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Abstract. In recent years auctions have become more and more important in
the field of multiagent systems as useful mechanisms for resource allocation and
task assignment. In many cases the Vickrey (second-price sealed-bid) auction
is used as a protocol that prescribes how the individual agents have to interact
in order to come to an agreement. We show that the Vickrey auction, despite
its theoretical benefits, is inappropriate if “antisocial” agents participate in the
auction process. More specifically, an antisocial attitude for economic agents that
makes reducing the profit of competitors their main goal besides maximizing their
own profit is introduced. Under this novel condition, agents need to deviate from
the dominant truth-telling strategy. This paper presents a strategy for bidders in
repeated Vickrey auctions who are intending to inflict losses to fellow agents in
order to be more successful, not in absolute measures, but relatively to the group
of bidders. The strategy is evaluated in a simple task allocation scenario.

1 Introduction

The area of multiagent systems [20], which is concerned with systems composed of
technical entities called agents that interact and in some sense can be said to be intel-
ligent and autonomous, has achieved steadily growing interest in the past decade. Two
key problems to be addressed in this area are automated resource allocation and task
assignment among the individual agents. As a solution to these problems it has become
common practice to apply well known results and insights from auction theory (e.g., [9,
10]) and well understood auction protocols like the English auction, the Dutch auction,
and the Vickrey auction. Among the different protocols, the Vickrey auction [18] (also
known as second-price sealed-bid auction) has received particular attention within the
multiagent community and has been applied in a variety of contexts like e-commerce,
operating systems, and computer networks (e.g., [17, 6, 5, 19, 8, 4]). The Vickrey auc-
tion is favored because of three main characteristics:

– it requires low bandwidth and time consumption
– it possesses a dominant strategy, namely, to bid one’s true valuation (see Section 2)
– it is a sealed-bid auction (bids (expressing private values) remain secret)

These characteristics make the Vickrey auction protocol particularly appealing from the
point of view of automation. The Vickrey auction, in its original formulation and as it
is used for selling goods or resource allocation, works as follows: each bidder makes a



sealed bid expressing the amount he is willing to pay, and the bidder who submits the
highest bid wins the auction; the price to be payed by the winner is equal to the second
highest bid. In task assignment scenarios the Vickrey auction works exactly the other
way round (and for that reason is often referred to as reverse Vickrey auction): each
bidder willing to execute a task makes a bid expressing the amount he wants to be payed
for task execution, and the bidder submitting the lowest bid wins the auction; the winner
receives an amount equaling the second lowest bid (and his payoff thus is the second
lowest bid minus his prime costs for execution). If there is more than one winning bid,
the winner is picked randomly from the highest bidders. This paper concentrates on the
use of the Vickrey auction for task assignment scenarios; it should be noted, however,
that all presented considerations and results do also hold for Vickrey auctioning in its
original formulation. It is an important fact, that bids are sealed. Bidders that did not win
an auction do not necessarily get to know who placed the lowest bid and particularly
how low this bid was. The only information that is revealed to all bidders is the selling
price (see [2] for a more detailed discussion of privacy and security issues in Vickrey
auctions).

A general assumption often made in applications of multiagent systems is that an
individual agent intends to maximize his profit without caring for the profits of others.
This, however, is by no means the case in real-world settings. What can be often ob-
served here is that a company, besides maximizing its own profit, deliberatively inflicts
losses to rivaling companies by minimizing their profits. In fact, it is real-world practice
that a company accepts a lower profit or is even willing to sell goods at a loss if this
financially damages a competing company or at least helps to bind available and gain
new costumers. Such a company obviously exhibits an antisocial behavior and attitude
in the sense that it considers (at least for some period of time or in some cases) its abso-
lute profit not as important as its profit relative to other companies’ profits. (It is worth
to point out that an “antisocial company” behaves rationally given its objective, even if
it could be said to act irrationally under the condition that its objective were to maxi-
mize its absolute profit.) This paper investigates the performance of Vickrey auctioning
in multiagent systems in which the presence of antisocial agents can not be excluded.
A related problem that has been discussed in the economic literature are “externalities”
between bidders [7]. Externalities describe preferences of a bidder specifying who he
wants to win an auction (besides himself), e.g., when selling patents or nuclear weapons.
However, our approach is solely profit-oriented. Antisocial agents do not care who buys
a good or who is awarded a task contract. They are just interested in decreasing their
fellows’ profits to strengthen their own market position. This is a major difference.

The paper is structured as follows. Section 2 explains why agents aiming at a max-
imization of their absolute profits should bid their true valuations in Vickrey auctions.
Section 3 formally captures the antisocial attitude sketched above and Section 4 shows
its impact on the bidding strategy. Section 5 introduces and analyzes an antisocial strat-
egy for repeated Vickrey auctions. Section 6 presents experimental results that illus-
trate the implications of this strategy. Finally, Section 7 concludes the paper with a brief
overview of advantages and disadvantages of the agents’ “bad attitude”.



2 The dominant Strategy

The Vickrey auction has a dominant strategy, which means that if an agent applies this
strategy he receives the highest possible payoff, no matter which strategies are used by
the other bidders. The dominant strategy is to bid one’s true valuation of the task. Even
if an agent knows all the other bids in advance, he still does best by bidding his private
valuation. The conditions for the existence of the dominant strategy equilibrium are that
the bidders are symmetric (i.e., they can not be distinguished) and have independent
valuations of the tasks1. This implies that tasks cannot be recontracted.

Given two agents A and B, their corresponding private values va and vb, and their
submitted bids ba and bb, the profit for agent A is defined by the following equation.

profita(ba, bb) =

{

bb − va if ba ≤ bb

0 if ba ≥ bb

(1)

It can easily be seen why bidding the task value is the optimal strategy. We consider
agent A and investigate the possible profits he would make by not bidding his private
value. It suffices to model only one opposing agent B representing the entire compe-
tition because A only cares whether he wins or loses. He does not draw distinctions
between his fellow bidders.

If A bids more than his prime costs (ba > va) there are three subcases conditional
on agent B’s bid bb:

i) bb < va < ba: B wins the auction and receives more money than if A had bid va.
ii) va < bb < ba: A loses the auction, instead of winning it by bidding va.

iii) va < ba < bb: A still wins the auction, but does not gain anything, because the task
price remains bb and his payoff is still bb − va.

If he bids ba < va the following cases describe the resulting situations:

iv) ba < va < bb: A wins, but is paid the same amount of money (bb) as if he bid va.
v) ba < bb < va: A wins, but gets less money than his own prime costs, i.e. he is

losing va − bb.
vi) bb < ba < va: A still loses and reduces B’s payoff by va − ba.

Concluding, bidding anything else than va cannot yield more profit than bidding
the true valuation va. Obviously, this extremely simplifies the bid preparation, due to
the absence of wasteful counter-speculation, that is needed e.g., in first-price or Dutch
auctions.

3 The Antisocial Attitude

In most multiagent applications it is assumed that the objective of an agent (or of a team
of agents) is to maximize his absolute profit without caring for the profits made by the

1 If the bidders don’t have to estimate their private values, the dominant equilibrium exists inde-
pendently of risk neutrality [11].



other agents. However, in many real-world applications it is more realistic to assume
that agents may be present that try to gain as much money as possible relative to others
(their competitors). In other words, in many scenarios it is wise to take into consider-
ation the availability of “antisocial agents,” that is, agents who accept small losses if
they can inflict great losses to other agents. To make this more precise, we develop a
formal description of this antisocial attitude. As a starting point for this formalization,
it appears to be reasonable to assume that an antisocial agent wants to maximize the
difference between his profit and the gain of his competitors; this means that the own
profit on the one hand and the other agents’ losses on the other hand are considered to
be of equal importance from the point of view of this antisocial agent. In a two-player
scenario, this view captures the antisocial agent’s intention to be better than his rival.
To achieve a higher degree of flexibility in describing and analyzing antisocial agents,
it is useful to think of different degrees of anti-sociality like “aggressive anti-sociality”
(where it is an agent’s objective to harm competitors at any cost) and “moderate anti-
sociality” (where an agent puts somewhat more emphasis on his own profit rather than
the loss of other agents). These considerations lead to our formal specification of an
antisocial agent (or an agent’s antisocial attitude) as an agent who tries to maximize
the weighted difference of his own profit and the profit of his competitors. Precisely, an
antisocial agent i intends to maximize his payoff2 that is given by

payoffi = (1− di)profiti − di

∑

j 6=i

profitj , (2)

where di ∈ [0, 1] is a parameter called derogation rate. The derogation rate is cru-
cial because it formally captures, and allows to modify, an agent’s degree of antisocial
behavior. It is obvious that this formula covers “regular” agents by setting d = 0. If
d is higher than 0.5, hurting others has greater priority than helping yourself. A purely
destructive agent is defined by d = 1. We say an agent is balanced antisocial if d = 0.5,
e.g., his own profit and the profit of his competitors are of equal importance. 3

Please note that the described antisocial attitude, which is feasible in all kinds of com-
petitive markets, is rational as the agents intend to benefit from their rivals’ losses at a
later date (e.g., by shortening a competitor’s budget for future negotiations or by putting
a rival completely out of business).

4 Antisociality and Vickrey Auctions

The implications of this formalized notion of an antisocial attitude on the Vickrey auc-
tion is enormous. In the remaining of this section, these implications are theoretically
investigated. By combining equations 1 and 2 we get the (antisocial) payoff for agent

2 The payoff for a non-antisocial agent is simply his profit.
3 When considering other types of auctions like uniform-price auctions, it might be wise to scale

the sum in equation 2. In a Vickrey auction, however, all profits but one are zero which makes
the scaling redundant.



A as a function of the bids ba and bb.

payoffa(ba, bb) =

{

(1− da)(bb − va) if ba ≤ bb

−da(ba − vb) if ba ≥ bb

(3)

Consider case vi) of Section 2. Agent A is not able to effectively win the auction,
but the price agent B receives completely depends on A’s bid. So, if A carefully adjusts
his bid downwards, he is capable of reducing B’s profit. Supposing that A knows B’s
private value vb, his optimal strategy would be to bid vb + ε (see Figure 1), which
reduces B’s profit to the absolute minimum of ε.

v vb a

Fig. 1. A reduces B’s profit to a minimum

However, if B knows A’s prime costs va as well and he also prefers inflicting great
losses to A over gaining small profits (i.e., his derogation rate is positive) he can bid
vb + 2ε, rejecting a possible gain of ε and making A lose va − vb + 2ε.
As a result, if A’s derogation rate da is 0.5, A should only bid vb + va−vb

2 + ε to be safe
from being overbid by B (see Figure 2). If B still tops A’s bid, he is renouncing more
money than A loses.

v vb a

Fig. 2. Careful, aggressive bidding

If db = 0.5 as well, B’s best strategy is to bid vb + va−vb

2 .
Concluding, the following bidding strategy seems to be “safe” for an antisocial

agent i (still under the unrealistic assumption that an agent knows private values of
other agents: v1 is the lowest private value, v2 the second lowest):

bi =

{

vi − di(vi − v1) + ε if vi > v1

vi + di(v2 − vi) else
(4)



It is possible to omit the margin ε. We included it to avoid randomized experimental
results that occur when two or more bidders share the same minimum bid. However, we
will use the strict ε-less version in the theorems stated below.

Theorem: In Vickrey auctions with balanced antisocial bidders (∀i : di = 0.5), the
strategy defined by equation 4 is in Nash equilibrium.

Proof: The assumption states that under the supposition that all agents apply
this strategy, there is no reason for a single agent to deviate from it.
We consider the payoff of agent A. If va is the lowest private value, let B be the second
lowest bidder. Otherwise, B represents the lowest bidder. It suffices to consider B as
A cannot differentiate between the individual bidders and the Vickrey auction has a
sole victor. There are only two possibilities for an antisocial agent to cause harm. The
cheapest provider can hurt the second highest bidder and an inferior agent can reduce
the profit of the lowest bidder. Assume B applies the antisocial strategy defined in 4.

bb =

{

vb −
1
2 (vb − va) if va ≤ vb

vb + 1
2 (va − vb) if va ≥ vb

=
va + vb

2

⇒ payoffa(ba, bb) = payoffa

(

ba,
va + vb

2

)

=

{
vb−va

4 if ba ≤
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2
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2 if ba ≥
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Concluding, if A bids less than va+vb

2 , he only receives equal payoff; if he bids
more, his payoff is diminishing. �



Theorem: The strategy defined by equation 4 is in Maximin equilibrium indepen-
dently of the derogation rates of the bidders.

Proof: It is claimed that the strategy is an optimal strategy to reduce the pos-
sible losses that occur in worst case encounters. “Worst-case” means that the other
bidders (represented by a single agent B again) try to reduce agent A’s payoff as much
as possible.

min
bb

payoffa(ba, bb) = min
bb

(
(1− da)(bb − va) if bb ≥ ba

−da(ba − vb) if bb ≤ ba

)

= min{(1− da)(ba − va)
︸ ︷︷ ︸

f(ba)

,−da(ba − vb)
︸ ︷︷ ︸

g(ba)

}

f yields the minimum profit if A wins and g yields the minimum profit if he loses the
auction. In the following, we consider the maximum of these minima.

max
ba

min
bb

payoffa(ba, bb) = max
ba

min{f(ba), g(ba)}

a
v  +d  (v  −v  )

a b a

v  < va b a bv  > v

b
a

b
v v

a b

a

f

g a a
v  −d  (v  −v  )

a b
v

b
v

a

g

f

min payoff min payoff
a a

Due to the fact that f is increasing and g is decreasing, the Maximin equilibrium
point can be computed by setting f(ba) = g(ba).

f(ba) = g(ba) ⇔ (1− da)(ba − va) = −da(ba − vb)

⇔ ba − va − daba + dava = −daba + davb

⇔ ba = va + da(vb − va) �



5 Antisocial Bidding in Repeated Auctions

On the basis of the theoretical foundations of the previous Section, we now develop an
antisocial bidding strategy that can actually be used in realistic environments.
In the general case, an agent does not know the private value of other bidders. However,
in principle an agent has several possibilities to figure out that value, for instance by
means of espionage, careful estimation (e.g., by assuming a uniform distribution of
private values), colluding with the auctioneer (e.g., bribing him) or by learning from
previous auctions. This paper deals with the latter technique.

5.1 Revealing Private Values by Underbidding

We consider the auctioning of a fixed number of tasks, that repeats for several rounds.
Now, suppose a balanced antisocial agent loses an auction in the first round. When the
same task is auctioned for the second time, he bids zero. As a consequence, he wins the
auction4, and receives an amount equaling the second lowest bid, which is the private
value of the cheapest agent (supposing this agent applied the dominant strategy). Thus,
he is able to figure out the needed private value and can place his next bid right in the
middle between the two private values. Using this technique, he loses the difference
between both values once, but can safely cut off 50% of the competitor’s profit for all
following auction rounds. If the total number of rounds is high enough, the investment
pays.
In a scenario where all other agents definitely follow the dominant bidding strategy and
no counter-speculation is needed, an effective, antisocial bidding strategy looks like
this:

1. Bid 0 (p=received price)

2. Bid

{

vi + di(p− vi) if vi < p

vi − di(vi − p) + ε else

Bidding zero is elegant but dangerous, especially if more than one agent is applying
this strategy. In this case, one of the zero-bidding agents wins the auction, but is paid
no money at all (because the second lowest bid is zero as well), thus producing a huge
deficit.

5.2 Step by Step Approach

It’s safer, but possibly not as efficient, to reduce a bid from round to round by a small
margin s until the best agent’s bid is reached. Figure 3 displays the modified strategy. If
the step size s equals the private value (s = v), this algorithm emulates the aggressive
zero-bidding strategy. The algorithm works somewhat stable in dynamic environments
where agents can vanish and new ones appear from time to time. However, the strategy
is not perfect, e.g., if two balanced antisocial agents apply this strategy, the more expen-
sive agent is only able to reduce the winning agent’s profit by 25% because he is usually

4 unless some other agent bids zero as well.



won

lost

start here

bid v

bid last_bid−s

lost

lost

p>=v

(p=price)
won

won
(p=price)

lost

won (p=price)

bid v+d(p−v)

p<v

bid v−d(v−p)+ε

Fig. 3. Antisocial strategy for repeated Vickrey auctions

not able to figure out the real private value of the cheaper agent in time. Nevertheless,
this is still tolerable, because in a group of antisocial agents a bidder never takes more
risk than his derogation rate prescribes.

Generally, a careful agent should use a small step size s in order to be safe that
the competitor already suffered huge losses before he makes negative profit himself.
A reasonable setting of s depends on the number of rounds, the distribution of private
values and his derogation rate (an upper bound for s is specified in [1]).

5.3 Leveled Commitment Contracting

If the task execution contracts are not binding and can be breached by paying a penalty
(leveled commitment contracting [15, 16, 3]), the unavoidable loss an agent produces by
underbidding the cheapest competitor can be reduced by breaking the negative contract.
Due to the fact that the only reason for closing that deal is to figure out the private value
of another agent, the agent has no incentive to really accomplish the task. Therefore,
a contractee will break the contract if the loss he makes by accepting the contract is
greater than the penalty he pays by breaking the deal. Supposing the common definition
of a penalty as a fraction of the contract value, agent i is better off breaching the contract
if

p ≤
vi

pr + 1
(5)

with p being the actual task price and pr ∈ [0; 1] the penalty rate. To give an example,
under the assumption that pr = 0.25, an agent should break a contract if the task price



is less or equal than 4
5 of his private value. When the distribution of prime costs is

uniform, this is true in 80% of all possible cases.

6 Experimental Results

The experimental setting investigated in this paper is similar to the one used in [3]. Due
to reasons of limited space, we can only present some of the experiments we conducted.
Please see [1] for more detailed results including a randomized cost table.

There is a number of buyers or contractees (CEi) who are willing to execute tasks.
Contractees associate prime costs with task execution and are interested in tasks whose
prices are higher than their own costs. All prices and bids are integer values (ε = 1).
Whenever the selling of a task is announced, each interested contractee calculates and
submits one sealed bid. The contractee who submitted the lowest bid is declared as the
winner of the auction, and the second lowest bid is taken as the price of the announced
task; the contractee is paid this price and executes the task. If there are two or more equal
winning bids, the winner is picked randomly. As a contractee wants to earn money for
handling tasks, his private value of a task is his prime costs plus ε. It is assumed that each
contractee can execute as many tasks as he wants during one round (full commitment
contracting).

Table 1 contains the prime costs of three contractees with exactly identical abilities.
Each contractee has one task, that he can handle for the cheapest price. If all three truly
bid their private values for 100 rounds, each one would gain ((50− 30) + 1)× 100 =
2100. Figure 4 shows the profits accumulated by the contractees in 100 rounds. CE1

Task 1 Task 2 Task 3

CE1 70 50 30
CE2 50 30 70
CE3 30 70 50

Table 1. Fair cost table

and CE2 apply the dominant strategy and bid their prime costs plus one. CE3, however,
is antisocial and tries to harm his competitors by reducing their profits to a minimum.
As CE3 is the only antisocial agent and because his derogation rate is 1, he could use a
very large step size, e.g., s3 = v3. We chose a careful step size setting (s3 = ε) for two
reasons. First of all, CE3 may not know he is the only antisocial bidder, and secondly,
this setting superiorly visualizes how the antisocial strategy works.

Despite the dominant strategy, CE1 and CE2 are incapable of gaining their regular
profit (2100). CE3 outperforms his rivals by losing only 60. The summed up profit of
the entire group of contractees is reduced by more than 50% by a single agent using an
aggressive strategy. This emphasizes the particular vulnerability of Vickrey auctions to
“irrational” bidding. There is no counter-strategy available for CE1 or CE2. As they
apply a dominant strategy, they already make the highest possible payoff (which is
almost nil) according to their definition of payoff. However, if they decided to become
antisocial as well, they would be able to increase their payoff. In certain scenarios, this
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might lead to an antisocial chain reaction.
It might appear confusing at the first glance that an agent who does not care for his
own profit at all (d3 = 1) nevertheless makes the highest profit. This odd effect can be
explained by the peaceableness of the fellow bidders and the ε that we added in equation
4. CE3 risks his entire profit in order to hurt CE1 and CE2, but as both are completely
harmless, he keeps his gain.

If all three contractees are antisocial, overall performance breaks down as expected
(see Figure 5). The agents cut off more than a quarter of profits of their rivals due to a
mutual derogation rate of 0.5.

7 Conclusions

The antisocial attitude for agents and its formalization introduced in this paper leads to a
significant need for important changes in strategic behavior of agents. As argued above,
and as it is obviously implied by many real-world applications, it is necessary to take the
existence of antisocial agents into consideration. The paper focused on the Vickrey auc-
tion and showed that this auction protocol, in addition to other known deficiencies [14,
13, 12], is vulnerable to antisocial bidders. This is an effect of the second-price policy
which enables easy price manipulation and emphasizes the required confidentiality of
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private values and the need for a secure auction protocol that hides those values from all
parties, including the auctioneer [2]. As the common English auction for private value
bidders is equivalent to the Vickrey auction [9, 11], all strategies in this paper work for
English auctions as well. The inability to prevent profit reduction can be regarded as a
major disadvantage of those two auction types as Dutch and first-price sealed-bid auc-
tions do not suffer from antisocial strategies.
One problem that arises using the new strategy in repeated Vickrey auctions is that if
there is more than one inferior, antisocial agent, it would be desirable if only the one that
intends to cut off the cheapest agent’s profit by the highest margin reduces his bid. All
other bidders should stay with bidding their private value, since they would lose money
once without harming anyone in the following rounds. This would require the antisocial
agents to make a special arrangement, which may not be feasible in certain settings. The
behavior described in this paper can be seen as an opposite of bidder collusion where
bidders coordinate their bids in order to help each other (harming the auctioneer). In
contrast, antisocial agents bid with the intention to harm fellow bidders.
As a next research step we want to explore “anti-sociality” and strategies for antisocial
agents in more detail. To do so, we plan to examine these strategies in more complex
environments where the number of contractees varies over time and tasks can be recon-
tracted. Furthermore, we intend to investigate types of collaboration of antisocial agents
that allow them to act more efficiently.
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