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Abstract

Visual feature detection with limited resources of simple
robots is an essential requirement for swarm robotic sys-
tems. Robots need to localize their position, to determine
their orientation, and need to be able to acquire extra infor-
mation from their surrounding environment using their sen-
sors, while their computational and storage capabilities might
be very limited. This paper evaluates the performance of an
experimental framework, in which environmental elements
such as landmarks and QR-codes are considered as key vi-
sual features. The performance is evaluated for environmen-
tal light disturbances and distance variations and feature de-
tection speed is thoroughly examined. The applicability of
the approach is shown in a real robot scenario by using e-
puck robots. Finally, the results of applying the approach to
a completely different setting, i.e., simulation of pheromones
using glowing trail detection, are presented. These results in-
dicate the broad applicability range of the developed feature
detection techniques.

Introduction
In recent years there has been a rapidly growing interest in
using teams of mobile robots for achieving complex tasks
such as environmental coverage (Cortes et al., 2004) and ex-
ploration (Burgard et al., 2005). This interest is mainly mo-
tivated by the broad spectrum of potential civilian, industrial
and military applications of multi-robot systems. Triggered
by this interest, today, development of practical approaches
for multi-robot problems is a well established topic in multi-
robot research (e.g., (Hennes et al., 2012; Ranjbar-Sahraei
et al., 2013)).

A natural phenomenon with high relevance to practically
applicable multi-robot approaches is the foraging behavior
of ants. In ant foraging, ants deposit pheromones on their
path, while they are looking for either food or nest, which
in long term establishes a path between these two locations
(Dorigo et al., 2000). A slightly different foraging behavior
can be seen among honeybees. Instead of using pheromones
to navigate through an unknown environment, honeybees
use a strategy called Path Integration, in combination with
landmark navigation. These strategies turn out to be highly
effective in solving distributed optimization problems (Lem-
mens, 2011). Although investigation of foraging behavior

of ants and bees is very interesting, the task of locating and
acquiring resources in an unknown environment is quite a
difficult task in practice (in particular with robots that have
limited resources). Considering that the foraging task can
be seen as an abstract representation for many other ad-
vanced tasks, such as patrolling and routing. A successful
embodied implementation of distributed foraging can result
in promising applications in, e.g., security patrolling, mon-
itoring of environments, exploration of hazardous environ-
ments, search and rescue, and crisis management situations.

Getting motivation from the mentioned potential appli-
cations of distributed coordination and following the previ-
ous work (Alers et al., 2011; Lemmens et al., 2011), which
mainly was relied on random exploration methods and in-
frared sensor data for obstacle detection, authors have re-
cently introduced a framework for simple swarm robotic
systems, which exploits vision in robots with very limited
resources to extract information from landmarks and en-
vironmental patterns (Alers et al., 2013). These features
are used as waypoints to navigate in an unknown environ-
ment, locate other entities, and detect modifications made
in the environment. Although the previous paper describes
the framework in detail, its performance in different en-
vironmental conditions, and various scenarios is not stud-
ied/compared yet. Therefore, this paper focuses on evalu-
ation of this framework in different environmental settings
(various light intensities, and detection distances). The de-
tection speed is also deeply studied in various scenarios. In
parallel, a new environmental feature, the glowing trails, is
described; the developed approach is adapted to this feature,
and the results are illustrated.

The remainder of the paper is structured as follows:
First related work is briefly reviewed, then the vision-based
framework for robots with limited resources is introduced.
As the main contribution of this paper we address the influ-
ence of external variables, like environmental lighting con-
ditions and viewing angles, on the detection performance
of specific features. Also the reliability of detection of the
various features are evaluated, and the overall performance
regarding time and memory consumption in respect to us-
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ability in real robot scenarios is investigated. Afterwards,
the newly introduced feature, the glowing trails, and its ap-
plication is described. Finally, two different types of swarm
robotic implementations of this framework are illustrated,
which can also be found online in (Swarmlab, Maastricht
University, 2013a,b). The concluding remarks are included
at the end of the paper.

Related Work
Robotic systems use vision for accomplishing various tasks
ranging from mobile robot navigation (DeSouza and Kak,
2002) to industrial applications (Gonzalez and Safabakhsh,
1982). However, most of the research in this field is focused
on the image processing techniques which need a central-
ized unit to deal with the computations and memory stor-
age tasks. For instance, (Winters et al., 2000) used a Pen-
tium II 350MHz PC and (Chen and Birchfield, 2006) took
advantage of a Dell Inspiron 700m laptop with 1.6 GHz
CPU for vision-based mobile robot navigation. (Baeten and
De Schutter, 2002) used a vision-based approach for accu-
rate and fast task execution, while all of the computations
were carried out by a digital signal processing module, seri-
alized with a host computer.

When vision is required for decentralized units (e.g.,
robots in a swarm) either, each agent is equipped with rela-
tively powerful resources (e.g., in (Quinlan et al., 2003) the
Sony’s AIBO robots are equipped with 576 MHz CPU and
64 MB RAM), or has a centralized unit with an overhead
camera which processes the image, and sends the required
data to the robots (e.g., in (Ranjbar-Sahraei et al., 2012a) a
host computer denotes the exact position of robots). Alter-
natively, (Slusn y et al., 2009) used a swarm of e-puck robots
in which each robot takes an image individually, sends it to
a centralized processing unit via Bluetooth, and receives the
required data back from that server.

In contrast to the above mentioned works, being able to
process images on a robot with very limited resources is
a mandatory requirement for swarm robotic systems. In
these systems using centralized units is impossible (due to
the complexity and high amount of data). Equipping robots
with high capabilities can be very expensive, although re-
cent development of mobile phones can argue against this.
Simple micro controllers will always be more cost effective.
Therefore, in this paper we use the e-puck robot camera and
its internal resources (i.e., a 60 MHz CPU and 8KB RAM)
for detection of different features in the environment (e.g.,
barcodes, and QR-codes).

A Vision-based Framework for Swarm
Scenarios

In (Alers et al., 2013) we explored several visual features
that can be used for acquiring information from the en-
vironment by a robot with limited computational abilities,
equipped with a camera. For detecting key locations in the
environment (e.g., corners in a maze), we investigated the

usage of specific landmarks for these locations. Each land-
mark consists of an upper ring with a solid color, so that
it can be detected from a distance, and on the lower part a
unique barcode for keeping track of the landmark numbers,
as can be seen in Fig. 1a. Furthermore, we explored the
possibility to detect markers with an even higher data den-
sity: QR-codes, as in Fig. 1b. The challenge in the detec-
tion of these two-dimensional codes, lies in analyzing and
processing the camera data with the limited processing and
memory resources that are available in our robotic platform.
Finally, we explored the most common feature already avail-
able in every swarm robotic setting: the presence of other
robots. It’s always favorable to detect the relative distance
and orientation to other robots in respect of one’s position.
Therefore, the available LEDs on the robot provide a very
good feature for robot detection from a distance, see Fig. 1c.
Moreover, we designed a specific gradient pattern for nearby
robot detection, as shown in Fig. 1d, which can result in a
very accurate orientation and distance detection.

(a) (b) (c) (d)

Figure 1: Detectable features presented in (Alers et al.,
2013) (a) Landmarks with barcode. (b) QR-code level 3.
(c) Robot LEDs. (d) Robot orientation pattern.

Performance Evaluation
In this section the features, which were briefly addressed
in the previous sections (described in more detail in (Alers
et al., 2013)), are evaluated for their usability in real-world
settings.

We start by evaluating several image filter techniques that
are used to transform the captured image into a more suit-
able format. After this transition we run several utility func-
tions, to cluster pixels or detect specific patterns. These fil-
ters and utility functions are the very basis of the feature
detection and will run as a pre-processing step on every cap-
tured frame before the image is passed through to the ac-
tual feature detectors. Then we will describe the environ-
mental influences and corrections needed for optimal per-
formance under different circumstances. We also evaluate
the detection performance based on distance variations of
the detectable objects. Finally we give an overview of the
time that is needed to detect each feature.

Filter and Utilities
To see how applicable the filters are in a real robot setup
it is important to know whether the filters can be used in
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real-time for the specific setup, and whether for this partic-
ular setup all filters can be implemented due to the mem-
ory constraints of the platform. Therefore, in this subsection
we provide time and memory allocation measurements of
the provided filters, such as grayscale, Hue, several forms
of Halftoning, and Gaussian blur filters. We also provide
this information for the (group detection), (pattern finding)
and (Hough transformation) utilities, which are described in
more detail in (May, 2013). Furthermore, we provide over-
all detection-time measurements of the robot camera, that is
needed to capture images.

Filters The various types of filters are the core elements of
our feature detection. During the detection of a specific fea-
ture, often several filters are needed, and sometimes a single
filter is used multiple times in one process. To measure the
performance and increase the time measurement accuracies,
we run the filters 1000 times repeatedly on one picture, and
then divide the overall time by 1000 which gives us the run-
ning time for one specific filter. As the filters work indepen-
dent of the data there should be no influence of the actual
image to the measurement results. In Table 1 the average
time that each filter needs to process a single image with a
resolution of 40x40 pixels is listed, this table also lists the
memory requirements for each filter. Looking at the mem-
ory requirements it should be noted, that only 8000 bytes
are available, and a simple filter iteration can already con-
sume a considerable amount of memory (e.g., a single run
of the Halftoning histogram filter requires 3.4% of the total
memory).

Filter Time Memory
grayscale 17.9ms 6 Byte
Hue filter 31.7ms 20 Byte
Halftoning threshold 3.3ms 2 Byte
Halftoning average 5.9ms 8 Byte
Halftoning midpoint 6.9ms 8 Byte
Halftoning histogram 18.8ms 272 Byte
Gaussian blur 24.4ms 7 Byte

Table 1: Resources used by filters

As can be seen in Table 1, the Hue filter is the most time
consuming, this is due to the fact that it converts every pixel
to the HSL colorspace. The Halftoning histogram filter is the
most memory consuming. On the other hand the Halftoning
filter with a specific threshold is the fastest and lowest mem-
ory consuming filter, as it needs no pre-calculation and can
directly process the image.

Utilities The performance of the utilities described in
(May, 2013), are more difficult to measure, as they depend
on a various number of parameters. Therefore, each utility
is evaluated in a separate part. Similar to filters, all utilities,

except for the Hough transformation, run 1000 times on a
single image to make a more accurate time measurement.

I Group Detection

The group detection algorithm locates all clusters of
pixels that are non black, and determines their groups
center points. The run-time of this algorithm depends
on the amount of clusters that are detected, and on the
amount of pixels that are included in a group. As can be
seen in Table 2, the performance is highly dependent on
the number of pixels per group. All processed images
have a resolution of 40x40 pixels.

Groups Pixel per group Time Memory

1
1 4.1ms 15 Byte
9 6.1ms 41 Byte

25 10.8ms 123 Byte

2
1 4.9ms 15 Byte
9 8.8ms 41 Byte

25 16.1ms 123 Byte

3
1 5.3ms 15 Byte
9 12.5ms 41 Byte

25 21.1ms 123 Byte
10 160 398.6 ms 15 Byte

Table 2: Resources used by group detection algorithm

Based, on the results in Table 2, this group detection
algorithm should only be used in situations, where time
is not a critical factor, as we usually deal with detection
of about 10 groups.

II Pattern Finder

There are two pattern characteristics which can influ-
ence the performance of the pattern finding algorithm;
first the length of the pattern, and second the number of
reoccurrences of the pattern in the image. Due to the
fact that the pattern finder searches only a single col-
umn or row at each iteration, we have to make sure that
this row or column is as long as possible. According to
the specifications of the camera, the maximum length in
vertical alignment is 480 pixels and in horizontal align-
ment 640 pixels. The latter direction is chosen for the
performance measurements. The pattern itself has no
influence on the performance, as the image is stored in
run-length encoding, but the number of color changes
in the pattern do influence the results.

As can be seen in Table 3, the time and the memory
consumption mainly depend on the size of the pattern.
The second parameter gives the reoccurrence of the pat-
tern in the detection area. In practice this means that
the algorithm needs up to 42.3ms, to scan every line of
a halftone image with 96x96 pixel. From this we can
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Pattern length Matches Time Memory

3
1 2.8ms 33 Byte
3 2.9ms 33 Byte
5 2.9ms 33 Byte

9
1 4.0ms 45 Byte
3 4.0ms 45 Byte
5 4.1ms 45 Byte

15
1 4.8ms 57 Byte
3 5.0ms 57 Byte
5 5.1ms 57 Byte

Table 3: Resources used by pattern detection algorithm

conclude that it is possible to process even large images
in an appropriate amount of time.

III Hough Transformation

We implemented two versions of the Hough transfor-
mation, the standard one and the fast transformation.
The standard Hough transformation is a time consum-
ing algorithm, which can detect multiple lines. Due to
the limitations of the memory of the e-puck, the clas-
sical Hough Transformation can not run at the same
precision as the Fast Hough transformation, which can
only detect one line. Unlike the other utilities pre-
sented, the Hough transformation is independent of the
image data, it always needs the same amount of time
and memory. All tests were done with a grayscale im-
age of 40x40 pixel.

Algorithm Time Memory
Hough Transformation 2721.3ms 1800 Byte
Fast Hough Transformation 121.2ms 180 Byte

Table 4: Resources used by Hough Transformation

As can be clearly noted from Table 4, the Fast Hough
transformation, reduces the run-time requirements by a
factor of approximately 22, and the Memory require-
ments with a factor 10.

Camera In addition to the different filters and utilities, the
performance and speed of the camera itself, on the overall
performance of the system is measured. Pictures are cap-
tured in color, grayscale and halftone mode, and the capture
time is computed by measuring the overall time required for
capturing 1000 images and calculating the average as shown
in Table 5. For color and grayscale images the same picture
size is chosen. The advantage of halftone images is their
higher data resolution, to accommodate this the resolution
of the halftone pictures is higher than the one for color and
grayscale.

Just capturing a single image takes much more time than
running a single algorithm needed to process the image.

Mode Size Time Memory
Colored 40x40 pixel 153.1 ms 3200 Byte
Grayscale 40x40 pixel 80.7 ms 1600 Byte
Halftone 96x96 pixel 1734.2 ms 2752 Byte

Table 5: Resources used by camera for different modes (i.e.,
color, gray-scale, halftone)

This can be a downside when a situation requires higher
capture details, which can be done by taking multiple im-
ages and adding the processed data together. This will lead
to higher accuracy, but at the cost of processing time.

Environmental Light Condition
Light is a part of the environment which is uncontrollable
in the real world. Depending on where, and how bright the
light sources are, the images taken by the robot differ in their
contrast and brightness. The robot’s internal camera calibra-
tion tries to eliminate the influence of the light, and tries to
return the same image for different brightnesses. With de-
creasing light intensity, it is more complicated for the auto
correction to fulfill its task. To evaluate the light conditions
we have built a box, which has white walls and is closed
on all sides except for the top. This box, as can be seen in
Fig. 1c, contains the robot, and the top is closed with a lap-
top monitor. The monitor acts as a controllable light source
and has a constant light distribution of 300 cd/m2. In all
our experiments we place de detectable feature inside this
box and decrease the light intensity in 10 steps of 30 cd/m2,
from full brightness till complete darkness.

Landmark In the first test landmarks are placed in the
box. As shown in Fig. 2, the brightness of images is not that
much influenced by the light condition. The first five im-
ages have almost the same brightness, but the noise density
increases. Only in the last image, when the light intensity
is completely reduced, the landmark is not recognizable any
more.

(a) (b) (c)

(d) (e) (f)

Figure 2: Detection of landmark for different brightnesses
(a) 100% (b) 80% (c) 60% (d) 40% (e) 20% (f) 0%

From the histogram values in Fig. 3 it can be seen that the
colors are all moving to the same area. This effect is due to
the automatic light gain correction of the e-puck camera. It
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influences the brightness in a way, that the average value of
all pixels is always the same.

(a) (b) (c)

Figure 3: Grayscale histogram of landmark with brightness
of the environmental light at (a) 100% (b) 60% (c) 0%

Robot Detection In order to examine how the e-puck cam-
era handles the LEDs of another e-puck, we show in Fig. 4
the influence of environmental light on a captured image.
Unlike in the images of the landmarks in previous exper-
iment, there are significant differences in these images of
this experiment. At 100% brightness, the LEDs cannot be
differed from the surrounding environment (see Fig. 4a), but
the body pattern is clearly detectable. With low light con-
ditions, as can be seen in Fig. 4f, the LEDs are clearly dis-
tinguishable from the remaining image, but the body pattern
cannot be detected anymore.

(a) (b) (c)

(d) (e) (f)

Figure 4: Images taken from an e-puck with brightness at
(a) 100% (b) 80% (c) 60% (d) 40% (e) 20% (f) 0%

This effect can also be seen, when the camera zooms in
into one of the single LEDs, that was detected in the overall
scene. In Fig. 5a the white part of the LED fills only a small
part of the image and the single LEDs can be clearly distin-
guished, while in Fig. 5f the two LEDs are forming one big
part.

The influence of the environmental light on the detection
of LEDs is very important. In bright environments the prob-
ability of detecting this feature is much smaller. In a dark
environment, other features, like the body pattern, cannot be
detected anymore. An optimal condition could be a light
setting similar to the one in Fig. 4d, where the LEDs can
be clearly differentiated from the environment and the body
pattern still can be detected.

Feature Distance
In this subsection, we address how reliable the e-puck can
detect specific features, and how the detection rate is influ-
enced by the distance to a specific feature. For this test,

(a) (b) (c)

(d) (e) (f)

Figure 5: Zooming in to a detected LED of an e-puck with
brightness at (a) 100% (b) 80% (c) 60% (d) 40% (e) 20% (f)
0%

we placed the robot in a white environment in front of only
one detectable feature. The e-puck has to detect the feature
and calculate its estimated position. The test is repeated 100
times with different angles and distances to the feature.

Color Block In Table 6 the results of running the color
block detection algorithms are shown. During the test dis-
tance varies from 20cm to 80cm. Distances below 20cm are
not taken into account, because the colored block is not vis-
ible in such distances.

Distance Detection rate
20 cm 96 %
25 cm 97 %
30 cm 96 %
35 cm 96 %
40 cm 89 %
45 cm 78 %
50 cm 79 %
55 cm 68 %
60 cm 51 %
65 cm 38 %
70 cm 15 %
75 cm 7 %
80 cm 1 %

Table 6: Test results for colored block of landmarks

EAN-8 codes The EAN-8 code is a part of a landmark. As
the colored block is also part of the landmark, the EAN-8
detection can benefit from this and it’s relative good detec-
tion rate. Each time a purple block is detected the robot can
be sure that the EAN-8 barcode is located below this block.
However, the exact range of the EAN-8 code still has to be
detected. The correctness of detecting and decoding the bar-
code depends on the distance from which the e-puck reads
the EAN-8 code, as can be seen in Table 7. Values below
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20 cm are not tested as this is the minimum distance to see
the whole EAN-8 bar code. Table 7 also shows the correct-
ness of the data after decoding, which is much lower than
just detecting a valid pattern.

Distance Detection rate Correctness
20 cm 93 % 68 %
25 cm 89 % 58 %
30 cm 70 % 32 %
35 cm 58 % 5 %

Table 7: Test results for EAN-8 codes of landmarks

QR-Codes QR-codes provide high density information,
but are quite complex to read. For example, one dimensional
bar codes just have to be scanned in a line over the image,
two-dimensional codes have to be transformed so that they
fit in a fixed rectangle, only then it is possible to process
them further. Hence, the detection of the outer shape is very
important, but also often fails. The higher the QR-version,
and thus the number of modules inside the code, the more
exact the shape has to be determined. In Table 8 the detec-
tion rate of different versions at their optimal distances are
listed. All measurements are done from a position right in
front of the pattern. The error correction level is set to H , the
highest possible level. The correctness is only determined in
the cases where the code was correctly detected.

Robot Detection In practice, the detection of other robots
is done with two different algorithms. First the program tries
to detect the body pattern of the robot. When this algorithm
does not detect any robot, robot localization bases on the
LEDs is performed. In Table 9 the detection rate at different
distances is listed, as well as the distance estimation. As the
LED based detection does not return any distance estimation
the value in the third column is only calculated if the e-puck
is detected by the body pattern recognition algorithm.

Overall Performance
Considering all of the in-detail examination, the perfor-
mance of a feature detection algorithm is a combination of
the processing time of the involving filters, utilities, and also
image capturing time. The exact time depends on how often
each step has to be executed, and if the objects are recog-
nized by the detection algorithms. In Table 10 the overall
processing times for the different features are presented.

Version QR code size Detection rate Correctness
1 21x21 80 % 53 %
2 25x25 48 % 5 %
3 29x29 23 % 0 %

Table 8: Light tests of QR-code detection

Distance Detection rate Distance estimation
10 cm 100 % 95 %
15 cm 100 % 79 %
20 cm 75 % 60 %
25 cm 84 % —
30 cm 58 % —
35 cm 61 % —
40 cm 52 % —
45 cm 39 % —
50 cm 20 % —
55 cm 9 % —

Table 9: Distance tests of Robot detection

Algorithm Time
Colored block 204.3 ms
EAN-8 code 324.1 ms
Single LED 900.0 ms
Three LEDs 2334.8 ms
Body pattern 198 ms
QR-code 3253.0 ms

Table 10: Required time for detection of the features

From these overall feature detection times we can con-
clude that detecting static objects such as colored blocks
and EAN-8 codes in a real swarm robot scenarios is doable.
Even detecting a QR-code is possible, as long as the location
of this code in the environment is known, as searching for a
QR-code, using vision, requires high processing time, and
memory.

Glowing Trails
As an extension to our current framework we introduce a
new feature, the glowing trail. Inspired by nature, in which
insects use chemicals for indirect communication (known as
Stigmergy), researchers are interested in applying stigmergy
in multi-robot systems, as well. However, in-field deploy-
ment of an indirect communication requires manipulating
environment which is not a trivial task. Researchers have
recently used a few techniques for accomplishing this task.
For instance, chemical materials has been proposed by (Fuji-
sawa et al., 2008). Due to difficulties in implementation and
limited extendibility, this approach didn’t provide sufficient
applicability in swarm scenarios.

As an alternative, glowing trails exploited by (Kronemann
and Hafner, 2010), inspired on (Alers and Hu, 2009), and
further extended for swarm robotic scenarios by authors
(Ranjbar-Sahraei et al., 2013) are easy to set up in labo-
ratory environment and still very efficient. These glowing
trails can help robots to communicate indirectly to achieve
their goals (e.g., environmental coverage, intruder tracking,
etc.). A simple indirect communication is shown in Fig. 6
in which robots announce their territory border by putting
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pheromones on the borders (Ranjbar-Sahraei et al., 2012b).

(a) (b) (c)

Figure 6: Using stigmergic communication for efficient area
coverage proposed by (Ranjbar-Sahraei et al., 2012b) (a)
robot on right hand side detected the glowing trail. (b) robot
changes its circling direction. (c) robots establish separate
territories

For detection of the glowing trails, in contrast to the sim-
ple method used in (Kronemann and Hafner, 2010), in which
photo-sensors were used to detect glowing trails, the e-puck
vision approach as described above can be used. Therefore,
we take advantage from the developed techniques for color
filtering and pattern recognition which are designed based
on the limited resources of an e-puck robot, and still power-
ful enough to extract information from the trails.

The new glowing trail feature can be seen in Fig. 7. The
detected grayscale image is converted to a black-white im-
age with a fixed threshold. The amount of white pixels is
determined to see if there is any trail in the image. When
the image has more than 1% of white pixels, a Fast Hough
Transformation (Gonzalez and Woods, 2002) is performed
to determine the direction of the trail, see Fig. 7(b).

For using glowing trails, the floor should be covered by
phosphorescent material which absorbs UV light and re-
emits the absorbed light at a lower intensity for up to several
minutes after the original excitation. Robots should also be
equipped with UV-LEDs to emit light to the glowing mate-
rials.

(a) (b)

Figure 7: New introduced feature: (a) Initial image from
a glowing trail received by e-puck camera. (b) Filtered
image with a red directional line determined by Hough-
Transformation (May, 2013)

Real World Evaluation
To test the proposed features and algorithms under real con-
ditions we used this framework to implement two different
swarm approaches. One approach focuses on using these
features and algorithms in path optimization problems as
in (Alers et al., 2011), the other swarm approach focuses
on area coverage with glowing trails as in (Ranjbar-Sahraei
et al., 2012b).

For the path optimization approach we described and im-
plemented our framework in (Alers et al., 2013). We ex-

amined the proposed approach in a real scenario, in an en-
vironment as shown in Fig. 8. A video of this performed
experiment can be found online in (Swarmlab, Maastricht
University, 2013b), including the intermediate image data
from the robot.

Figure 8: Scenario for validation of proposed approach

For the coverage approach, we used the new glowing
trails framework extension, introduced in previous section.
In (Ranjbar-Sahraei et al., 2013), we demonstrated an im-
plementation of this approach, the results of applying this
vision-based trail detection on a real swarm of e-puck robots
is shown in Figs 9a- 9c. A video of the performed experi-
ments can be found in (Swarmlab, Maastricht University,
2013a).

(a) initial (b) intermediate (c) final

Figure 9: Vision-based detection of glowing trails approach

Discussion, Conclusions & Future Research
In this paper we presented an in-depth study of a vision-
based feature detection framework for multi-robot scenar-
ios. This study covered a complete range of performance
evaluations, ranging from measuring detection rate for dif-
ferent environmental brightnesses and detection distances to
detection accuracy for different features. Furthermore, var-
ious experiments on a real e-puck robot were performed to
measure the required time for different tasks such as apply-
ing gray-scale filter, halftone filter, group detection, and pat-
tern finding algorithms.

From the overall performance measurements we can con-
clude that detection of objects that are not too complex is
easily doable. However, the detection time, and the required
memory increases drastically when more complex objects
are chosen as features. Moreover, we showed that the envi-
ronmental light variation doesn’t affect the detection of the
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features, except in the extremes when it is either too bright
or too dark. The detection of other robots via their LEDs
is doable in a static situation, but in most swarm scenar-
ios the robots move continuously in the environment, which
makes detection of moving robots an open research question
in our research. Moreover, for the newly introduced glow-
ing trail feature we demonstrated a working dynamic multi-
robot scenario, which encourages us to investigate applica-
tions in dynamical swarm-optimization settings. Finally, we
as the main future work, we are working on integration of
the proposed techniques with te bee-inspired foraging algo-
rithms, where the big challenge in this is to fit all forag-
ing and vision algorithms within the limited memory of the
robot.
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