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Abstract. We study the evolution of cooperation in social networks,
aiming in particular at ways of influencing the behavior in such net-
works using methods and techniques from optimal control theory.
This is of importance to many scenarios where politicians or policy
makers strive to push consensus on some topic that may seem sub-
optimal from individuals’ perspectives. To this end, we employ the
Continuous Action Iterated Prisoner’s Dilemma (CAIPD) as model
for the interactions in a social network. This model describes how
neighboring nodes influence each other, and in effect determines how
different strategies may spread through the network. We extend this
model, incorporating a mechanism for external influence on the be-
havior of individual nodes. Next we prove reachability of an arbi-
trary network-wide agreement using the Lyapunov’s Direct Method.
Based on the theory of Linear-Quadratic Trackers we propose a step-
wise iterative control algorithm, and show the effectiveness of the
proposed controller in various Small World and Scale Free social
networks.

1 INTRODUCTION

Modeling the evolution of cooperation in social networks has re-
cently attracted much attention, aiming to understand how individ-
uals work together and influence each other in such settings [7, 15].
In particular, researchers have focussed on how cooperation can be
sustained in a population of agents despite its high cost. This is of
interested to many real-world settings in which individual selfish-
ness might hinder the acceptance of overall more efficient strategic
choices. For example, policy makers may aim to convince compa-
nies to switch to a new green technology that yields better results in
the long run, but requires an investment from each company initially,
making them hesitant to be the first to switch over.

This strategic dilemma in choosing between the selfish rationality
of defection and the social welfare of cooperation is aptly captured by
the widely-adopted game of Prisoner’s Dilemma [1]. In the Prisoners
Dilemma model, defection is the best response against any opponent
strategy. This makes mutual defection the single Nash equilibrium
in the game. However, mutual cooperation would yield a higher re-
ward to all players, and as such much research has been devoted to
determining incentivising structures that promote cooperation. For
example, cooperation can be promoted by punishing defectors as
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in [3, 16], or by pre-setting “cooperation committed” individuals for
a given cost as in [6]. Both incentives increase the willingness to
cooperate in scenarios where defection is individually the rational
choice.

In parallel to this line of research, the control theory commu-
nity has also developed strong approaches for the analysis of vari-
ous types of multi-agent systems. For example, Liu et. al [10] study
the controllability of social networks, by finding and controlling so-
called “driving nodes”, or Ren and Beard [14] study dynamical con-
sensus seeking in multi-agent systems.

Very limited number of works exist which take advantage of opti-
mal control theory for influencing the behaviors in social networks.
In [5] optimal control theory is used to derive microscopic control
laws using a macroscopic cost function. These microscopic control
laws are then used by individuals to optimize their trajectories. In
[17], a nonlinear dynamical model for time evolution of “friendli-
ness levels” in the network is adopted as the main framework, and
it is shown that any agent in the network is able to reach an arbi-
trary final state by perturbing its own neighborhood. However, both
these works assume individuals that are able to compute the control
signals and intentionally want to change their state in the network.
In contrast to this, in this paper we deal with simple spontaneous
individuals who follow the basic social interaction rules and are in-
fluenced by external signals. Moreover, to the best of our knowledge,
this is the first work on influencing the evolution of cooperation using
optimal control theory.

The Continuous Action Iterated Prisoner’s Dilemma (CAIPD)
model, proposed in [13], is adopted as the main framework for cap-
turing the evolutionary and control behavior of social networks due
to its generalization capabilities (see Section 2.1). This paper con-
tributes by: (1) extending the CAIPD model to formally incorporate
external influence, (2) proving reachability of arbitrary agreement
under the introduced external controller, (3) developing an algorith-
mic technique capable of handling the time varying nature of the so-
cial network while balancing control effort and convergence speed,
and (4) studying the performance of the proposed algorithm using
empirical simulations that highlight the influence of both the network
and control structure on the resulting system dynamics.

2 BACKGROUND

This section details CAIPD, adopted in this work, as well as selected
topics from dynamical systems and control needed for the remainder
of the paper.

2.1 The Model

In CAIPD [13], N individuals are positioned on N vertices vi ∈ V
for i = {1, . . . , N} of a graph G = (V,W). The symmetric N ×N
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adjacency matrix W = [wij ], with wij ∈ {0, 1}, describes the ith to
jth player connections with all wii = 0. In contrast to other models,
CAIPD allows for a continuous degree of cooperation rather than a
binary choice, captured by each player’s state xi ranging from xi =
0 for pure defection to xi = 1 for pure cooperation. A player pays
a cost cxi while the opponent receives a benefit bxi, with b > c.
This way a defector (i.e., xi = 0) pays no cost and distributes no
benefits. Accordingly, the fitness of player i can be calculated as fi =
−deg[vi]cxi + b

∑N
j=1 wijxj , where deg[vi] denotes the number of

neighbors of vi. CAIPD assumes rational players that adopt imitation
dynamics, and copy their neighbors strategy proportional to fitness.
Player i adopts its jth neighbor’s strategy with strength of pij =
wij ·sigmoid(β(fj−fi)), where β determines how selective adoption
is towards fitter strategies.

A network with a state x and topology G is defined as Gx =
(G,x) with x = [x1, x2, . . . , xN ]T. The network Gx can then
be regarded as a dynamical system, where x evolves according
to the nonlinear mapping ẋ = [h1(x), . . . , hN (x)]T, with hi(x)
denoting the dynamics of the ith individual in Gx. Precisely,
hi (x) = 1

deg[vi]

[∑N
j=1 pij (xj(t)− xi(t))

]
. This dynamical sys-

tem can be re-written in a standard form by introducing the Laplacian
of G, L(·) as

ẋ(t) = −L [x(t)]x(t), (1)

where

Lij =

{ − pij/deg[vi] if i �= j
∑N

j=1 pij/deg[vi] if i = j
(2)

In CAIPD, fitness updates are performed at each time step t. To in-
duce more realistic behaviors, as well as allowing for optimal control
incorporation, we introduce the concept of dwell time τ as proposed
in [8], and integrated this into CAIPD. This allows to rewrite the
model of [13] as piece-wise time invariant:

ẋ(t) = −Lkx(t), (3)

where Lk = L (x(kτ)) for kτ < t < (k + 1)τ and k = 1, 2, . . .
Clearly, as τ → 0, the system in Equation 3 collapses to that in-
troduced in [13], while for τ → ∞ a static consensus model, as
proposed in [4], is attained.

2.2 Lyapunov’s Direct Method

Generally, a nonlinear dynamical system can be represented by ẋ =
f(t;x,u), where state variables x change according to nonlinear
mappings fi for i ∈ {1, . . . , N}. In the special case of linear and
time invariant (LTI) systems, the system collapses to

ẋ = Ax+Bu (4)

where x = [x1, x2, . . . , xN ]T and u = [u1, u2, . . . , uq]
T repre-

sent state and input variables, respectively, while A and B denote
the transition and control matrices. In control design, the aim is to
determine a feed-back controller capable of driving the system to a
reference state. Detailed discussion of such techniques are beyond
the scope of this paper6. Here, the interest is in stability and conver-
gence analysis of dynamical systems. Stability can be studied in the
vicinity of equilibria (i.e., points where ẋ = 0). To quantify such
neighborhoods, an open ball, B(x̄, ε), centred at x̄ with a radius ε,
(i.e., the set {x ∈ R

d : ||x − x̄|| < ε}, where || · || represents the
L2-norm) is defined. Lyapunov stability can then be stated as:

6 Interested readers are referred to [9, 11] for a thorough study of control
theory.

Definition 1 (Lyapunov Stability) An equilibrium point xe of a
nonlinear system is said to be Lyapunov stable, if for all ε > 0
there exists a δ > 0 such that: x̄ ∈ B(xe, δ) =⇒ f(t; x̄,0) ∈
B(xe, ε) for all t ≥ 0.

In Lyapunov’s direct method, the rate of change in a potential
function of the system can be used to verify the Lyapunov stabil-
ity. Namely, a Lyapunov function is defined as: V (x) : RN → R

such that V (x) ≥ 0 with equality if and only if x = 0. The system
is asymptotically stable in the sense of Lyapunov when d

dtV (x) ≤ 0
with equality if and only if x = 0.

2.3 Optimal Control Design

In Linear Quadratic Tracking (LQT), the goal is to control a dynam-
ical system in the form of (4) to follow a reference signal ȳ defined
by:

ż = Fz, ȳ = Hz

where z is the internal state vector, ȳ is the output of the system, and
z(t0) = z0 is the initial state. To solve such a problem, the following
augmented system is defined so as to capture the dynamical behavior
of both the original and the tracker dynamics:

˙̃x = Ãx̃+ B̃u

with

Ã =

[
A 0
0 F

]
B̃ =

[
B
0

]

and x̃ = [x, z]T. To capture the incurred tracking error, the follow-
ing cost function is defined:

J =

∫ T

t0

[
x̃TQ̃x̃+ uTRu

]
dt (5)

with

Q̃ =

[
Q −QH

−HTQ HTQH

]

being the augmented state cost matrix, and Q and R are being the
state and input cost matrices, respectively. The goal is then to de-
termine u = u� such that the cost function of Equation 5 is min-
imized. The optimal control law can be attained using u�(t) =
−R−1B̃TP̃ (t)x̃(t), where P̃ (t) is the solution to the Riccati dif-
ferential equation:

− ˙̃P (t) = ÃTP̃ (t) + P̃ (t)Ã− P̃ (t)B̃TR−1BP̃ (t) + Q̃

P̃ (T ) = 0

The controller is typically simplified by partitioning P̃ (t) in terms
of the original systems:

P̃ (t) =

[
P (t) P12(t)

P T
12 P22(t)

]

leading to:
u�(t) = K1(t)x(t) +K2(t)z(t), (6){

K1(t) = −R−1BTP (t)

K2(t) = −R−1BTP12(t)

with the following partitioned Riccati equations:

Ṗ (t) = −P (t)A−ATP (t) + P (t)BR−1BTP (t)−Q
Ṗ12(t) = P12(t)F −ATP12(t) + P (t)BR−1BTP12(t) +QH
P (T ) = P12(T ) = 0

(7)
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Figure 1: Network under external influence; the controlled individu-
als are shown in red and the zigzag arrows denote the control signals.

3 REACHABILITY ANALYSIS

To influence the evolution in a network following the CAIPD model,
L ≤ N control signals, u1, u2, . . . , uL, affecting the behavior of L
controlled individuals, x1, x2, . . . , xL, are introduced. These signals
can be generated from any external source such as news outlets, gov-
ernment regulations, or even distributed leaders outside the network.
Formally, considering the CAIPD model ẋ = −Lkx as in (3) the
external influence is incorporated as

ẋ = −Lkx+Bu (8)

where u = [u1, u2, . . . , uL] is a vector of control signals, and

B =

[
IL×L

0(N−L)×L

]

is the input matrix. A schematic of a network under external influence
is shown in Figure 1, where the control signals are signified using red
zigzag arrows.

In this work, the main aim is to reach network-wide agreement
of the form xf = x�1, with x� representing the cooperation level.
Reachability of xf at time t0 is defined as:

Definition 2 (Reachability) A state xf is reachable at time
t0, if there exists a control input ur(t) such that xf =
limt→∞ x(t; t0,x0,ur(t)), where x0 = x(t0).

Based on the above, the following theorem showing the reachabil-
ity of any feasible agreement (i.e. 0 ≤ x� ≤ 1) assuming a single
controlled individual is presented.

Theorem 1 (Reachability of Agreements) For the CAIPD model
with external influence in form of (8), any agreement 0 ≤ x� ≤ 1
is reachable at t0 for arbitrary x0 by influencing a single controlled
individual xc using the control input

ur =

{ −ε · sgn(e) +BTLkx IF e �= 0

BTLkx IF e = 0
(9)

with ε > 0 and error defined as e = xc − x�. Then

lim
t→∞

x(t; t0,x0, ur(t)) = x�1.

Proof: We split the control process into two phases. The first is
driving the network toward the manifold e = 0 such that the con-
trolled node reaches the agreement value (i.e., xc → x�). In the

second, the goal is keeping the system on that manifold (i.e., e = 0),
by ensuring that ė = 0. Consider the Lyapunov function candidate
V = 0.5e2. It can be easily verified that V ≥ 0, except for the
case of having the controlled individual reaching an agreement (i.e.,
e = 0), where V = 0. The derivative of the candidate function is:

V̇ = eė = eẋc = e
(
−BTLkx+ u

)

Replacing the control input ur of (9) for e �= 0 in the above leads to:

V̇ = e (−ε · sgn(e)) = −ε|e| (10)

where | · | denotes the absolute value of a scalar. Therefore, according
to the Lyapunov’s direct method, if ε > 0 then in finite time V will
attain a value of zero, and thus e = 0. This concludes the first phase
of the control process.

In the second phase, the network should be ensured to stay on the
manifold e = 0. The derivative of the error signal is computed as:

ė = ẋc = −BTLkx+ u (11)

By replacing the control input ur of (9) for e = 0 in (11), ė = ẋc =
0, and thus guaranteeing that the system stays on the manifold e =
0. Without loss of generality, assume that the controlled individual
is the first individual in CAIPD model. Then, the network can be
represented in following form:

d

dt

⎡
⎢⎢⎢⎢⎢⎣

xc

x2

x3

...
xN

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0
Lk21 Lk22 . . . Lk2N

Lk31 Lk32 . . . Lk3N

...
...

. . .
...

LkN1 LkN2 . . . LkNN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x�

x2

x3

...
xN

⎤
⎥⎥⎥⎥⎥⎦

(12)

Using the CAIPD’s model properties, the new state space matrix is
diagonally dominant, with non-positive diagonal elements. Further-
more, in the graph associated with this network, the only node with-
out incoming links is that associated with the controlled individual.
Therefore, through the second phase of control, there exists a span-
ning tree in the network where the controlled individual is its root.
Based on [12], the network eventually achieves an agreement. This
implies that limt→∞ xi(t) = limt→∞ xc(t) = x�, thus concluding
the proof. �

The results of applying the proposed controller in (9) and choosing
x� = 1 on two sample networks are shown in Figure 2. In both
networks, the Lyapunov functions converge to zero around Time =
150, after which the system evolves on the e = 0 manifold until all
individuals reach pure cooperation (i.e. Time = 600 and Time =
2500 for Scale Free and Small World networks, respectively.).

Clearly, from Theorem 1, any arbitrary agreement can be reached
by using the control signal of Equation (9). Although successful,
two problems arise. Firstly, the aforementioned method makes use
of only one controlled node and ignores the multidimensional control
scenario. Secondly, no systematic procedure for choosing the proper
value of ε, affecting both control effort and speed of convergence, is
derivable. Next, a solution to the above problems, based on optimal
control theory, is presented.

4 ITERATIVE CONTROL ALGORITHM

In this section, the previous technique is extended to the case where
several nodes of the social network are externally influenced. In par-
ticular, the general scenario in which neither direct online measure-
ments of the state values nor of the real system’s dwell time τ are
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(a) Scale Free Network
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(b) Small World Network

Figure 2: Reachability of pure cooperation using a single controlled individual. Both networks contain 50 nodes, with an average node degree
of 4; the small world network is generated using a 0.5 rewiring probability.

available, is considered. Therefore, an optimal control policy u� is
designed based on the initial configuration of the system and the eval-
uation dwell time τeval, which can be thought of as the controller’s es-
timation of the real dwell time τreal. This control policy aims at driv-
ing the system towards an arbitrary agreement x� in finite time T .
The dynamics of the estimated state vector x̂ can be written as:

{
˙̂x(t) = −L̂jx̂(t) +Buj(t)
x̂(t0) = x(t0),

(13)

for tj−1 < t ≤ tj , where j = 1, 2, . . . ,
⌊

T
τeval

⌋
and tj = j · τeval.

L̂j is a fixed Laplacian matrix computed according to x̂(tj−1)
and B is the input matrix as defined in (3). The cost function used to
compute the optimal control policy in the jth time period is defined
as:

J j =

∫ T

tj

[
x̃TQ̃x̃+ uT

jRuj

]
dt (14)

where Q̃ and R are the same as in Equation (5) with H = IN×N ,
and x̃ = [x̂, x�1]T is the augmented state vector.The goal is then to
determine u�

j (t) such that the cost function of (14) is minimized for
each j. Following (14), the optimal control law is:

u�
j (t) = Kj1(t)x̂(t) +Kj2(t)x

�1, (15)
{

Kj1(t) = −R−1BTPj(t)

Kj2(t) = −R−1BTPj12(t)
(16)

Kj1 and Kj2 are computed by backward integrating the following
Riccati equations:

Ṗj(t) = Pj(t)Lj +LT
jPj(t) + Pj(t)BR−1BTPj(t)−Q

Ṗj12(t) = LT
jPj12(t) + Pj(t)BR−1BTPj12(t) +QH

Pj(T ) = Pj12(T ) = 0
(17)

The details of the proposed controller are given in Algorithm 1.
Given the initial states, network topology and fixed parameters, the
controller provides control dynamics Kj1(t) and Kj2(t) for j =

1, 2, . . . ,
⌊

T
τeval

⌋
, which can be used to generate the control input as

u�(t) = Kj1(t)x(t) +Kj2(t)x
�1, (18)

for controlling the real network (8) for tj−1 < t < tj and every j.

Algorithm 1 Step-wise control

Input: G, x(t0), B, Q, R, τeval, T , δt
1: Initialize K1, K2

2: x̂(t0) ← x(t0), j ← 1

3: while j ≤
⌊

T
τeval

⌋
do

4: Compute Lj using x̂(tj−1) and G according to (2)
5: Pj ,Pj12 ← 0
6: t′ ← T
7: while t′ > (j − 1) · τeval do {backwards integration}
8: Update Pj(t

′),Pj12(t
′) using (17)

9: Calculate Kj1(t
′), Kj2(t

′) using (16)
10: t′ ← t′ − δt
11: end while

12: Calculate u�
j (t) using (18)

13: Simulate the CAIPD model with Lj and u�
j for tj−1 < t ≤ tj

using (13) and store x̂(tj)
14: j ← j + 1
15: end while

Output: K1, K2

5 NUMERICAL VERIFICATION

The proposed step-wise controller is numerically evaluated on a
number of networks with varying properties. In particular, the
Barabási-Albert scale-free [2] and Watts-Strogatz small world net-
works [18], both exhibiting many properties of real-world systems,
are adopted. For all experiments reported in this section, the con-
troller is evaluated on 100 randomly generated networks in order to
ensure statistical significance. In all experiments, networks with an
average node degree of 4 are used; the small world networks are gen-
erated using a 0.5 rewiring probability. For the optimal controller,
Q = I × 0.001 and R = I × 25 were used in the cost function
of Equation (5) and (14) to ensure smooth control signals7. Unless
stated otherwise, the network is assumed to exhibit piece-wise linear
dynamics of τreal = 50 (i.e. the real dwell time of the system). The
controller step size was set to τeval = 50. The final agreement goal
was set to pure cooperation x� = 1 for all individuals.

7 Please note that we acquired similar results for various Q and R settings
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Figure 3: Comparing heuristic controllers with different sets of con-
trolled nodes. In each case, 20% of the nodes are controlled.
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Figure 4: Comparing the influence of the percentage of controlled
nodes on performance and control input.

In the first set of experiments the investigation considered which
nodes need to be controlled. Firstly, the performance of the proposed
control algorithm when influencing 20% of the nodes with either
the lowest, average, or highest degrees was studied. Figure 3 shows
the results for both Small World and Scale Free networks, leading
to the following two conclusions: (1) controlling high degree nodes
improve convergence to the cooperative state, and (2) this effect is
strongest for Scale Free networks. Intuitively, this can be explained
by the fact that high degree nodes allow the control input to spread
quickly over the network. Moreover, in Scale Free graphs few high
degree nodes are involved in the majority of all connections (so-
called hubs), which explains why these are of key importance in such
networks.

In the second set of experiments, the goal was to study the effect of
the number of controlled nodes, while keeping their type fixed (i.e.,
highest degree), on the overall performance. Figure 4 shows both the
average network state over time and the corresponding total control
input for different percentages of controlled nodes. It is clear that
increasing the number of controlled nodes improves convergence, in
particular for Small World networks. For Scale Free graphs this effect
is almost negligible; again this can be intuitively explained by the
scale free degree distribution exhibited in such networks. Moreover,
it can be observed that the total control input increases, although not
proportionally: controlling more nodes means that individually they
need less input.

10 20 30 40 50 60 70 80 90
0.4

0.6

0.8

1

Small World

C
u

m
. 

n
o

rm
. 

v
a

lu
e

10 20 30 40 50 60 70 80 90
0.4

0.6

0.8

1

Scale Free

Percentage of controlled nodes

C
u

m
. 

n
o

rm
. 

v
a

lu
e

 

 

Cost State error Control signal

Figure 5: Comparing the influence of the percentage of controlled
nodes on cost, state error and control input.
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Figure 6: Influence of controller step size τeval on performance and
control input.

Figure 5 summarises more extensive experiments for a range of
percentages of controlled nodes, showing the effect on the cost func-
tion, state error, and control input. All measures are normalised for
presentation purposes. These results again show the relative insensi-
tivity of Scale Free graphs to the number of controlled nodes. More-
over, it is clear that for Small World networks the benefit of more
controlled nodes diminishes as their percentage grows. Depending
on the cost function parameters Q and R this gives rise to a trade-
off between decreasing state error on the one hand and increasing
control input on the other.

In this set of experiments, the number and type of controlled nodes
are kept fixed (the 20% highest degree nodes), while the influence of
modifying the controller’s steps size τeval is considered. Figures 6
and 7 show the average network state and control input over time
for different values of τeval when τreal = 50, both for Small World
and Scale Free networks, respectively. Here, τeval = inf means the
controller assumes a fixed linear system, e.g. it never updates its esti-
mate of the Laplacian matrix. Clearly, decreasing τeval improves con-
vergence, while also resulting in a smoother control signal. When
τeval < τreal the convergence does not change anymore, however the
total control effort might increase as the controller overestimates the
dynamics of the real system.

Finally, Figure 8 summarises a more extensive range of experi-
ments with varying τreal and τeval. Several observations can be made
from these results. Firstly, the curve showing τreal = 0, meaning that
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Figure 7: Influence of controller step size τeval on performance and
control input.
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Figure 8: Influence of controller step size τeval on the total cost, for
systems with different real step sizes, indicated with τr in this figure.

the network is continuously changing, shows that a smaller step size
for the controller indeed leads to lower total cost. A similar conclu-
sion can be drawn from the case of τreal = 25. In contrast, for larger
τreal a (local) minimum can be observed when the controller step size
τeval exactly matches τreal, after which the total cost rises again. This
is due to the overestimation of the system dynamics leading to higher
initial control effort than actually required, as also noted before in the
discussion of Figures 6 and 7. Finally, it is interesting to observe that
faster changing networks (i.e. decreasing τreal) tend to yield lower to-
tal cost, in particular when the controller step size is reasonably small
as well. In such cases, the inherent dynamics of the network help the
evolution of cooperation, although some initial external control is
still required for convergence to the full cooperative state, as seen
before in Figure 3.

6 CONCLUSION

In this paper we have studied the evolution of cooperation in so-
cial networks, focusing on means of controlling this evolution to
achieve network-wide cooperation in the continuous-action iterated
prisoner’s dilemma (CAIPD) model. This model, introduced in pre-
vious work, has already been shown to provide insights into the sus-
tainability of cooperation in complex networks. However, conver-
gence to pure cooperation is not guaranteed and depends highly on
the network structure. Building on this work, the main contributions

of this paper are threefold. Firstly, the CAIPD model has been ex-
tended to allow for external influence on arbitrary nodes. Secondly,
reachability of network-wide agreement on an arbitrary cooperation
level has been proven. Thirdly, a step-wise iterative control algorithm
aiming at minimizing the control effort and state error over time has
been proposed. Finally, the performance of this algorithm has been
empirically evaluated on various Small World and Scale Free social
networks. Studying the (optimal) control of social networks is rele-
vant for many real-world settings. For example, politicians may try to
convince particular well-connected individuals of their ideas, hoping
those individuals will then spread their ideas through their network.
Similarly, the government might provide tax deductions to compa-
nies that switch to sustainable production, hoping that their competi-
tors follow automatically due to market dynamics. As such, studying
the control of social networks has broad applicability, and many di-
rections for future work can be taken. Of particular interest would be
to automatically identify the key nodes that should be controlled to
minimize cost or convergence time.
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