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Abstract. This paper studies automated bilateral negotiation among
self-interested agents in complex application domains which con-
sist of multiple issues and real-time constraints and where the
agents have no prior knowledge about their opponents’ preferences
and strategies. We describe a novel negotiation approach called
OMAC (standing for “Opponent Modeling and Adaptive Conces-
sion”) which combines efficient opponent modeling and adaptive
concession making. Opponent modeling is achieved through stan-
dard wavelet decomposition and cubic smoothing spline, and conces-
sion adaptivity is achieved through dynamically setting the conces-
sion rate on the basis of the expected utilities of forthcoming counter-
offers. Experimental results are presented which demonstrate the ef-
fectiveness of our approach in both discounting and non-discounting
domains. Specifically, the results show that our approach performs
better than the five top agents from the 2011 Automated Negotiation
Agents Competition (ANAC).

1 INTRODUCTION

Since some years automated negotiation is achieving steadily grow-
ing attention as a mechanism for coordinating interaction among
computational autonomous agents which are in a consumer-provider
or buyer-seller relationship and thus typically have different interests
over possible joint agreements. The main reason for this attention
is the broad spectrum of potential applications of automated nego-
tiation in a variety of domains and fields. This paper deals with au-
tomated bilateral multi-issue negotiation (e.g., [12]). Characteristic
to this negotiation form is that two agents negotiate with the goal
to agree on a profitable contract for a product or service, where the
contract consists of multiple issues (e.g., price, quantity and quality)
which are of conflictive importance for the negotiators. Specifically,
the paper focuses on bilateral multi-issue negotiation in applications
scenarios in which the agents have no prior information about their
opponents – neither about their preferences (e.g., their issue ordering
or weight vectors) nor about their offering and acceptance strategies.
In addition to that, we concentrate on “negotiation with deadline and
discount”, that is, on negotiations under real-time constraints where
the agents have to take into consideration at each time point the re-
maining negotiation time and try to avoid any unnecessary delay dur-
ing negotiation. Last but not least we focus on computational effi-
ciency of negotiation, because agents may have very restricted com-
puting resources. Negotiation scenarios showing these characteristics
are particularly challenging but are common in reality. For instance,
in the case of open electronic sales platforms an agent may be en-
gaged in bilateral multi-issue negotiations with other agents which
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it has never met before. Moreover, if a negotiation agent runs on a
small device such as a cell phone then computational efficiency is
crucial.
This paper introduces a novel negotiation approach calledOMAC

(“Opponent Modeling and Adaptive Concession”) for those scenar-
ios. It integrates two key aspects of successful negotiation: efficient
opponent modeling and adaptive concession making. Opponent mod-
eling realized by OMAC aims at predicting the utilities of an op-
ponent’s future counter-offers and is achieved through two standard
mathematical techniques, namely, wavelet decomposition and cubic
smoothing spline. Adaptive concession making is achieved through
dynamically adapting the concession rate (i.e., the degree at which an
agent is willing to make concessions in its offers) on the basis of the
utilities of future counter-offers it expects according to its opponent
model.
The remainder of this paper is structured as follows. Section 2

overviews important related work. Section 3 describes the standard
negotiation environment underlying our research. Section 4 presents
OMAC. Section 5 offers a careful experimental analysis of the ap-
proach. Finally, Section 6 identifies some important research lines
induced by the described work.

2 RELATED WORK

For automated negotiation, a determining factor for the success of
an autonomous agent is how well it can interpret the opponent’s in-
tention on the basis of the offers they exchanged during their ne-
gotiation. An intuitively obvious approach to this is to equip agents
with the ability to build up an opponent model which captures the
opponent’s preference profile or negotiation strategy – interpreta-
tion of the opponent’s intention could then be done with the help
of this model. Opponent modeling, however, is very challenging in
practice because an opponent normally has no motivation to reveal
its own preferences and strategies [4, 13]. Many opponent modeling
approaches are described in literature (see [9]), but a problem with
them is that they make strong or unrealistic assumptions to guar-
antee effectiveness. Specifically, due to these assumptions existing
approaches are not appropriate for the type of complex environment
we are dealing with. Saha et al. [15] applies Chebychev polynomials
to estimate the chance that the negotiation partner accepts an offer
in repeated single-issue negotiations on the same domain against a
particular opponent, where the opponent’s response can only be ac-
ceptance or rejection. In [2], Brzostowski et al. investigate the on-
line prediction of future counter-offers on the basis of the previous
negotiation history by using differentials, thereby assuming that the
opponent strategy is known to base on a mix of time- and behavior-
dependent one. Hou [11] employs non-linear regression to predict
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the opponent’s tactic (though in single-issue negotiation), thereby
supposing that the opponent uses a pure tactic as introduced in [7]
and that the types of tactics are fixed. In [3] an artificial neural net-
work (ANN) is constructed with three layers (including 52 neurons
in total) to compete against human negotiators in a specific domain,
its training however requires a very large database of previous en-
counters. Another notable work in this area is [16], where Gaussian
processes are applied to predict the future opponent concession. The
resulting information is then used to adapt the agent’s concession
strategy accordingly to achieve the “optimum” outcome. This strat-
egy performed better than the best negotiating agents of ANAC 2010
and finally made the 3rd place in ANAC 2011 (ANAC is the Inter-
national Automated Negotiation Agents Competition [1]). Our ap-
proach,OMAC, is empirically evaluated against this and other state-
of-the-art agents; details are given in Section 5.

3 NEGOTIATION ENVIRONMENT

We adopt a basic bilateral multi-issue negotiation setting which
is widely used in the agents field (e.g., [7, 8]) and the negotiation
protocol we use is based on a variant of the alternating offers
protocol proposed in [13]. Let I = {a, b} be a pair of negotiating
agents, i represent a specific agent (i ∈ I), J be the set of issues
under negotiation, and j be a particular issue (j ∈ {1, ..., n} where
n is the number of issues). The goal of a and b is to establish a
contract for a product or service. Thereby a contract consists of a
package of issues such as price, quality and quantity. Each agent
has a lowest expectation for the outcome of a negotiation; this
expectation is called reserved utility ures. wi

j (j ∈ {1, . . . , n})
denotes the weighting preference which agent i assigns to issue j,
where the weights of an agent are normalized (i.e.,

∑n
j=1(w

i
j) = 1

for each agent i). During negotiation agents a and b act in conflictive
roles which are specified by their preference profiles. In order to
reach an agreement they exchange offers O in each round to express
their demands. Thereby an offer is a vector of values, with one value
for each issue. The utility of an offer for agent i is obtained by the
utility function defined as:

U i(O) =

n∑
j=1

(wi
j · V

i
j (Oj)) (1)

where wi
j and O are as defined above and V i

j is the evaluation func-
tion for i, mapping every possible value of issue j (i.e., Oj) to a real
number.
Following Rubinstein’s alternating bargaining model [14], each

agent makes, in turn, an offer in form of a contract proposal.
Negotiation is time-limited instead of being restricted by a fixed
number of exchanged offers; specifically, each negotiator has a
hard deadline by when it must have completed or withdraw the
negotiation. The negotiation deadline of agents is denoted by tmax.
In this form of real-time constraints, the number of remaining rounds
are not known and the outcome of a negotiation depends crucially on
the time sensitivity of the agents’ negotiation strategies. This holds,
in particular, for discounting domains, that is, domains in which the
utility is discounted with time. As usual for discounting domains,
we define a so-called discounting factor δ (δ ∈ [0, 1]) and use this
factor to calculate the discounted utility as follows:

D(U, t) = U · δt (2)

where U is the (original) utility and t is the standardized time. As
an effect, the longer it takes for agents to come to an agreement the
lower is the utility they can achieve.

After receiving an offer from the opponent,Oopp, an agent decides
on acceptance and rejection according to its interpretation I(t, Oopp)
of the current negotiation situation. For instance, this decision can be
made in dependence on a certain threshold Thresi: agent i accepts
if U i(Oopp) ≥ Thresi, and rejects otherwise. As another example,
the decision can be based on utility differences. Negotiation contin-
ues until one of the negotiating agents accepts or withdraws due to
timeout.2

4 OMAC APPROACH

OMAC includes two core stages – opponent modeling and conces-
sion rate adaptation – as described in detail in 4.1 and 4.2, respec-
tively. A third important stage of OMAC, its response mechanism to
counter-offers, is described in 4.3. An overview of OMAC is given
in Algorithm 1.

Algorithm 1 The OMAC approach. tc refers to the current time, δ
the time discounting factor, λ the layer of wavelet decomposition, ψ
the wavelet function, and tmax the deadline of negotiation. Oopp is
the latest offer of the opponent, and Oown the offer to be proposed
by OMAC. χ represents the time series comprised of the maximum
utilities over intervals. Let υ be the smooth component of λ-th order
wavelet decomposition based on ψ, and α the predicted main ten-
dency of χ. tl is the time we preform prediction process and ul is the
utility of our most recent offer. u′ is the target utility at time tc. R is
the reserved utility function.
1: Require : tmax, δ, λ, ψ,R
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage();
4: recordBids(tc, Oopp);
5: if needUpdate(tc) then
6: χ ⇐ preprocessData(tc)
7: (α, tl, ul) ⇐ predict(χ, λ, ψ);
8: end if
9: u′ = getTarUtility(tc, tl, ul, δ, α,R);
10: if getOwnUtility(Oopp, tc, δ) ≥ u′ then
11: accept(Oopp);
12: else
13: Oown ⇐ constructOffer(u′);
14: proposeBid(Oown);
15: end if
16: end while

4.1 Opponent modeling

According to OMAC, the aim of opponent modeling realized by a
negotiating agent is to estimate the utilities of future counter-offers
it will receive from its opponent. This corresponds to the lines 3 to
8 in Algorithm 1. Opponent modeling is done through a combination
of wavelets analysis and cubic smoothing spline. When receiving a
new bid from the opponent at the time tc, the agent records the time
stamp tc and the utility U(Oopp) this bid has according to the agent’s
utility function. The maximum utilities in consecutive equal time in-
tervals and the corresponding time stamps are used periodically as
basis for predicting the opponent’s behavior (line 5 and 6). The rea-
sons for a periodical updating are similar to those mentioned in [16].
2 If the agents know each other’s utility functions, they can compute the
Pareto-optimal contract [13]. However, a negotiator will not make this in-
formation available to its opponent in general.

S. Chen and G. Weiss / An Efficient and Adaptive Approach to Negotiation in Complex Environments 229



Firstly, this degrades the computation complexity so that the agent’s
response time is kept low. Assume that all observed counter-offers
were taken as inputs, then the agent might have to deal with thou-
sands of data points in every single session. This computational load
would have a clear negative impact on the quality of negotiation in
a real-time constraint setting. Secondly, the effect of noise can be
reduced. In multi-issue negotiation a small change in utility of the
opponent can result in a large utility change for the negotiator and
this can easily result in a misinterpretation of opponent’s behavior.
Behavior prediction is mainly done by applying discrete wavelet

transformation (DWT) to the time series χ; this is captured by line
7. We decided to use DWT because wavelet analysis is known to
be an efficient multi-scaling tool for exploring features in data sets.
With DTW a signal can be decomposed into two parts, an approxi-
mation and a detail part. The former is smooth and reveals the trend
of the original signal, and the latter is rough and corresponds to noise
(resulting e.g. from seasonal fluctuations). OMAC focuses on the
approximation part and intentionally ignores the detail part for three
reasons. First, the approximation part represents the trend of the op-
ponent concession in terms of utility and indicates how the conces-
sion of opponent will develop in the future. Second, it is smooth
enough (compared to the original signals, i.e. χ) to allow for quality
prediction performance. Third, the detail part contains information
which is of little value in a negotiation setting. As we saw in various
empirical investigations, the ratio between the main tendency term
and the original signal tends to be about 0.98 with a small standard
deviation. Precise extension of those detailed components can im-
prove effectiveness of our model slightly, it is however very costly
for a medium-range lead time in real-time negotiation.
Given the discrete wavelet function ψj,k(t) transformed by a

mother wavelet ψ(t),

ψj,k(t) = a
−j/2
0 ψ(a−j

0 t− kb0), j, k ∈ Z (3)

DWT corresponds to a mapping from the signal f(t) to coefficients
Cj,k which are related to particular scales, where these coefficients
are defined as follows:

Cj,k =

∫ +∞

−∞

f(t)ψj,k(t)dt, j, k ∈ Z (4)

The ψ(t) is normally required to be an orthogonal wavelet in prac-
tice, the set {ψj,k(t)|j, k ∈ Z} is then an orthogonal wavelet basis
such that the signal f(t) can be reconstructed.
With recursive application of DWT to the signal f(t), the approx-

imation (low frequency) and detail (high frequency) components are
recovered, respectively. For instance, f can first be decomposed into
a1 + d1 and the resulting part a1 can then be decomposed in finer
components, that is, a1 = a2+d2, and so on. Based upon this recur-
sive process, the signal can be expressed as f = a1+a2+. . .+an+dn
(further details on wavelets are given in e.g. [5]). The results reported
in this paper are achieved through wavelet decomposition using the
Daubechies’ wavelets of order 10. We use the following notation:

χ = υ +

λ∑
n=1

dn (5)

where υ represents the approximation component of χ and dn is n-
layer detail part (n is determined by the decomposition level λ). An
example can be found in Figure 1 which shows χ and its correspond-
ing approximation part υ along with the estimated upper and lower
bounds of χ. The two bounds are represented by v ± σ, where σ is
the standard deviation of the ratio between χ and υ.

Figure 1. Illustrating the opponent’s concession (given by χ, the thick
solid line) and the corresponding approximation part υ (the thin solid line)
when negotiating with Agent K2 in the Camera domain. The two dash-dot
lines represent the estimated upper and lower bounds of χ. (Details of the

agents and domains are given in Section 5.1.)

In order to forecast the opponent’s future behavior, cubic smooth-
ing spline is used to extend the smooth component υ . Cubic spline is
widely used as a tool for prediction, see [17]. For equally spaced time
series, a cubic spline is a smoothing piecewise function, denoted as
the function ˆg(t) which minimizes:

p

n∑
t=1

w(t)(f(t)− ĝ(t))2 + (1− p)

∫
(ĝ(u)′′)2du (6)

where p is the smoothing parameter controlling the rate of exchange
between the residual error described by the sum of squared residuals
and local variation represented by the square integral of the second
derivative of g and w is the weight vector (for further details, refer to
[6]).
Figure 2 shows the actual and the predicted smooth parts of oppo-

nent concession at different time points for the opponent “Iamhag-
gler2011”: as this figure illustrates, cubic spline is able to forecast the
given signal within a medium range very well. Since OMAC applies
a periodical updating mechanism, it is not necessary and not wise to
forecast globally (i.e., from the current moment to the end point of
negotiation), because this probably brings too much noise into the
prediction. OMAC limits the range of forecasting to ζ intervals and
in this way achieves efficiency and noise reduction.

4.2 Adaptive adjustment of concession rate

Given the extended version of the smooth part – α, we now discuss
how to use it for adaptively setting the concession rate of our ex-
pected utility (see line 9 in Algorithm 1). A possibility is to maxi-
mize the expected utility merely according to the predicted opponent
move. This is quite straightforward but may be not so effective. Sup-
pose the negotiation partners are “tough” and always avoid making
any concession in bargaining. In this case the result of prediction
could indicate a very low expectation about the utility offered by the
opponent and this, in turn, would result in an adverse concession. In
our approach a simple function R, called reserved utility function, is
used to realize concession adaptation. This function guarantees the
minimum utility at each given time step. This is because the function
values are set as the lower bound of our expected utilities. Moreover,
in principle it makes concession over time, thereby taking into ac-
count the impact of the discounting factor. Specifically, the reserved
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Figure 2. Illustration of the predictive power of our approach in two
consecutive ranges. The dash line indicates the time point tc at which the
current prediction is made. The plus signs on left of the dash line are the
actual points of υ before tc. The crosses to the right of the dash line show
the actual points of υ after tc. The extended version of υ – α (i.e., the
prediction of υ) is shown by the solid line. These results are achieved for

agent Iamhaggler2011 in the domain Amsterdam party.

utility function is given by:

R(t) = ures + (1− t1/β)(maxUtility(p) · δη − ures) (7)

where ures is the minimum utility the agent would accept, β is a
parameter which has a direct impact on the concession rate, maxU-
tility(p) is the function specifying the maximum utility given by the
preference profile p of a negotiation domain, and η is a parameter
called risk factor which reflects the agent’s expectation about the
maximum utility it can achieve.
We define the estimated received utility Eru(t), which gives our

agent the expectation of opponent’s future concession, as follows:

Eru(t) = D(α(t)(1 + Stdev(ratio[tb,tc])), t), t ∈ [tc, ts] (8)

where Stdev(ratio[tb,tc]) is the standard deviation of ratio between
the smooth part υ and the original signal χ from the beginning of
negotiation(tb) till now and ts is the end of α.
Suppose the future expectation the agent has obtained fromEru(t)

is optimistic, in other words, there exists an interval {T |T �= ∅, T ⊆
[tc, ts]}, so that

Eru(t) ≥ D(R(t), t), t ∈ T (9)

OMAC then sets the time t̂ at which the optimal estimated utility û
is reached as:

t̂ = argmaxt∈T (Eru(t)−D(R(t), t)) (10)

and û is simply assigned by:

û = Eru(t̂) (11)

When the opponent’s future concession is estimated to be below
the agent’s expectations according to R(t) (i.e., there is no such in-
terval T described above),OMAC investigates whether the best pos-
sible outcome under that “pessimistic” expectation of opponent con-
cession should be accepted given the threshold ρ. This outcome is
denoted as ξ and is given by:

ξ = ρ−1 · Eru(tξ)/D(R(tξ), tξ), tξ ∈ [tc, ts] (12)

where ρ is the tolerance threshold to accept Eru(tξ) as target utility
and tξ is given by:

tξ = argmint∈[tc,ts](|Eru(t)−D(R(t), t)|) (13)

The rationality behind it is that if the agent rejects the “locally op-
timal” counter-offer, the agent will probably loose the opportunity
to reach a “globally good” agreement (especially in discounting do-
mains). If ξ > 1, û and t̂ are assigned to Eru(tξ) and tξ, respec-
tively. Moreover, the agent records the utility and time of its last bid
as ul and tl, respectively. Otherwise, the estimated utility is set to -1,
meaning it does not take effect anymore, andD(R(tc), tc) is used to
set the target utility u′.
When the agent expects to achieve better outcomes (see Equation

9), the optimal estimated utility û is chosen as the target utility for
our agent’s future bids. Obviously, it is not rational to concede im-
mediately to û when ul ≥ û, nor should it shift to û without delay
given ul < û, especially because the predication may be not ab-
solutely accurate. To simplify the strategy, OMAC applies a linear
concession making and the concession rate is dynamically adjusted
to grasp every chance to maximize its profit. Overall, the target utility
u′ is given as follows:

u′ =

{
D(R(t), t) if û = −1

û+ (ul − û) t−t̂
tl−t̂

otherwise
(14)

4.3 Response mechanism

The response stage corresponds to lines 10 to 15 in Algorithm 1.
With the target utility u′ known (Equation 14), the agent then needs
to examine the counter-offer to see if the utility of that offer U(Oopp)
is higher than the target utility. If so, it accepts this counter-offer and,
with that, terminates the negotiation session. Otherwise, the agent
construct a bid to be proposed next round whose utility is indicated
by u′.
In multi-issue negotiation, offers with exactly the same utility for

one side can have different values for the other party. Moreover, in
time-limited negotiation scenarios no explicit limitation is imposed
on the number of negotiation rounds and it is possible to generate
many offers having a utility close to u′. OMAC takes advantage
of this and aims at generating many offers in order to explore the
space of possible outcomes and to increase the acceptance chance
of own bids. Specifically, offers are constructed in such a way that
the agent randomly selects an offer whose utility is in the range
[0.99u′, 1.01u′]. If no such solution is found, the latest offer made
by the agent is used again in the subsequent round. Moreover, in
view of negotiation efficiency, if u′ drops below the utility of the
best counter-offer according to the agent’s utility function, this best
counter-offer is proposed by the agent as its next offer. This makes
sense because the counter-offer tends to satisfy the expectation of
opponent and is thus likely to be accepted by the opponent.

5 EXPERIMENTAL ANALYSIS

The performance evaluation of OMAC is done with GENIUS (Gen-
eral Environment for Negotiation with Intelligent multipurpose Us-
age Simulation [10]) which is also used as a competition platform
for ANAC. It allows to compare agents (representing different ne-
gotiation strategies) across a variety of application domains under
real-time constraints, where the preference profiles of two negotiat-
ing agents are specified for the individual domains.

5.1 Experimental settings of experiments

OMAC-agent is compared against the top five agents of ANAC 2011
(OMAC-agent refers to the agent which applies OMAC). More-
over, we use five application domains created for ANAC, all of
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Figure 3. Average raw scores of all agents in ten domains. The vertical
axis shows utility and horizontal axis shows domain.

which are originally non-discounting except Camera. We refer to
the non-discounting domain Travel as U1, Amsterdam party as U2,
England vs Zimbabwe as U3, Itex vs Cypress as U4, Camera as U5.
The corresponding domains with time-dependent discounting factor
are referred to as D1, D2, ..., D5, respectively. Three of these do-
mains were used in ANAC2010, and the others have been selected
by ANAC2011. This choice of domains from ANAC2010 and 2011
makes the overall setting balanced (a wide range of domain char-
acteristics are covered) and fair, and avoids any advantageous bias
for OMAC resp. OMAC-agent. (With respect to fairness, note that
the developers of the 2011 winners knew the ANAC2010 domains
and thus had the opportunity to optimize their agents accordingly).
For each of the ten domains, we run a tournament consisting of 6
agents 10 times to get results with high statistical confidence, where
each agent repeats the negotiation against all other negotiators play-
ing different roles in turn. In competition, agents will not be given
any information about the opponents’ strategies or other private in-
formation. Furthermore, they are prohibited from taking advantage
of previous encounters with their opponents. The time limit for ev-
ery single negotiation session is 180 seconds in total (to be shared
by the two negotiators). In the implementation ofOMAC-agent, ρ is
set to 0.95 and the overall duration of a session is dividend into 100
consecutive intervals of 1.8 seconds each. In addition, the maximum
predictive range ζ is limited to 15 intervals, the risk factor η is set to
0.2 and ψ = Daubechies wavelets of order 10 with λ being 4. (In our
experiments we found out that OMAC works well for a very broad
range of parameters.)

5.2 Experimental outcomes

Figure 3 depicts experimental results based on non-discounting do-
mains (3(a)) and discounting domains (3(b)). As these figures show,
OMAC-agent demonstrates excellent bargaining skills in each of the
ten domains. More specifically, the agent finished first in eight do-
mains and finished second in the remaining two domains (U5 and
D4) with a very small disadvantage (about 2.35% at most). The do-
mains used for testing cover a variety of domains in terms of three

significant aspects. First, the outcome space ranges from large (U1
with 188,160) over medium (U2 having 3,024) to small (U4 with
180). Second, the opposition of domains (i.e. how compatible the
interests of two parties are w.r.t. obtaining a joint benefit) has a
broad spectrum, ranging from weak (U1) over medium (U3) to strong
(U4). Third, the domains show a broad spectrum of discounting fac-
tors, ranging from 0.4 (for D1) to 1.0 (for all non-discounting do-
mains). The distinct discounting factors (from the highestD1 to non-
discounting domains, i.e. Un) of the ten domains require agent’s ap-
propriate decision-making under real-time pressure against unknown
opponents. Together these aspects make the used domains very chal-
lenging. In view of these aspects the obtained results clearly indicate
that OMAC is not limited to usage in a few specific domains, but is
of value for a broad range of applications.

Agent Non-discounting domain Discounting domain
mean variance mean variance

OMAC-agent 0.831 0.0008 0.714 0.0016
HardHeaded 0.741 0.0010 0.623 0.0013
Gahboninho 0.807 0.0023 0.555 0.0031
Agent K2 0.557 0.0025 0.591 0.0023
BRAMAgent 0.502 0.0089 0.577 0.0084
Iamhaggler2011 0.474 0.0046 0.602 0.0021

Table 1. The average normalized score of agents for discounting and
non-discounting domains.

Table 1 shows the average normalized scores for each agent in
the discounting and non-discounting domains, and Table 2 shows
for each agent the overall raw and normalized scores averaged over
the ten domains. As usual, the scores were standardized by using
the maximum and minimum utility obtained by all participants in
the domain. According to Table 1, where the agents are ordered by
the final ranking shown in Table 2, OMAC-agent completely out-
classed others with a small variance. Another interesting observation
is that Gahboninho performed very well in non-discounting domains
(closely following OMAC-agent), while it achieved the worst score
in discounting domains. A similar performance behavior was shown
by Iamhaggler2011. This means that their behaviors are somewhat
“extreme” and not adaptive enough to cope with the given range
of negotiation domains. Compared to these agents, the champion of
ANAC 2011 – Hardhead – achieved a more balanced and effective
behavior.

Agent Raw Score Normalized Score
mean variance mean variance

OMAC-agent 0.767 0.0013 0.772 0.0101

HardHeaded 0.713 0.0011 0.682 0.0035
Gahboninho 0.713 0.0027 0.681 0.0083
Agent K2 0.641 0.0034 0.574 0.0059
BRAMAgent 0.613 0.0087 0.540 0.0208
IAMhaggler2011 0.612 0.0024 0.538 0.0088

Table 2. Overall performance.

From Table 2 it can be seen that the best overall performance is
achieved by OMAC-agent – its utility (in terms of the normalized
score) is 28.1% higher than the average utility of the other agents.
The second best performer is Hardheaded, with a disadvantage of
about 13% compared to OMAC-agent, and the lowest performance
was shown by Iamhaggler2011.

6 CONCLUSIONS

This paper introduced an effective approach called OMAC (“Oppo-
nent Modeling and Adaptive Concession”) for automated negotiation
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in complex – bilateral multi-issue, time-constrained, no prior knowl-
edge, low computational load, etc. – scenarios. This approach, based
on wavelet decomposition and cubic smoothing spline, outperformed
the five best agents from the 2011 International Automated Negotia-
tion Agents Competition (ANAC).
We think the experimental results justify to invest further research

efforts into this approach and we see several promising research di-
rections. Specifically, we find research which addresses the following
three questions particularly relevant. First, are there opponent mod-
eling techniques which are even more efficient than wavelet decom-
position and cubic smoothing spline? Second, are there techniques
for concession rate adaptation which are more accurate than the ba-
sic technique currently used? And third, can opponent modeling of
OMAC, which currently focuses on modeling the opponent’s strate-
gies, be extended toward modeling the opponent’s preferences as
well? Our current research aims at exploring the first question.
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