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Abstract. Ecological Momentary Assessment (EMA) data is orga-
nized in multiple levels (per-subject, per-day, etc.) and this particu-
lar structure should be taken into account in machine learning algo-
rithms used in EMA like decision trees and its variants. We propose a
new algorithm called BBT (standing for Bagged Boosted Trees) that
is enhanced by a over/under sampling method and can provide better
estimates for the conditional class probability function. Experimen-
tal results on a real-world dataset show that BBT can benefit EMA
data classification and performance.

1 Background & Motivation

This work focuses on classification trees and how their ensembles
can be utilized in order to set up a prediction environment using
Ecological Momentary Assessment (EMA) data from a real-world
study. EMA [8] refers to a collection of methods used in many dif-
ferent disciplines by which a research subject repeatedly reports on
specific variables measured close in time to experience and in the
subject’s natural environment (e.g. experiencing food craving is mea-
sured again and again on the same subject). EMA aims to minimize
recall bias, maximize ecological validity and allow microscopic anal-
ysis of influence behavior in real-world contexts. EMA data has a
different structure than normal data and account for several depen-
dencies between them, since e.g. many samples belong to the same
subject so they are expected to be correlated. However, most deci-
sion trees that deal with EMA data do not take these specificities into
account.

Bagging involves having each tree in the ensemble vote with equal
weight while boosting involves incrementally building an ensemble
by training each new model instance to emphasize the training in-
stances that previous models mis-classified. Major differences be-
tween bagging and boosting are that (a) boosting changes the distri-
bution of training data based on the performance of classifiers cre-
ated up to that point (bagging acts stochastically) and (b) bagging
uses equal weight voting while boosting uses a function of the per-
formance of a classifier as a weight for voting.

There are limited studies on combining bagging and boosting
([10], [3], [6] and [11]), however, none of these approaches have been
applied to longitudinal data or take into account the EMA structure.
Efforts to apply decision trees to EMA data have been attempted but
they are mostly focusing on regression tasks ([7], [4], [2]) and on the
other hand they do not use bagging or boosting for improving perfor-
mance. Work in current paper aims at bridging this gap by combining
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bagging and boosting with the longitudinal data structure.

2 BBT: The proposed algorithm

Let the training data be x1, ..., xn and y1, ..., yn where each xi is a d-
dimensional vector and yi ∈ {−1, 1} is the associated observed class
label. To justify generalization, it is usually assumed that training
data as well as any test data are iid samples from some population of
(x, y) pairs. Our goal is to as accurately predict yi given xi.

The first step to fit a BBT is to select the loss function, which in
the case of a classification problem is based on the logistic regression
loss. After some initial parameter selection (number of trees to be
grown in sequence, shrinkage (or learning) rate, size of individual
trees and fraction of the training data sampled) we grow BBT (say
using M trees) on the training data using the following process and
by growing single Boosted Trees (BT):

• Divide the data into B (typically 5− 10) subsets and construct B
training data sets each of which omits one of the B subsets (the
‘out-of-bag’ data). Each one of the B subsets is created by boot-
strap sampling data points from the set of subjects (p = 1, ..., P ).
To create the learning set we introduce the strategy S according
to which one observation is drawn per subject. This strategy is
based on a simple rationale: When only one observation per sub-
ject is selected, the probability that different observations are used
for the training of different trees is increased, although the same
subjects might be selected which further reduces similarity be-
tween trees. By this way, we manage to incorporate advantages of
subject-based bootstrapping and observation-based bootstrapping
into the final BBT ensemble. Also, this approach can be applied
to unbalanced data points per subject.

• Grow B BT; one for each of the B training sets, based on the Ada-
Boost algorithm [1]: First let F0(xi) = 0 for all xi and initialize
weights wi = 1/d for i = 1, ..., d. Then repeat the following for
m = 1, ...,M for each one of the B BT:

� Fit the decision tree gm to the training data sample using
weights wi where gm maps each xi to -1 or 1.

� Compute:
- the weighted error rate εm =

∑n

i=1
wiI{yi �= gm(xi)}

- half its log-odds and derive αm = 1
2
log 1−εm

εm

� Let Fm = Fm−1 + αmgm

� Replace the weights wi with wi = wie
−αmgm(xi)yi and then

renormalize by replacing each wi by wi/(
∑

wi).

• Calculate the PE for each BT for tree sizes 1 to M from the cor-
responding out-of-bag data and pool across the B boosted trees.
Predictions for new data are computed by first predicting each of
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the component trees and then aggregate the predictions (e.g., by
averaging), like in bagging.

• The minimum PE estimates the optimum number of trees m∗ for
the BT. The estimated PE of the single BT obtained by cross-
validation can thus also be used to estimate PE for the BBT. BBT
thus require minimal additional computation beyond estimation of
m∗.

• Reduce the number of trees for each BT to m∗.

For a classification problem, we use an estimate pm(x) of the Con-
ditional Class Probability Function (CCPF) p(x) that can be obtained
from Fm through a logistic link function:

pm(x) = pm(y = 1|x) = 1

1 + exp(−2Fm(x))
(1)

Classifying at the 1/2 quantile of the CCPF works well for binary
classification problems but in the case of EMA data, sometimes clas-
sification with unequal costs or, equivalently, classification at quan-
tiles other than 1/2 is needed. Strategies about correctly computing
the CCPF are considered [5] by over/under-sampling which convert
a median classifier into a q-classifier.

3 Experiments

In order to illustrate the effect of BBT, we now apply this method to
an EMA dataset obtained by a study designed by the authors [9]. The
EMA study followed 100 participants over the course of 14 days us-
ing experience & event sampling questionnaires ending up with over
5000 data points containing information about participants’ eating
events, emotions, circumstances, locations, etc. (in total there are 9
variables) for several time moments during each day that they par-
ticipated in the study. Each data point is used to predict whether the
next data point (provided that they both occur on the same day) will
be a healthy or an unhealthy eating moment. Figure 1 shows an ex-
ample of how data points (belonging to user “pp5”) are converted
and combined in order to enable early prediction using a classifica-
tion algorithm (class can be either “healthy” or “unhealthy”). Then
the BBT algorithm can be applied.

Figure 1: Data conversion example for early prediction

In the comparison between methods, BBT gave a PE of 23.3%,
whereas the single classification tree (37.3%), bagged trees (28.9%),
boosted trees (adaboost) (25.9%), random forests (26.8%) and B&B
combine method [11] (26.2%) have higher PE than the BBT. Table
1 summarizes these results and also presents a series of experiments
made to demonstrate the effectiveness of BBT when the number of
different subjects (P ) involved in the dataset increases. For relatively
small numbers of subjects (10 or 20) performance of BBT and Ada-
Boost is comparable (although variance increases and the number of
data samples is not large enough) but as P increases the performance
of BBT is clearly better. Larger P means that there are more subjects
in the dataset, thus the complexity of longitudinal structure increases

and it is imperative to take this into account when classifying longitu-
dinal data. This is the reason that BBT performs better than all other
algorithms as P increases. However, for small P the effect of differ-
ent subjects is smaller and this is the reason that Adaboost performs
slightly better than all other algorithms.

Table 1: Prediction Error (Variance) % for different algorithms and
different numbers of subjects (P )

P=10 P=20 P=50 P=100
SCT 25.1 (0.10) 27.4 (0.08) 30.9 (0.10) 37.3 (0.06)

Bagging 24.4 (0.22) 23.8 (0.08) 30.1 (0.08) 28.9 (0.06)
Boosting 22.0 (0.12) 22.7 (0.10) 27.0 (0.06) 25.9 (0.04)

Random Forest 23.7 (0.16) 24.5 (0.14) 27.2 (0.04) 26.8 (0.04)
B&B Combine 23.2 (0.08) 25.1 (0.06) 26.8 (0.08) 26.2 (0.02)

BBT 22.4 (0.14) 21.9 (0.06) 24.2 (0.04) 23.3 (0.02)

4 Discussion

In this paper a combination of bagging and boosting was presented:
Bagged Boosted Trees (BBT). BBT have the advantage of being able
to deal with multiple categorical data which raises a scalability is-
sue when dealing with classic models (like generalized linear mod-
els) that are widely used in EMA studies. Moreover, BBT can tackle
potential nonlinearities and interactions in the data, since these is-
sues are handled through the combination of many different trees of
different sizes. Experimental results of BBT on a real-world EMA
dataset clearly show improvement with respect to accuracy in pre-
diction compared to other decision tree algorithms. Further work in-
volves the evaluation of the conditional class probability function
(based on over/under sampling of data), as well as the application to
other EMA datasets. Finally, adjustment of boosting in order to im-
plement weights based on subjects (and not individual observations)
is a direction with promising results.
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