
Expectation-Oriented Analysis and Design

Wilfried Brauer? Matthias Nickles? Michael Rovatsos?

Gerhard Weiß? Kai F. Lorentzen†

?Department of Informatics †Department of Technology Assessment
Technical University of Munich Technical University of Hamburg-Harburg

80290 München, Germany 21071 Hamburg, Germany

{brauer,nickles,rovatsos,weissg}@cs.tum.edu lorentzen@tu-harburg.de

ABSTRACT
A key challenge for agent-oriented software engineering is to
develop and implement open systems composed of interact-
ing autonomous agents. On the one hand, there is a need
for permitting autonomy in order to support desirable sys-
tem properties such as decentralised control. On the other
hand, there is a need for restricting autonomy in order to re-
duce undesirable system properties such as unpredictability.
This paper introduces a novel analysis and design method
for open agent-oriented software systems that aims at com-
ing up to both of these two contrary aspects. The character-
istics of this method, called EXPAND, are as follows: (i) it
allows agents a maximum degree of autonomy and restricts
autonomous behaviour only if necessary (ii) it uses system-
level expectations as a key modelling abstraction and as the
primary level of analysis and design; and (iii) it is sociolog-
ically grounded in Luhmann’s systems theory. The applica-
tion of EXPAND is illustrated in a “car-trading platform”
case study.

1. INTRODUCTION
As new requirements arise from the increasing complexity
of modern software systems and from the distributedness of
today’s information economies, it has been recognised that
the modularity and reusability provided by object-oriented
analysis and design is insufficient and that there is a need for
encapsulation of more functionality at the level of software
components. Agent-oriented approaches [4] offer an interest-
ing perspective with this respect, as they view interaction
as the primary abstraction for future software engineering
approaches [8, 13]. However, interaction among autonomous
entities implies contingencies in behaviour since, in the most
general case, neither a peer agent nor a designer can know
what goes on inside a (semi-)autonomous agent. These con-
tingencies are a source of potential unpredictability and un-
desirable emergent behaviour at the system level. In order
to get rid of this aspect of agent-based systems, the usual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

design strategy is to restrict oneself to closed systems (see
e.g. [15, 16]). This obviously means loosing the power of
autonomous decentralised control in favour of a top-down
imposition of social regulation to ensure predictable behav-
iour.

To build truly open systems [7] means to build systems
that may be entered by autonomous entities. Even if a
developer of an open system would be willing to severely
restrict autonomy (and thus to give up potential advan-
tages induced by autonomy such as decentralised control
and self-organisation), it is most unreasonable to assume
that a full control over autonomous entities being parts of
the system (temporarily or permanently) can be guaran-
teed under all circumstances. Taking autonomy seriously
means to accept that any “strictly normative” (in the sense
of action-prescribing) system-level design of social activity
must be abandoned – instead, desired or persistent interac-
tion patterns can only be modelled as descriptions of possi-
ble or probable behaviour which might or might not occur
in actual operation. Likewise, agents can only use models of
interaction as expected courses of social action that are al-
ways hypothetical unless when actually enacted by them and
their co-actors. A combination of normative and deliberative
motives in agents’ actions (the former resulting from previ-
ous system behaviour, the latter from agents’ autonomy) [3]
makes certainty about future interactions impossible.

Starting from these observations, this paper identifies a novel
level of analysing and designing agent-based software: the
expectation level . An analysis and design method called
EXPAND (“EXPectation-oriented ANalysis and Design”)
is introduced that uses expectations as the primary mod-
elling abstraction and that supports the evolutionary iden-
tification, evaluation and adaptation of system-level expec-
tations. The core idea underlying EXPAND is to make
expectation-level knowledge about the social behaviour of
agents explicit and available to the system analyst and de-
signer as well as to the agents involved in the system. From
the point of view of an analyst and designer, this method
offers the possibility of developing and influencing open sys-
tems that consist of black-box autonomous entities which
can not be controlled completely; and from the point of
view of the agents, it allows to retain a high degree of au-
tonomy by using the system-level expectations as a valu-
able “system resource” for reducing contingency about each
other’s behaviour. To our knowledge, EXPAND is the first
analysis and design method that aims at tackling the ex-

pectation level of agent-oriented software systems explicitly
and systematically. In doing so, its main contributions lie in
(i) separating social expectations (which, in the most gen-
eral sense, can be seen as communication structures) from
agents’ mental processes, (ii) in viewing expectations as sys-
temic (supra-individual) data structures that are subject to
manipulation by system-level software components, and (iii)
in focusing on principles and techniques for analysing and
designing expectations in the process of developing open
agent-based systems. Another characteristic of EXPAND
is that it possesses a strong sociological background; more
specifically, its underlying view of expectations and social-
ity follows the systems theory by the sociologist Niklas Luh-
mann [12].

The remainder of this paper is structured as follows. Sec-
tion 2 presents the generic conceptualisation of expectations
underlying EXPAND. Section 3 describes EXPAND, and
shows how a feasible and adequate incremental analysis and
design process can be derived that exploits the importance of
the expectation level in open and autonomous agent-based
software systems. This is followed by an exemplification of
the usefulness of our approach in a case study based on a
“car-trading platform” application scenario in Section 4. Fi-
nally, Section 5 provides more general considerations on the
challenge of engineering agent-oriented software, shows re-
lationships to other methods and approaches, and indicates
directions for future research.

2. EXPECTATIONS
A major consequence of the autonomous behaviour of agents
is that a certain agent appears to other agents and ob-
servers more or less as a black box which cannot fully be
predicted and controlled. Because only the actions of an
agent in its environment can be observed, while its men-
tal state keeps obscure, beliefs and demands directed to the
respective agent can basically be stylised only as mutable
action expectations which are fulfilled or disappointed in fu-
ture agent actions. This suggests that it is justified, and
even inevitable, to integrate expectations as a modelling ab-
straction into the analysis and design process of open agent-
oriented software. A theory that is particularly well suited
for putting this suggestion into practice is Luhmann’s sys-
tems theory [12]. This theory does not only provide a strong
notion of expectations and their role in societies, but also
focuses on interaction and communication and thus on basic
ingredients of agent-oriented systems. In the following, sev-
eral aspects of this theory being essential to EXPAND are
described; this is done in more detail because these aspects
are not “common knowledge” in the field of computational
agency.

2.1 Sociality and communication
Because we are focusing on systems with multiple inter-
operating agents, we are primarily interested in expectations
addressing agent interactions which constitute sociality: if it
comes to an encounter of two or more agents, the described
situation of mutual indeterminism is called double contin-
gency [12]. To overcome this situation, that is, to determine
the respective other agent and to achieve reasonable coor-
dination (including “reasonable” conflicts), the agents need
to communicate. A single communication is the whole of a
message act as a certain way of telling (e.g., via speech or

gesture), plus a communicated information, plus the under-
standing of the communication attempt. Communication is
observable as a course of related agent interactions. Because
communications are the only way to overcome the problem
of double contingency (i.e., the isolation of single agents),
they are the basic constituents of sociality and they form
the social system in which the communicating agents are
embedded. EXPAND adopts this view, and assigns com-
munication a key role in analysing and designing systems
composed of interacting software agents.

2.2 Expectation structures and
structure evolution

As action expectations are related to communications and
thus to sociality, social structures can be modelled as ex-
pectation structures. Systems theory distinguishes four con-
cepts that correspond to expectation structures: (i) social
agents as sets of all current action expectations regarding
single physical agents; (ii) roles as placeholders that are as-
sociated with certain kinds of expected behaviour and that
can be instantiated by different physical agents; (iii) social
programs as flexible interaction schemes for multiple inter-
acting social agents and/or roles; and (iv) social values as
ratings of expected generalised behaviour (e.g., “Conflictive
behaviour is always bad”). The focus of EXPAND is on
social programs, since they are particularly suited for de-
scribing processes that occur between agents.

By processing existing expectations, agents determine their
own actions, which, then, influence the existing expectations
in turn. So communication is not only structured by individ-
ual agent goals and intentions, but also by expectations, and
the necessity to test, learn and adopt expectations for the
use with future communications. The process of continuous
expectation structure adaption by means of interaction (or
communication, respectively) is called structure evolution.
As described in Section 3, this kind of evolution also plays
a key role in EXPAND.

2.3 System-level expectations and
system design

Expectations regarding agent behaviour can be formed not
only by other agents (as an aspect of their mental state),
but also by observers with a global view of the multiagent
system. Such system-level expectations are called emergent
if they are formed solely from the statistical evaluation of
the observed communications.

As we will see in the next section, system-level expectation
structures can be used as the target of a multiagent sys-
tem design and analysis process, because they allow us to
observe and structure the multiagent system at the system
level (i.e., the level of sociality and thus of communication)
itself, and not just at the level of single agents as usual.
But despite their supra-agent nature, system-level expecta-
tions need to be expected themselves by the agents to be
able to have any influence on the system. The establish-
ment of such “expectations of expectation” can be achieved
through the communication of the system-level expectations
to the agents or through the publishing of the expectations
via an appropriate agent-external instance within the mul-
tiagent system. Once achieved, agents can “expect” what
“is expected by the social system”. As described in Section
3, EXPAND technically realizes this achievement through a
so-called “social system mirror”.

2.4 Four key attributes of expectations
Systems theory reveals multiple attributes of expectations,
and among them the following four are of particular rele-
vance to EXPAND: strength, normativity, representation,
and derivation.

Strength and normativity
Expectations can be weighted in two complementary ways,
namely, w.r.t. their strength and w.r.t. their normativity
(or inversely, their adaptability). The strength of an ex-
pectation indicates its “degree of expectedness”: the weaker
(stronger) the strength of an an expectation is, the less likely
is its fulfilment (violation). Against that, the normativity of
an expectation indicates its “degree of changeability”: the
more normative (adaptive) an expectation is, the smaller
(greater) is the change in its strength when being contra-
dicted by actual actions. With that, the strength of a lowly
normative expectation tends to change faster, whereas the
strength of a highly normative expectation is maintained
in the longer term even if it is obviously inconsistent with
reality (i.e., with the agents’ actual activities). The idea of
expectation weighting based on strengths and normativity is
adopted by EXPAND, and in accordance with systems the-
ory it is also assumed that there is a continuous transition
from weak to strong strength and from low to high nor-
mativity. Here are some examples of examples of extreme
combinations of strength and normativity: rules that gov-
ern criminal law (strong/non-adaptable: even hundreds of
actual murders will not alter the respective laws, and most
people think of murder as a rather exceptional event); habits
(strong/adaptable: before the times of fast food, people took
full service in restaurants for granted, but as fast food be-
came popular, they were willing to abandon this expecta-
tion); public parking regulations (strong/hardly adaptable:
almost everyone surpasses them even if they are, in prin-
ciple, rigid); and shop clerk friendliness (weak/adaptable:
most people expect bad service but are willing to change
their view once encountering friendly staff).

Representation
To design multiagent systems at the expectation level, we
need data structures for the representation of expectation
structures and statistical methods to derive emergent expec-
tation structures from observed communications. Settling
on particular representation formalisms naturally affects the
level of abstraction and with it the scope of designed expec-
tation structures. Here, we focus on social programmes, for
which a basic graphical notation is introduced as illustrated
in the example shown in Figure 1. The nodes correspond to
message/speech acts that are uttered and addressed to/by
instances of roles (ri) (i.e., agents). The directed arcs rep-
resent the respective expectation, that a communication is
followed by a certain subsequent communication. Arcs are
labeled by pairs s:n of real values ranging between 0 and 1,
where s denotes the strength of the expectation (in Figure 1
additionally visualised through arrow thickness) and n de-
notes its normativity. Note that outgoing edges of a node
always do have the same normativity, because the degree of
change always uniformly applies to the entire distribution of
their strength.

 ⊥

 Ask(r1, r2, service1)

 Perform(r2, service1)

 Refuse(r 2, service1)

0.8:1

0.2:1

1:0

Figure 1: A social program.

Derivation
The process by which expectation structures are derived
must be able to calculate the expectations’ strength and
normativity values. This calculation can be done based on
standard statistics and probability theory. As expectations
are extrapolations of observed communication processes into
the future, their normativity can be quantified as the per-
centage of their change in the case of being contradicted by
actually occurring events. For that arguments it is reason-
able (i) to derive the strength of an expectation by means of
computing the probability of the communicative actions that
fulfil or contradict this expectation given prior communica-
tion, and (i) to capture the normativity of an expectation
by rules for updating its strength.

3. EXPAND
Based on the description of EXPAND’s sociologically founded
view of expectations, this section presents EXPAND – its
software-technical concept of a social system mirror and its
analysis and design phases – in detail.

3.1 The mirror concept
The activities of identifying, evaluating and adapting system-
level expectation structures are crucial to EXPAND. EX-
PAND supports these activities by means of a so-called so-
cial system mirror , henceforth briefly called mirror . (De-
tails on the mirror concept are provided in [11].) Concep-
tually, a mirror is a software component (corresponding to
an EXPAND-specific CASE tool) which models an agent-
oriented software system as a social system. Technically, a
mirror is a knowledge base which derives system-level ex-
pectation structures from communications and makes them
available to both the participating agents and the designer of
the software system. The mirror has three major purposes:

1. monitoring agent communication processes,

2. deriving emergent system-level expectation structures
from these observations, and

3. making expectation structures visible for the agents
and the designer (the so-called reflection effect of the
mirror).

It is important to see that not all structures that are made
visible to the agents need to be emergent and derived through

system observation. Rather, the mirror can be pre-structured
by the designer to “reflect” manually designed (“manipu-
lated”), non-emergent expectation structures as well. In
both cases, the agents can access the mirror’s and actively
use the expectation structures provided by it as “guidelines”
influencing their reasoning and interactivity.

For example, agents can participate in social programs which
seem to be useful to them, or refrain from a certain be-
haviour if the mirror tells them that participation would vi-
olate a norm. Social programs (or structures in general) in
which agents continue to participate become stronger, oth-
erwise weaker. (The degree of change in strength depends
on the respective normativity.) Thus, the mirror reflects a
model of a social system and makes it available to the agents.
As a consequence, the mirror influences the agents – very
much like mass media do in human society. Conversely, the
mirror continually observes the actual interactions among
the agents and adopts the announced expectation structures
in its database accordingly. In doing so, the mirror never re-
stricts the autonomy of the agents. Its influence is solely by
means of providing information, and not through the exer-
tion of control.

The mirror, and thus EXPAND, realizes the principle of
evolutionary software engineering [1, 14]. More precisely,
within the overall EXPAND process (i.e., within the EX-
PAND phases described below) two mirror-specific opera-
tions are continuously applied in a cyclic way:

1. it makes the system-level expectations derived by the
designer from her design goals explicit and known to
the agents; and

2. it monitors the system-level expectation structures which
emerge from the communications among the software
agents.

These two operations constitute the core of the overall anal-
ysis and design process, and together they allow a designer
to control and to influence the agents’ realization and adop-
tion of her specifications.

3.2 The engineering phases

Phase I: Modelling the system level
In the first phase, the software designer models the system
level of the multiagent system according to her design goals
in the form of design specifications which focus on “social
behaviour” (i.e., desired courses of agent interaction) and
“social functionality” (i.e., functionality which is achieved as
a “product” of agent interaction, such as cooperative prob-
lem solving) in the widest sense (we don’t take into account
“second-order” design goals like high execution speed or low
memory consumption). For this task, the usual specification
methods and formalisms can be used, for instance, the spec-
ification of desired environment states, constraints, social
plans etc. In addition or as a replacement, the specification
can be done in terms of system-level expectation structures,
like social programs.

Phase II: Deriving appropriate expectation structures
In the second phase, the designer models and derives system-
level expectation structures from the design specifications
and stores them in the social system mirror. If the design

goals

functions

rules

expectation
structures

social values

social programs

roles

social agents

adaptable normative

abstract

concrete

hints constraints

Figure 2: System-level specification.

expectation structures expectation structures
structure adaptation

thru agents interaction

structure evolution

Figure 3: Evolution of expectation structures.

specifications from phase I are not already expectation struc-
tures (e.g., they might be given as rules of the form “Agent
X must never do Y”), they have to be transformed appro-
priately. While social behaviour specifications are expecta-
tion structures per se, social functionalities (for instance:
“Agents in the system must work out a solution for problem
X together”) possibly need to be transformed, most likely
into social programs. Sometimes a full equivalent transfor-
mation will not be feasible. In this case, the designer models
expectation structures which cover as much design require-
ments as possible.

System-level specifications can be modelled as adaptable or
normative expectations. The former can be used for the es-
tablishing of hints for the agents which are able to adapt
during the structure evolution, the latter for the transfor-
mation of constraints and other “hard” design requirements
into expectations.

Figure 2 shows the spectrum of system-level specifications
and expectation structures that result from this phase of the
analysis and design process.

Phase III: Monitoring structure evolution
After the designer has finished the expectation modelling,

she makes them visible for the agents via the social system

mirror and puts the multiagent system into operation (if it
is not already running). In the third phase of the design and
analysis process, it is up to the designer to observe and anal-
yse the evolution of expectation structures which becomes
visible to her through the mirror (Figure 3). In particular,
she has to pay attention to the relationship of the contin-
uously adapted system-level expectation structures and her
design specifications from phase I, which means that she
analyses the expectation structures with regard to the fulfil-
ment of norms established by the designer and the achieve-
ment of the desired social functionality. Because the mirror
is only intended to show expectation structures, it could be
necessary to support the mirror with a software for the (se-
mi-)automatical “re-translation” of expectation structures
into more abstract design specifications like social goals.
As long as the expectations structures develop in a positive
way (i.e., they match the design goals) or no emergent struc-
tures can be identified that deserve being made explicit to
improve system performance, the designer does not inter-
vene. Otherwise she proceeds with phase IV.

Phase IV: Refinement of expectation structures
In the last phase, the designer uses her knowledge about
the positive or negative emergent properties of the multia-
gent system to improve the system-level expectation struc-
tures. Usually, this is achieved by removing “bad” expecta-
tion structures from the mirror database, and, if necessary,
the introduction of new expectation structures as described
at phases I and II. In addition, expectation structures which
have proved to be useful can be actively supported by e.g. in-
creasing their expectation strength and/or their normativ-
ity. The process proceeds with phase III until all design goals
are achieved or no further improvement seems probable.

Having described how the EXPAND process is supposed to
be carried out in theory, we next turn to a concrete case
study that will illustrate what the process might look like in
practice, what problems and questions it raises, and what
perspectives it offers. The phases that our analysis and
design method consists of can be integrated into a single
process model that is summarised by the scheme shown in
Table 1 which makes the individual actions taken in each
phase more explicit.

4. CASE STUDY: THE CAR TRADING
PLATFORM

4.1 Scenario overview
Imagine a website that brings together car dealers, private
pre-owned car sellers and potential buyers who trade cars
online (cf. www.imotors.com , www.autoweb.com, www.auto-
internet.com, www.autotradecenter.com). There is an ”of-
fers” section in which sellers can display images, technical
details and prices of cars for sale. In the ”requests” area,
buyers can post requests for cars that they would be inter-
ested in. A forum is available, in which inquiries can be
placed, discussions, bargaining and negotiations may take
place publicly or privately (as forum users wish), etc.

4.2 Making top-level design decisions
Having made a decision on taking an agent-based approach,
the designer must develop a top-level description of the sys-

tem which will, to the least, include decisions regarding in-
frastructure, interaction environment and, above all, partic-
ipating agents (or agent types).
Here, we will assume that the designer of the platform is
designing a semi-open system: on the one hand, the sys-
tem offers user interface agents that monitor the platform
on behalf of users, profile users to derive interests/needs and
draw their attention to interesting information on the plat-
form. A second, pre-built type of agents are search agents
that constantly re-organise the platform’s database and can
search it efficiently. These can be contacted by user interface
agents as well as by humans for search purposes. We assume
that all interactions with these search agents are benevolent,
since they are not truly autonomous (they simply execute
others’ requests). On the other hand, there is a number
of agent types that have not been designed by the designer
of the platform. There can (and should) exist human and
non-human agents representing individuals or organisations
that interact with the platform in a ”socially” unprescribed
way (only restricted by implementation-level protocols and
standards, e.g. FIPA compliance). Generally, these agents
are black-boxes for the system designer.

Further refinement of these initial design decisions will re-
quire looking at a multitude of issues, ranging from commu-
nication facilities and standards and capabilities of in-built
profiling and search agents to database models etc. For our
purposes, we can restrict this identification of requirements
to social level characteristics of the platform since these are
the subject of the EXPAND process.

4.3 Identifying social level requirements
As system-level or “social level” goals, we consider the fol-
lowing motives of a car trading platform (CTP) provider:

1. Maximum quality of service should be provided: the
range of offered and requested cars has to be broad
and their specifications must relate to their prices; the
reliability of transactions must be high; trust between
buyers and sellers and between all users and the plat-
form must be at a reasonable level.

2. Transaction turnover should be maximised, because it
indicates (in our example) high return on investment
for the CTP provider stakeholders.

3. Traffic on the platform must be maximised, to ensure
high advertisement returns.

In the following, we sketch how the EXPAND process model
can be applied in the analysis and design of such a system.

The dilemma in designing the social level of such a platform
is obvious: system behaviour should meet the design goals
and at the same time it shouldn’t compromise participating
external agents’ private goals by being overtly restrictive.
An expectation-level model of social structures is needed to
cope with this situation. We next sketch the application of
the suggested analysis and design process to the CTP.

4.4 Implementing the EXPAND process

Phase I: Modelling the system level
In the first step the social structures are modeled in the form
of design specifications. They might include the following
(we use natural language for convenience and concentrate
only on a few design issues for lack of space):

Action Description Output
I Model system level Specify social-level requirements Social-level requirements

specification
I.1 Model social behaviour. Identify behaviour requirements, i.e. de-

sired/undesired courses of interaction.
Social behaviour specification.

I.2 Model social functionality. Identify functional requirements, i.e. desired out-
puts of system operation.

Social functionality specification.

II Derive expectation structures Transform requirements from phase I into
appropriate expectation structures

Mirror instantiation with ex-
pectation structures

II.1 Derive expectation primitives. Define what is expected of which agent(s) under
what conditions.

Expectation structure primitives.

II.2 Specify expectation attributes. For all derived structures, determine strength, nor-
mativity, representation and derivation.

Complete specification of expec-
tation structure attributes.

II.3 Instantiate mirror. Supply mirror with representations of the defined
expectation structures.

Concrete mirror data structures
and processing rules.

III Monitor system operation Observe structure evolution Evaluation of emergent sys-
tem behaviour

III.1 Identify emergent structures. Spot interesting/unexpected phenomena in un-
folding communication processes and emergent
system characteristics. Employ statistical meth-
ods, interpret data.

Catalog of emergent structures.

III.2 Evaluate emergent structures. Categorise emergent structures according to their
desirability wrt requirements identified in phase I.

Evaluation for emergent system
behaviours identified in III.2.

III.3 Determine next action. Assess risk of changes and urgency of changes. If
changes seem necessary, continue with IV; else, go
back to III.

IV Refine expectation structures Determine useful modifications to mirror

structures

Modified mirror structures

IV.1 Identify structures responsible for
undesired behaviour.

Involves finding “misused” or “unused” structures,
structures that are too normative or too adapt-
able, and missing structures that lead to chaotic
interaction.

Specification of appropriate mod-
ifications.

IV.2 Adjust mirror contents. Insert/delete necessary/obsolete expectation
structures or adjust existing ones according to
IV.1

Updated mirror.

IV.3 Deploy changes. Determine appropriate mode of updating the mir-
ror without disrupting operation or causing dis-
trust toward mirror.

Deployment of modified social
system mirror.

IV.4 Proceed to phase III.

Table 1: Detailed view of the EXPAND process.

1. Agents committing themselves to purchase/sell actions
towards other must fulfil all resulting obligations (de-
liver, pay, invoice etc.)

2. Unreliable behaviour induces reluctance to enter busi-
ness relationships on the side of others. Fraudulence
leads to exclusion from the platform.

3. Interest in offers and requests must be shown by others
in order to provide motivations to keep up the use of
the platform.

The first specification is very important in order to foster
trust among agents in such a platform. If communication
were only inducing a bunch of loose pseudo-commitments
that are never kept, the CTP risks becoming a playground
instead of a serious, efficient marketplace. This principle
is refined by item 2: the ”must” in the first rule can obvi-
ously not be deontically enforced on autonomous agents, so
it has to be replaced by a ”softer” expression of obligation:
by specifying that unreliable behaviour decreases the proba-
bility of others interacting with the unreliable individual in
the future, we provide an interpretation of the former rule in
terms of ”consequences”. Also, we distinguish ”sloppy” from
”illegal” behaviour and punish the latter with exclusion from
the platform, a centralised sanction that the platform may
impose. The third specification is somewhat more subtle:

it is based on the assumption that agents will stop posting
offers and requests, if they don’t receive enough feedback.
Since we have to ensure both a broad range of offers as well
as reasonable traffic on the site, we want to make agents be-
lieve that their participation is honoured by others so that
they keep on participating (for private buyers this might
be irrelevant, since they buy a car once every 5 years, but
it is surely important to have plenty of professional dealers
frequent the site).

The process of specifying such possible societal behaviours
should be iterated on the basis of “scenarios” for all courses
of communication that are of interest and seem possible, so
as to yield requirements for the social system that is to be
implemented.

Phase II: Deriving appropriate expectation structures
Clearly, the three requirements above can be analysed in
terms of expectations, that is, as variedly normative, possi-
bly volatile rules that are made known to agents and evolve
with observed interaction. The second phase of the EX-
PAND process consists of making these abstract require-
ments concrete as expected communication structures. As
mentioned before (see 2.4) we do not intend to restrict our-
selves here to a single formalism and will only use the al-
ready introduced graph-like notation to present a few sample
structures for the above specifications. Two such expecta-

Place order

Confirm availability

Deny availability

Deliver

Pay

Fail to pay

Fail to deliver

Place same order

Confirm availability

Deny availability

0.5:0

0.5:0

0.8:1

0.2:1

0.9:1

0.1:1

0.8:0

0.2:0

0.1:0

0.9:0

 ⊥

Figure 4: Social program “order-deliver-pay” (buyer actions
are shown in italic font, seller actions in plain face, as in
all following figures, speech act arguments are omitted for
lack of space): expectations about availability are balanced;
in the “available” case, dealers are expected to deliver and
customers are expected to pay. In the “not available” case,
dealers are expected to confirm their prior statement if asked
a second time (even though the probability of such a second
request is low).

Post offer

Show buyer interest

No interest

Respond to enquiries

Fail to respond

0.8:0.5

0.2:0.5

0.9:1

0.1:1

Figure 5: “Initiatives are honoured” program: it is expected
that dealers receive some response to their offers by potential
customers, and that they react to enquiries themselves.

tion structures derived from the above requirements 1. and
3. are shown in Figures 4 and 5. The first example depicts
an expectation structure of an order-deliver-pay-procedure
in the CTP. It encapsulates high delivery and payment ex-
pectations (i.e., high transaction reliability), but also a more
specific expectation as concerns availability statements that
are made by dealers: although it is equally probable that
the requested car will be available upon a first order, it is
highly unexpected that a car that had not been available
is suddenly available upon a second, identical order (in our
model, responses to communication are supposed to occur
in time-spans that are much shorter than those needed to
change stock). Thus, the first response is given much more
weight, and a notion of “honesty” in responding to orders
is assumed. The second example is closely related to design
goal 3 introduced above. Here, the expectation structure is
used to express that few posted offers go unanswered by in-

terested customers, and that the enquiries of such customers
are responded to with high probability. By using such a
structure, the designer can reassure both dealers and cus-
tomers that it is worthwhile posting orders and enquiries to
orders. If followed by the users of the CTP, such a structure
would imply that postings will be answered even if the other
party is not actually interested in the offer/question, and is
just replying out of a sense of “politeness”, to the end of
making everyone feel that their contributions are honoured.
Associated with such conventions would be the designer’s
goal to keep the CTP frequented, by presenting the social
structures as open and rich.

These simple examples given, we can return to our EX-
PAND design process model. We have shown how two social
structure specifications were turned into concrete expecta-
tion structures (phases I and II). For lack of space, we have
concentrated on social programmes and neglected roles, so-
cial agents and values. Preassuming that the CTP is imple-
mented and observed during operation, we can now proceed
to phase III.

Phase III: Monitoring structure evolution
Unlike phases I and II, this phase focuses on observation of
the system in operation in order to further refine expectation
structures and their processing. It is essential to keep in
mind that the systemic expectation “mirror” (as a software
component) leaves plenty of choices not only as concerns
the choice of employed expectation structures, but also with
respect to how these structures are processed , that is, how
they evolve through monitored agent behaviour in system
operation. To stress this second aspect, we concentrate on
this processing of expectations in the following examples.

Suppose, first, that we observe that actual behaviour largely
deviates from that assumed in Figure 4 in that there are
many fraudulent customers who do not comply with their
obligation to pay once the car has been delivered unless the
dealer threatens with legal consequences several times. Ob-
viously, identifying such a problem preassumes that inter-
action is tracked and that interaction patterns are statisti-
cally analysed and evaluated with respect to existing system
goals. Therefore, the software engineer’s primary duty is, at
this stage, to spot interesting behaviours (both desirable and
undesirable ones). Once realized, we are faced with a prob-
lem. By default, even though payment was designed as a
norm, the “expectation mirror” would simply “truthfully”
decrease the normativity in the longer term and adapt the
expectation strengths subsequently so that the strength of
“fail to pay” increases. This would mean that an emergent,
hidden structure would be made explicit in the system, but,
unfortunately, this would be a structure that embodies a
functionality which does not serve the system goals (even
though it has been “selected” through actual interaction)
because it would make future dealers doubt the reliability
of the system.

As a second example, suppose that the expectation structure
in Figure 5 corresponds to the actual system behaviour, but
not because of some “polite” policy of customers to show
interest in any dealer posting – instead, demand in cars is
simply (temporarily) so high (and maybe the CTP is for
some other reasons very attractive for customers) that al-
most no offer posting goes unanswered. Assume, further,
that our initial design was to enforce “politeness” by in-

Fail to pay

Urging letter

1:1 Fail to pay

Pay

0.2:1

0.8:1

Place order
0.1:0

Refuse order

Urging letter

1:1

Deliver

0.9:1

0.1:1

Pay

1:1

Figure 6: Specifying a new functionality.

sinuating that it was a convention of the platform, even if
customers would not have been polite at all, that is, we had
implemented this expectation structure as rather immutable
(normativity of 0.5/1) regardless of the agents’ behaviour.

In both cases, we have identified emergent (positive and neg-
ative) properties of the system that must be dealt with in
phase IV.

Phase IV: Refinement of expectation structures
As designers of the platform, we can react to such emergent
properties in different ways. To give a flavour for the kind of
decisions designers have to make when refining expectation
models, we discuss the two examples mentioned above.

In the case of the “spreading fraudulent customers”, the
most straightforward solution would be to impose sanctions
on the fraudulent behaviour observed (i.e., to add new ex-
pectation structures). Let us assume, however, that an anal-
ysis has shown that it is too costly to verify customers’
solvency and payment reserves (e.g., by inquiring other E-
commerce platforms about them). On the other hand, ig-
noring the changes by keeping the old expectation structure
(and asserting a high payment reliability in a “propaganda”
way) might result in future inconsistencies: if too many in-
dividuals realize that it does not correspond to the actual
social structure, they will use it less, and the “social design”
level will provide lesser possibilities to influence system be-
haviour for the designer.

Obviously, a trade-off has to be found. One possible solu-
tion would be to extend the structure in the way suggested
by Figure 6, such that failure to pay results in reluctance
of dealers to accept future orders from the unreliable cus-
tomer. So, in phase IV we can specify a new functionality
that feeds into the system in the next cycle. As concerns the
second, “positive” emergent property, we might consider lift-
ing the constraint of presenting an “immutable” politeness
convention, in order to allow for optimisation on the agents’
side: making the rule normative implies that it wouldn’t
change, even if, for example, dealers’ offers changed over
time – hence, there is little pressure for dealers to actively
try to meet customer demand. Thus, if we allowed this
expectation to adapt to the actual interest shown in offers
(e.g., by updating expectation strengths as real probabili-
ties, which can be achieved by decreasing the normativity

value shown in Figure 5), dealer agents would start noticing
which of their postings are good (ones which increase the
rate of customer inquiry) and which aren’t. (After all, max-
imising market efficiency in this way might help maximising
CTP profits, which also depend on gross trade turnover.)
We therefore decide to increase the adaptivity of this expec-
tation structure.

Performing such modifications to the expectation level de-
sign of a system nicely illustrates how rather restrictive so-
cial structures can give way to more emergent phenomena
in “safe” non-risky situations as the one depicted here when
optimisation is the prominent issue, and not the reduction
of chaos.

These simple examples underpin the usefulness of explicit
modelling of social structures in the proposed EXPAND pro-
cess model. In particular, they show how both designing
social structures and designing the processing of such struc-
tures plays an important role in the open systems we envis-
age. Also, they illustrate the evolutionary intuition behind
our design process: agents select social structures through
their interaction, and designers select them through design.

5. CONCLUSIONS
Engineering agent-oriented software while at the same time
taking autonomy as a key feature of agency seriously is a
great challenge. On the one hand, it is (among other things)
autonomy that makes the concept of an agent powerful and
particularly useful, and that makes agent orientation signif-
icantly distinct from standard object orientation. There is
an obvious and rapidly growing need for autonomous soft-
ware systems capable of running in open application envi-
ronments, given the increasing interoperability and inter-
connectivity among computers and computing platforms.
On the other hand, autonomy in behaviour may result in
“chaotic” overall system properties such as unpredictability,
uncontrollability and emergence that are most undesirable
from the point of view of software engineering and industrial
application. In fact, it is one of the major driving forces of
standard software engineering to avoid exactly such proper-
ties. To come up to each of these two contradictory aspects
– the urgent need for autonomous software systems on the
one hand and the problem of undesirable system properties
induced by autonomous behaviour on the other – must be a
core concern of agent-oriented software engineering, and is
the basic motivation underlying the work described here.

A number of agent-oriented software engineering methods
are now available (see [9] for a good survey). EXPAND
is most closely related to those among these methods which
also focus on the analysis and design of the system level (e.g.,
Gaia [16], Aalaadin [6], and Cassiopeia [5]). All available
methods as well as EXPAND aim at supporting a struc-
tured development of “non-chaotic” agent software. How-
ever, they do so in a fundamentally different way: EXPAND
admits agents a maximum degree of autonomy and restricts
autonomous behaviour only if this turns out to be necessary
during the evolutionary analysis and design process; against
that, most other methods show a clear tendency toward se-
riously restricting or even excluding the agents’ autonomy a
priori. Different mechanisms for achieving autonomy restric-
tions have been proposed, including e.g. the hardwiring of
organisational structures, the rigid predefinition of when and
how an agent has to interact with whom, and the minimi-

sation of the individual agents’ range of alternative actions.
As a consequence, methods based on such mechanisms run
the risk to design software agents that eventually are not
very distinct from ordinary objects as considered in stan-
dard object oriented software engineering since many years.
EXPAND aims at avoiding this risk by accepting auton-
omy as a necessary characteristic of agency that must not
be ruled out headily (and sometimes even can not be ruled
out at all, as it is typical for truly open systems). With
that, EXPAND is in full accordance with Jennings’ claim to
search for other solutions than the above mentioned restric-
tive mechanisms [10, p. 290]. Moreover, EXPAND with its
grounding on Luhmann’s theory of social systems precisely
is in the line of Castelfranchi’s view according to which a
socially oriented perspective of engineering social order in
agent systems is needed and most effective [2]. In addition to
that, and more generally, this thorough sociological ground-
ing also makes EXPAND different from other approaches
that apply sociological concepts and terminology in a com-
paratively superficial and ad hoc manner.

Taking expectations as a level of analysis and design opens
a qualitatively new perspective of agent-oriented software
and its engineering. To explore and to work out such a new
perspective constitutes a long-term scientific and practical
endeavour of considerable complexity. This also is why it
is not surprising that EXPAND in its current version does
not yet answer all relevant issues, but necessarily includes
aspects that are tentative in flavour and so leaves room for
improvement. Our current work focuses on the improvement
of three of these aspects that we consider as particularly im-
portant; these are a more formal treatment of system-level
expectations, the technical refinement of the mirror concept,
and a more systematic transition from the expectation level
down to the group and agent levels and further down to the
standard object level. EXPAND should be considered as a
first, pioneering step toward a better understanding of the
benefits and the limitations of expectation-oriented analysis
and design. Faced with the challenge to build “autonomous
non-chaotic agent software”, we think it is important to fur-
ther investigate the expectation level in general and EX-
PAND in particular.

Acknowledgements. This work has been support by DFG
(German National Science Foundation) under contract no.
Br609/11-1.

6. REFERENCES
[1] L. J. Arthur. Rapid Evolutionary Development:

Requirements, Prototyping & Software Creation. John
Wiley & Sons, 1991.

[2] C. Castelfranchi. Engineering social order. In Working
Notes of the First International Workshop on Engineering
Societies in the Agents’ World (ESAW-00), 2000.

[3] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur.
Deliberate normative agents: Principles and architecture.
In Proceedings of the Sixth International Workshop on
Agent Theories, Architectures, and Languages (ATAL-99),
Orlando, FL, 1999.

[4] P. Ciancarini and M. J. Wooldridge. Agent-oriented
Software Engineering: first international workshop
(AOSE-2000). Springer-Verlag, Berlin et al., 2001.

[5] A. Drogoul and A. Collinot. Applying an agent-oriented
methodology to the design of artificial organizations: a case
study in robotic soccer. Autonomous Agents and
Multi-Agent Systems, 1(1):113–129, 1998.

[6] J. Ferber and O. Gutknecht. A meta-model for the analysis
and design of organizations in multi-agent systems. In
Proceedings of the 3nd International Conference on
Multi-Agent Systems (ICMAS-98), pages 128–135, 1998.

[7] C. Hewitt. Offices are open systems. ACM Transactions on
Office Information Systems, 4(3):271–287, July 1986.

[8] M. N. Huhns. Interaction-oriented programming. In
Agent-Oriented Software Engineering: first international
workshop (AOSE-2000), Lecture Notes in Artificial
Intelligence vol. 1957. Springer-Verlag, 2000.

[9] C. Iglesias, M. Garijo, and J. Gonzales. A survey of
agent-oriented methodologies. In J. Müller, M. Singh, and
A. Rao, editors, Intelligent Agents V. Proceedings of the
Fifth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), Lecture Notes in
Artificial Intelligence vol. 1555, pages 317–330.
Springer-Verlag, 1999.

[10] N. Jennings. On agent-based software engineering.
Artificial Intelligence, 117:277–296, 2000.

[11] K. F. Lorentzen and M. Nickles. Ordnung aus Chaos –
Prolegomena zu einer Luhmann’schen Modellierung
deentropisierender Strukturbildung in
Multiagentensystemen. In T. Kron, K. Junge, and
S. Papendick, editors, Luhmann modelliert. Ansätze zur
Simulation von Kommunikationssystemen. Leske &
Budrich, 2001. To appear.

[12] N. Luhmann. Social Systems. Stanford University Press,
Palo Alto, CA, 1995 (orignally published in 1984).
translated by J. Bednarz, Jr. and D. Baecker.

[13] M. Singh. Toward interaction-oriented programming.
Technical Report TR-96-15, Department of Computer
Science, North Carolina State University, 1996.

[14] I. Sommerville. Software Engineering. Addison-Wesley,
1998.

[15] M. J. Wooldridge, N. Jennings, and D. Kinny. A
methodology for agent-oriented analysis and design. In
Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), pages 69–76, 1999.

[16] M. J. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design.
Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

