary, they can even be said to be intended
to prevent autonomous component behavior. The past years have witnessed a
rapidly growing interest in various aspects of computational autonomy, as it is

also indicated by an increasing number of related research efforts (e.g., see [1,
4, 5, 8] for work explicitly dealing with autonomy). This interest is largely based
on the insight that agents as autonomous entities – or autonomous software in
general – do have the capacity to become an enabling technology for a broad
and important class of applications, namely, applications that run in complex
socio-technical environments which are open, dynamic, networked, time-critical,
and/or decentralized and thus possess a critical mass of inherent unpredictabil-
ity. Due to this unpredictability a full behavioral specification of application
software is not possible in many cases, and this is the point where autonomously
acting entities come into play which are able to act in a desired manner not
only in anticipated environmental situations but also in situations that were un-
foreseeable at design time. Well known examples of application domains calling
for a deployment of “autonomous technology” are telecommunications, logis-
tics, e/m-commerce, supply chain management, and pervasive and ubiquitous
computing.

Among the most critical activities in engineering agent-based applications
is the specification of the kind and level of autonomy owned by the different
agents. This specification can fail in two opposite ways, both making it unlikely
that a resulting application meets its requirements: on the one hand, if this
specification is too rigid then necessary action choice is suppressed and “ob-
jects are made out of agents”; and on the other hand, if this specification is
too generous then unnecessary action choice is admitted and “agents are made
out of objects”. This autonomy specification dilemma raises the strong need for
supporting a developer in specifying the agents’ action choice. More specifically,
what is needed are specification techniques – methods, formalisms, tools, lan-
guages, and so forth – which enable and force developers to precisely state what
degrees of behavioral freedom they want to ascribe to the individual agents. This
paper describes a specification schema called RNS (standing for “Roles, Norms,
Sanctions”) which has been developed in response to this need. This schema em-
ploys the concepts of roles, norms (permissions, obligations, and interdictions)
and sanctions (reward and punishment) to capture autonomy. RNS, which is
particularly suited for agent-oriented requirements elicitation and analysis, pos-
sesses several desirable features which together make it unique and distinct from
related approaches to autonomy specification. In particular, although RNS is
based on a relatively simple and easy-to-understand notation and syntax, it is
very expressive and enables a developer to specify agent autonomy with a very
high precision. Moreover, RNS is general enough to be not bound to any specific
application or application domain.

The paper is structured as follows. Section 2 describes RNS in detail; this
includes a general characterization (2.1) and a detailed technical presentation
(2.2 and 2.3). This section also gives a number of illustrating examples of all
basic aspects of RNS. Finally, Section 3 discusses pros and cons of RNS and
compares RNS to related approaches.

2 The RNS Schema

2.1 Informal Characterization

RNS employs the concepts of role, norm and sanction as known from sociological
role theory (e.g., [3]) to specify autonomy. The basic view underlying RNS is that
autonomous agents are embedded in a social frame which regulates – guides and
constrains – their behavior. This social frame, called role space, is composed of
roles which are available to the agents and through which the agents can try to
achieve individual and joint objectives. An agent may own several roles at the
same time, and the set of roles owned by an agent may dynamically vary over
time. Conceptually roles are viewed as a means for specifying desired behavior
and for achieving behavioral predictability, and not as a means for making sure
that agents do never exhibit unexpected and undesirable behavior. Roles in
RNS are not intended to fully constrain individual behavior; instead, they leave
room for individuality (agents may fill a role differently by putting emphasis on
different aspects). Somewhat more specifically, according to RNS a role consists
of at least one activity to which norms together with sanctions are attached. RNS

distinguishes three types of norms (permissions, obligations, and interdictions)
and two types of sanctions (reward and punishment). Whereas norms specify
behavior expectations held by agents against other agents (in their capacity
as role owners), sanctions specify potential consequences of norm-conforming
and norm-deviating behavior. Sanctions, in some sense, serve as a means for
controlling autonomy. By enabling a designer to explicitly specify sanctions, RNS

takes care of the fact that generally (and especially in open applications) agents
as autonomous entities do not necessarily behave in conformity with available
norms, but may also ignore and violate them (be it intentionally or not).

2.2 Basic Concepts and Constructs

The RNS schema requires to analyze and specify systems in terms of roles which
are available to the agents and through which the agents can try to achieve
their objectives. The set of available roles is called a role space. A role space is
specified in the form

ROLE SPACE role space id
�

role id list �

where role space id is a character string uniquely identifying the role space under
consideration and role id list is a list of character strings called role identifiers
that uniquely identify roles.1 Roles are viewed as collections of specific activities,
and for each role identifier, role id , there must be a role specification in the form

ROLE role id
�

activity spec list �
1 Syntactic keywords are written in underlined TYPEWRITER FONT, and italic font is used to

indicate variables. Expressions enclosed in brackets [.] are optional. Brackets of the form
<.> are part of the RNS syntax. As the reader will see in the examples provided below,
most of the variables also can be instantiated with specific keywords such as EACH.

where activity spec list is a list of specifications of all activities being part of the
role role id . How activity specifications look like is described in section 2.3.

The RNS schema distinguishes three types of norms – permissions (P), obli-
gations (O), and interdictions (I) – and two types of sanctions – reward (RE)
and punishment (PU) – that apply in case of norm conformity and deviation.
Based on these distinctions, a status range is attached to each activity which
describes activity-specific norms and associated sanctions. More specifically, a
status range specification is of the form

STATUS RANGE status statement list

where status statement list is a list of so called status statements each describing
a norm-sanction pair that is specific to the activity to which the status range
is attached. A key feature of the RNS schema is that it facilitates the explicit
modeling and specification of requests for (refraining from) executing particular
activities. This feature induces the distinction of two kinds of norm-sanction
pairs attached to an activity:

– norm-sanction pairs an activity is subject to, no matter whether the execu-
tion or omission of the activity is requested or not by some agent. Norm-
sanction pairs of this kind are, so to say, independent of any requests for (not)
executing the activity to which they are attached. Norm-sanction pairs of
this kind, and the status statements describing them, are called independent
and are indicated by the keyword IND.

– norm-sanction pairs an activity becomes subject to as a consequence of a
request for (not) executing it. Such norm-sanction pairs are, so to say, in-
duced by (i.e., do become active as an effect of) explicit requests for activity
execution or omission. Agents requesting the (non-)execution of an activ-
ity are called role senders. Norm-sanction pairs of this kind, and the status
statements describing them, are called dependent and are indicated by the
keyword DEP.

The common syntax of independent status (IS) statements and dependent status
(DS) statements is as follows:

<status type> : NORM <norm type> <condition>

︸ ︷︷ ︸

norm specification

+ SANC <sanction type> <sanction>

︸ ︷︷ ︸

sanction specification
︸ ︷︷ ︸

norm-sanction pair

where status type ∈ {IND, DEP role id} discriminates among IS and DS state-
ments, norm type ∈ {P, O, I}, condition is a Boolean expression making it
possible to formulate conditioned norms, sanction type ∈ {RE, PU}, and sanc-
tion is an expression specifying a sanction of type sanction type. Though syn-
tactically almost identical, IS and DS statements differ significantly in their
semantics. First consider IS statements, that is, statements of the form

<IND> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

Dependent on norm type, such a statement attached to an activity reads as
follows:

– norm type = {P}: “An agent owning the role of which this activity is part of
is permitted to execute this activity provided that the condition condition is
fulfilled. The sanction associated with this permission is of type sanction type
and is given by sanction.”

– norm type = {O}: “An agent owning the role of which this activity is part
of is obliged to execute this activity provided that the condition condition is
fulfilled. The sanction associated with this obligation is of type sanction type
and is given by sanction.”

– norm type = {I}: “An agent owning the role of which this activity is part
of is forbidden to execute this activity provided that the condition condition
is fulfilled. The sanction associated with this interdiction is of type sanc-
tion type and is given by sanction.”

Against that, DS statements, that is, statements of the form

<DEP role id> : NORM <norm type> <condition> + SANC <sanction type> <sanction>

read as follows:

– norm type = {P}: “If an agent owning the role role id requests to execute
this activity (from an agent owning the role of which this activity is part of),
then the requested agent is permitted (by the requesting agent) to execute
it (i.e., she may execute it) provided that the condition condition is fulfilled.
The sanction associated with this permission is of type sanction type and is
given by sanction.”

– norm type = {O}: “If an agent owning the role role id requests to execute
this activity, then the requested agent is obliged (by the requesting agent) to
execute it (i.e., she must execute it) provided that the condition condition is
fulfilled. The sanction associated with this obligation is of type sanction type
and is given by sanction.”

– norm type = {I}: “If an agent owning the role role id requests to not execute
this activity, then the requested agent is forbidden (by the requesting agent)
to execute it (i.e., she must not execute it) provided that the condition
condition is fulfilled. The sanction associated with this interdiction is of
type sanction type and is given by sanction.”

DS statements make it possible to capture situations in which requests (e.g.,
from different agents) for executing an activity do have different normative and
sanctioning impacts on the requested agent. In other words, DS statements allow
to model situations in which requests even for the very same activity induce
different norms and sanctions. With that, the RNS schema is highly sensitive to
normative and sanctioning contexts.

2.3 Activity Types

According to the RNS schema, four types of activities are distinguished:

– Basic activities, that is, resource and event handling activities (Type I).
– Request activities, that is, requests for executing activities (Type II).
– Sanctioning activities, that is, activities that result in a punishment of be-

havior deviating from available obligations and interdictions, as well as activ-
ities that result in a rewarding of behavior going conform with permissions,
obligations and interdictions (Type III).

– Change activities, that is, activities that result in changes of status state-
ments being part of the status range of an activity of any type (Type IV).
As a status statement consists of a norm specification and a sanction speci-
fication, change activities can be also characterized as activities that result
(i) in changes of norms attached to an activity and/or (ii) in changes of
sanctions associated with such norms.

Each of these four types of activities may be subject to (or “the target of”)
an activity of types II, III, and IV. This means, in particular, that the RNS

schema allows to formulate “crossed and self-referential” constructs such as re-
quests for requests, requests for sanction and norm changes, changes of norms
attached to norm-changing activities (as well as requests for such changes), and
changes of sanctions attached to sanction-changing activities (as well as requests
for such changes). Examples of such constructs, which we call activity reference
constructs , are provided below. In the following, the four activity types are de-
scribed in detail.

Resource and Event Handling Activities. These activities are highly domain-
and application-specific. Two types of resources are distinguished, namely, con-
sumable ones (e.g., time, money, and any kind of raw material to be processed
in a manufacturing process) and non-consumable ones (e.g., data, protocols, and
communication support services such as blackboard platforms and translation
systems). Examples of such activities are

provide(CPU time), deliver(material,quantity), access(database),
run-protocol(joint-planning), kick-ball(position), acknowledge-receipt(data).

The RNS specification of this type of activities has the general form

ACT activity id (activity variable list)�
STATUS RANGE status statement list �

where activity variable list is a list of variables specific to the activity activity id .
The first line of any activity specification, starting with the keyword ACT, is called
an activity header , and the part enclosed in {.} is called an activity body . Here
is an example of a specification of a basic activity. Assume there is a role with
identifier USsupplier, and that one of its basic activities is specified as follows:

ACT deliver (material,quantity)�
STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP EACH> : NORM <O> <quantity ≤ 100> + SANC <PU> <withdraw role>
<DEP AssemblyMg> : NORM <I> <material = steel> + SANC <PU> <pay fine>

�
The keyword EACH used as an instantiation of role id (agent id) indicates that
all roles (agents) are concerned, and the keyword NO used as an instantiation of

condition (of sanction type and sanction) indicates that the norm is uncondi-
tioned (that there is no associated sanction). With that, in this example the IS
statement says that an agent owning the role of which the deliver activity is part
of is permitted to deliver. The first DS statement says that a request from each
agent (no matter what role she owns within the role space under consideration)
for executing this deliver activity induces the obligation to deliver, provided that
the requested quantity is not above 100. Furthermore, the statement says that
the requested agent must withdraw the role USsupplier (i.e., is not longer al-
lowed to act as a USsupplier) in the case of violating such an induced obligation.
The second DS statement says that the delivery of steel, if requested by an agent
owning the role AssemblyMg (“Assembly Manager”), is forbidden; not acting in
accordance with this interdiction is punished by some fine.

Execution Requests. These activities are specified as follows:

ACT REQUEST (agent id list ; role id list ; [NOT] activity id (activity variable list))�
STATUS RANGE status statement list

NORMATIVE IMPACT norm specification list �

The activity header says that requests can be directed towards any agent who
is referred to in agent id list and who owns at least one of the roles listed in
role id list . The header also identifies the activity being subject to the request.
The keyword NOT is optional and is to be used only in the case of interdiction (i.e.,
in the case of requests for not executing some activity). norm specification list
specifies the normative impact of the request on the requested agent(s) through
a list of norm specifications. As already introduced above, these specifications
are of the form

NORM <norm type> <condition>

Note that every norm specification included in a normative impact specification
of a request activity, together with the identifier of the role of which the request
activity is a part, unambiguously points to a single or (if there are multiple
sanctions – rewards and punishments – associated with the induced norm) several
DS statements.

As an illustrating example based on the delivery activity specified above,
consider the following request activity specification being part of the role As-
semblyMg:

ACT REQUEST (EACH ; USsupplier, EUROsupplier ; NOT deliver (material , quantity))�
STATUS RANGE

<IND> : NORM <P> < (material = steel) AND (rating(material) = poor)> +

SANC <NO> <NO>

NORMATIVE IMPACT

NORM <I> <material = steel>

�

The keyword EACH says that the request can be directed towards each agent own-
ing the roles USsupplier or EUROsupplier. (If role id list were also instantiated
with EACH, then this would mean that each agent – without any role restriction –

can be requested to deliver.) Generally, the keyword EACH serves as a wildcard,
and expressions including it are called templates .

A potential, legal occurrence or “call” of this request activity (which, for
instance, could be part of interaction protocols) during run time is the following:

REQUEST (Dr Meyer, Mr Black ; USsupplier ; NOT deliver (steel, [0 . . . 500]))
(i.e., the USsuppliers Dr Meyer and Mr Black are requested to not accept steel delivery
orders with an ordering volume less than or equal to 500 units)

As a variant of this example, consider the following specification (again as-
suming that the specified request activity is part of the AssemblyMg role):

ACT REQUEST (EACH ; USsupplier, EUROsupplier ; NOT deliver (material, quantity))�
STATUS RANGE

<IND> : NORM <P> < (material = steel) AND (rating(material) = poor)> +
SANC <NO> <NO>

<DEP MemBoardDirectors> : NORM <O> <NO> + SANC <PU> <reprimand>

NORMATIVE IMPACT

NORM <I> <material = steel>
�

The status range of this variant includes a DS statement, meaning that this
request activity becomes obligatory for an agent owing the role AssemblyMg if
it is requested by an agent owning the role MemBoardDirectors (“Member of
Board of Directors”). The specification of the corresponding request activity of
the MemBoardDirectors role could look like this:

ACT REQUEST

(EACH ; AssemblyMg ;
REQUEST (EACH ; USsupplier, EUROsupplier ; NOT deliver (material, quantity)))�
STATUS RANGE

<IND> : NORM <O> <decided by board> + SANC <PU> <board exclusion>

NORMATIVE IMPACT

NORM <O> <NO>

�

With that, the RNS schema offers the possibility to formulate “requests for
requests for requests for . . .”, that is, nested requests .

Sanctioning Activities. Activities of this type are specified as follows:

ACT SANCTION (agent id list ; role id list ; activity id ; norm spec)�
STATUS RANGE status statement list

SANCTIONING IMPACT sanction specification list �

where norm spec is a norm specification and sanction specification list is a list
of sanction specifications, that is, a list of specifications of the form

SANC <sanction type> <sanction>

The sanctioning impact part specifies all sanctions that “become reality” through
the execution of the sanctioning activity. Here is a simple example of a sanction-
ing activity, based on the “deliver” activity specification above:

ACT SANCTION (EACH ; EACH ; deliver ; NORM <O> <quantity ≤ 100>)�
STATUS RANGE

<IND> : NORM <P> <NO> + SANC <RE> <earn bonus>
<DEP RoleSpaceMg> : NORM <I> <NO> + SANC <PU> <withdraw role>

SANCTIONING IMPACT

SANC <PU> <withdraw role>
�

The two occurrences of EACH indicate that the sanctioning activity concerns each
agent and each role of which the activity with identifier “deliver” is part of. The
IS statement says that an agent owning a role of which this sanctioning activity
is part of is unconditionally permitted (i.e., may) to execute this sanction, and
that she earns some bonus in the case she does (i.e., actually makes use of her
permission). The DS statement says that the sanctioning activity may become
subject to an unconditioned interdiction, namely, as the result of an “interdiction
request” by an agent owning the role with identity RoleSpaceMg (“Role Space
Manager”); violating such an interdiction is punished through the withdrawal of
role ownership.

An example of a real-time occurrence (instantiation) of this sanction specifi-
cation is

ACT SANCTION (Dr Meyer ; USsupplier ; deliver ; NORM <O> <quantity ≤ 100>)

A further example of a sanction specification illustrating the expressiveness
of RNS is the following. Under the assumption that each norm violation is pun-
ished by the withdrawal of role ownership, the “most general” specification of a
sanction activity that can be constructed is

ACT SANCTION (EACH ; EACH ; EACH ; EACH)�
STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

SANCTIONING IMPACT

SANC <PU> <withdraw role>
�

saying that each agent owning a role of which this activity specification is part of
is unconditionally permitted to sanction any norm violation through the with-
drawal of role ownership.

Change Activities. Change activities affect the status range of activities. Three
types of change activities are distinguished: DEL (delete), REP (replace), and ADD

(add). The specification of these activities is as follows:

ACT ADD (role id list ; activity id list ; status statement)�
STATUS RANGE status statement list

[STATUS IMPACT

add status statement]

�

ACT DEL (role id list ; activity id list ; status statement)�
STATUS RANGE status statement list

[STATUS IMPACT

delete status statement]
�

ACT REP (role id list ; activity id list ; status statement 1 ; status statement 2)�
STATUS RANGE status statement list

[STATUS IMPACT

replace status statement 1 by status statement 2]
�

The status impact parts are optional as they are of explanatory nature only.
Here is an example of a specification of a change activity:

ACT REP

(USsupplier, EUROsupplier ; deliver ;
<IND> : NORM <P> <NO> + SANC <NO> <NO> ;
<IND> : NORM <O> <NO> + SANC <PU> <pay fine>)�
STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

�

An agent owning a role which includes this activity specification is permitted
to replace, within each deliver activity being part of the roles USsupplier and
EUROsupplier, the first status statement given in the activity header by the
second one. (Note that the first IS statement in the header and the IS statement
in the status range part are syntactically identical.)

Another example of change activity specification is the following:

ACT DEL

(USsupplier ; deliver ;
<IND> : NORM <P> <NO> + SANC <NO> <NO>)�
STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

<DEP USdirector> : NORM <I> <NO> + SANC <PU> <withdraw role>

�

This change activity concerns the deletion of the status statement

<IND> : NORM <P> <EACH> + SANC <EACH> <EACH>

attached to the deliver activity of the USsupplier role (as specified in the activity
header). As can be seen from the status range of the delete activity specification,
an agent owning the role USdirector may forbid this delete activity (i.e., is
authorized to request to not execute it). Generally, RNS enables to formulate
requests on change activities, and, reversely, it enables to formulate changes of
status statements belonging to request activities.

Finally, here is an example of a specification of an add activity:

ACT ADD (EACH ; EACH ;
<DEP President> : NORM <I> <NO> + SANC <PU> <role space exclusion>)�

STATUS RANGE

<IND> : NORM <P> <NO> + SANC <NO> <NO>

�

The owner of a role containing this activity specification is permitted to add
the specified DS statement to every activity being part of any role (in the role
space). Once added to an activity (more precisely, to the status range attached to
an activity), an agent being in the role of President may unconditionally forbid
this activity, where the consequence of violating this interdiction is the exclusion
from the role space.

3 Discussion

A key feature of the RNS schema is its domain- and application independence.
This means that the schema can be used to specify the kind and degree of au-
tonomy which the agents should possess, no matter what specific application
is considered and no matter in what domain this application runs. RNS is par-
ticularly suited for requirements elicitation and analysis, and thus its primary
use lies in the early phase of agent-oriented systems development. More specifi-
cally, there are several potential advantages resulting from a use of RNS during
requirements elicitation and analysis: it both enables and forces a developer to
carefully reflect on the role of autonomy and autonomous behavior; it helps to
avoid misunderstandings among analysts, stakeholders and programmers when
communicating about agent autonomy; it facilitates the detection of potential
faults caused by autonomous behavior; and, last but not least, it may serve as
a basis for clarifying legal liability issues posed by agents acting autonomously
on the behalf of human users.

Another key feature of RNS is that it is strongly expressive and enables
a highly precise specification of agent autonomy. Expressiveness and precision
derive from the following features:

– Through its concept of (positive and negative) sanctions RNS enables a devel-
oper to explicitly specify consequences of both norm-conforming and norm-
deviating behavior. The importance of specifying these consequences results
from the fact that autonomy, taken seriously, implies autonomy against
norms [4] – an agent as an autonomous entity can not be guaranteed to
act in accordance with all available norms under all circumstances.

– Through its concept of change activities RNS supports the explicit modeling
and specification of potential dynamic changes in norms and sanctions and
thus in behavioral autonomy.

– Through its concept of a status range RNS enables a developer to specify
different normative impacts on the same activity. This makes it possible to
cope with situations in which the normative status of an activity depends
on the request context, that is, on who requested the activity under what

condition. With that, RNS allows to explicitly capture context sensitivity of
norms and thus of autonomy.

– RNS supports the specification of complex activities through various activ-
ity reference constructs. While some possible reference constructs (e.g., “a
request for requesting a certain resource handling activity”) may be only
of marginal interest in an application at hand, others (e.g., “a request for
sanctioning a norm violation”) may be of particular importance.

– As it is based on the role concept, RNS does not imply constraints on the
type and structure of the individual agents. Instead, it enables a developer
to abstract from architectural aspects of agency. This is of particular impor-
tance in view of open applications.

Further appealing features of the RNS schema are the following: it is based
on a relatively simple and intuitively clear notation and syntax; it is fully neu-
tral w.r.t. autonomy (i.e., it is neither biased in favor of nor against autonomy
and so supports a developer in specifying any autonomy level she considers as
appropriate); and it is grounded in sociological role theory.

It is important to see that RNS operates on the agent and role level, although
it also may be of use for norms-based interaction protocol specification; however,
this is an open issue that remains to be investigated. A difference between RNS-
type specification and protocol-type specification seems to be in the potential
normative impact of requests: in the case of RNS, a request may induce an
obligation; against that, in the case of (speech act-based) interaction protocols
it is typically assumed that an obligation is not induced by a request per se
(i.e., from the pure fact that something is requested), but by the – explicit –
acceptance of a request.

There are several approaches which are closely related to RNS in that they
also aim at a norms-based specification of autonomous behavior [6, 7, 9, 2, 5].
As elucidated below, what makes RNS distinct from all these approaches is the
expressiveness and precision with which it allows to capture autonomy.

An approach which shows several interesting parallels to RNS is described in
[6]. The focus there is on norm compliance and on the question what motiviations
an agent might have to comply with norms. Like RNS, this approach is based
on the view that agents as autonomous entities may decide to not act in accor-
dance with norms; moreover, similar to RNS this approach considers the issue of
positive and negative sanctions. The main difference is that this approach does
make several strong and in some sense restrictive assumptions on the cognitive
structure and processes within the individual agents (e.g., by treating sanctions
as the agents’ goals and by defining autonomy in terms of motivations hold by
agents). Against that, RNS does not make restrictive assumptions on “things
occuring within agents”, but concentrates on the role level.

Another approach showing interesting parallels to RNS is presented in [7].
This approach focuses distributed systems management through policies. A pol-
icy in this approach is understood as a behavior-influencing information being

located outside of the managers themselves, and is specified in terms of norma-
tive concepts (authorizations and obligations). Similar to RNS, this approach
employs the role concept and supports a specification of context sensitivity.
The main differences are that this approach does assume that agents always do
behave norm-conforming (thus sanctioning is not considered), that complex ac-
tivity specification is not supported, and that the specification of dynamic norm
(and sanction) changes is not supported.

A logic-based approach related to RNS is described in [9]. This approach
concentrates on collective agency and offers, similar to RNS, a normative system
perspective. One important difference is that RNS, in contrast to this approach
with its roots in deontic logic, does not rely on inter-definability of permissions
and obligations (i.e., P (x) =def ¬O¬x). Another important difference is that
this approach does neither consider the possibility of norm-deviating behavior
nor the issue of dynamic norm change activities.

Other logic-based approaches related to RNS are described in [2] (dealing with
norms-based coordination) and [5] (dealing with norms-based capturing of au-
tonomous agents from a more general perspective). Like RNS, these approaches
employ the concepts of permissions, obligations and interdictions and consider
sanctions on norm-deviating behavior (though only negative sanctions). Unlike
RNS, the approaches do not support the specification of dynamic changes in
norms and sanctions and do not capture complex activity specification. Another
difference is that these approaches are not role-based; instead, norms and sanc-
tions are directly attached to agents and assumptions are made on agent-internal
(cognitive) processes.

4 Conclusion

It should be clear that RNS in its current form leaves room for improvement.
The two most critical deficiences of RNS we identify are the following. First,
RNS does not support developers in explicitly specifying information and control
relationships among roles such as generalization, aggregation, inheritance, peer,
superior-subordinate, and so forth. Without support of such an explicit specifica-
tion is it difficult (especially for large-scale applications) to obtain transparency
of the overall system and its internal organizational structure. Second, RNS does
not support developers in identifying and avoiding conflicts among norms (e.g.,
permission and interdiction of the same activity). Especially for large-scale ap-
plications such a support is extremely important as a means for avoiding poor
system behavior resulting from normative conflicts. Both deficiences are of par-
ticular relevance w.r.t. a coherent and consistent system perspective and both
require to extend RNS appropriately. What needs to be done in a first step thus
is to define clear and useful conceptualizations of role-role relationships and nor-
mative conflicts. Encouraged by the above mentioned advantages of RNS we are
currently concentrating on this first step. Moreover, we are also working on a
software tool which supports RNS-based systems specification during require-

ments elicitation and analysis; a key service this tool is planned to offer is the
automated detection of norm-based conflicts.

Acknowledgements. This work has been supported by Deutsche Forschungs-
gemeinschaft (DFG) under contract Br609/11-2. We would like to thank the
reviewers for their valuable comments.

References

1. R. Alterman. Rethinking autonomy. Minds and Machines, 10(1):15–30, 2000.
2. M. Barbuceanu, T. Gray, and S. Mankovski. The role of obligations in multiagent

coordination. Journal of Applied Artificial Intelligence, 13(2/3):11–38, 1999.
3. B.J. Biddle and E.J. Thomas, editors. Role theory: Concepts and research. John

Wiley & Sons, Inc., New York, London, Sydney, 1966.
4. R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm acceptance. In

J.P. Müller, M.P. Singh, and A. Rao, editors, Intelligent Agents V. Proceedings
of the Fifth International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-98), Lecture Notes in Artificial Intelligence Vol. 1555, pages 99–112.
Springer-Verlag, 1999.

5. F. Dignum. Autonomous agents with norms. Artificial Inteligence and Law, 7:69–79,
1999.

6. F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy through
norms. In Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’2002), 2002.

7. E. Lupu and M. Sloman. Towards a role based framework for distributed systems
management. Journal of Network and Systems Management, 5(1):5–30, 1997.

8. D. Musliner and B. Pell (Cochairs). Agents with adjustable autonomy. Papers from
the AAAI spring symposium. Technical Report SS-99-06, AAAI Press, Menlo Park,
CA, 1999.

9. O. Pacheco and J. Carmo. A role based model for the normative specification of
organized collective agency and agents interaction. Journal of Autonomous Agents
and Multi-Agent Systems, 2002. to appear.

