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Abstract

This paper introduces StaCo: Stackelberg-based Coverage
approach for nonconvex environments. This approach struc-
turally differs from existing methods to cover a nonconvex
environment, as it is based on a game-theoretic concept of
Stackelberg games. Our key assumption is that one robot can
predict (short-term) behavior of other robots. No direct com-
munication takes place among the robots, the approach is de-
centralized. However, the leading robot can direct the system
into the optimal setting much more efficiently just by chang-
ing its own position. This paper extends our previous work in
which we have introduced the StaCo approach for coverage of
a convex environment, with a simpler type of robots. We pro-
vide theoretical foundations of the approach. We demonstrate
its benefits by means of case studies (using the Sim.I.am soft-
ware). We show situations in which the StaCo approach out-
performs the standard approach, which is based on combina-
tion of the Lloyd algorithm and path planning.
Keywords: Multi-robot coverage of nonconvex environ-
ments, Stackelberg games

Introduction & Literature Overview
Multi-robot control in an unknown environment is an emerg-
ing topic of various research fields (e.g., flocking control
(Olfati-Saber, 2006), aggregation (Martinoli et al., 1999),
multi-robot coverage (Cortes et al., 2004), formation (Ren
and Sorensen, 2008)). This paper focuses on multi-robot
coverage.

Most of the proposed solution methods for multi-robot
coverage are not applicable in practice, as they encounter
difficulties such as failing to find the globally optimal so-
lutions and the inability to account for nonconvex environ-
ments (Cortes et al., 2004; Martinoli et al., 1999). As a con-
sequence, despite the wide range of existing works in the
domain of multi-robot coverage (Breitenmoser et al., 2010;
Butler and Rus, 2004; Cortes et al., 2004; Pimenta et al.,
2009; Ranjbar-Sahraei et al., 2012; Schwager et al., 2009),
there are still only very few in-field deployments.

Some works dealing with control of the system of multi-
ple robots (not necessarily with multi-robot coverage) have
tried to tackle the critical issues of nonconvexity and fail-
ing to find the global optimum. Ganguli et al. (2007) solve
the distributed Art Gallery Problem in a nonconvex environ-
ment. In (Ganguli et al., 2009) the problem of the coordi-
nation of a group of robots to achieve randezvous in a non-

convex environment is treated. An optimal control method
to drive a team of multiple robots to target sets under col-
lision avoidance and with proximity constraints in a known
environment with obstacles is introduced in (Ayanian and
Cumar, 2008). An elegant way of tackling the problem
of nonconvex environments is introduced in (Caicedo and
Žefran, 2008a,b). The nonconvex region is first transformed
by a diffeomorphism to a convex region. Subsequently, the
standard Voronoi coverage approach is applied on this re-
gion. As the authors themselves state, there is one major
drawback of this method: The first phase of this method
(transforming the region into a convex region) is computa-
tionally very expensive. Moreover, in some cases the solu-
tion of the transformed problems does not correspond to the
solution of the original problem. Pimenta et al. (2008) apply
the geodesic distance measure to Voronoi coverage. While
this method is very efficient for some types of environments,
it is not guaranteed that the optimal solution will be found
for all types of nonconvex regions even if this solution is
reachable.

One of the most practically applicable approaches for
coverage of a nonconvex environment is introduced in (Bre-
itenmoser et al., 2010). This algorithm combines the stan-
dard Lloyd algorithm with a local path planning. However,
while this algorithm converges to the locally optimal config-
uration, it might be extremely slow and does not resolve the
issues regarding failure to find the globally optimal configu-
ration.

While the performance of the above mentioned algo-
rithms might be improved via more effective algorithmic
implementation, fundamental improvements of the settling
time and convergence could be made if the structure of the
robotic swarm played a role. Motivated by this idea, this
paper introduces a game-theoretic approach which can deal
with nonconvexity and local optimality issues more effi-
ciently than the existing algorithms. The Stackelberg Cov-
erage (StaCo) approach is based on the game-theoretic con-
cept of Stackelberg games (Staňková, 2009; Staňková et al.,
2013). It assumes that one robot is more advanced than the
others. This more advanced robot, called a leader, perceives
the environment globally. By its own movement, the leader
changes the boundaries of the Voronoi regions of the other
robots. Subsequently, and without any direct communica-
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tion with the other robots, the leader steers the other robots
into a more optimal configuration. The main advantage of
the StaCo approach is keeping the benefits of decentralized
methods while performing almost as well as the centralized
methods with respect to the system optimality; it preserves
the simplicity of the major population of the robotic swarm,
while one robot can predict behavior of the others and act so
that the desired behavior is achieved faster and with a higher
precision.

This paper extends the results of (Staňková et al., 2013),
where we introduced the StaCo approach for multi-robot
coverage of convex environments, toward multi-robot cov-
erage in nonconvex environments. Moreover, more realistic
robots are considered in the case studies.

Game theory has been successfully applied in various
fields; its known applications in the robotic field relate to
pursuit-evasion and search problems (Meng, 2008; Raboin
et al., 2010). However, application of the Stackelberg games
in the multi-robot coverage of nonconvex environments is
new.

In the next sections, we will briefly summarize our previ-
ous work and introduce the problem of the Voronoi cover-
age of a nonconvex environment and its properties. Subse-
quently, we will explain the StaCo approach in nonconvex
coverage and analyze its properties. We will also present
case studies in which we demonstrate the advantages of
the StaCo approach. We will conclude by discussing the
achieved results, limitations of the proposed approach, and
the future research directions.

StaCo in Convex Environments
In (Staňková et al., 2013) we have introduced the StaCo
approach for convex environments, as a specific case of a
Stackelberg game with one leader (more advanced robot)
and multiple followers (very simple robots). We have shown
theoretically and by means of case studies that the proposed
approach can never perform worse than the standard cover-
age algorithms, such as the Lloyd algorithm (Cortes et al.,
2004), while most of the time the StaCo approach signifi-
cantly outperforms the standard approaches (by the means of
settling time or by finding the globally optimal configuration
when standard approaches fail). Figure 1 from (Staňková
et al., 2013), illustrates the performance of the StaCo ap-
proach in comparison to the classical coverage proposed by
Cortes et al. (2004). All experiments are carried out in con-
vex environments and with robotic swarms of different sizes.

Voronoi Coverage of a Nonconvex
Environment

In this section we will informally discuss the problem of
nonconvex environment coverage, including a discussion on
the existence and the uniqueness of the optimal Voronoi con-
figuration, and uniqueness of this optimal solution.

Problem Formulation
The goal is to deploy a group of networked robots in
a nonconvex environment, i.e., an environment including
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Figure 1: Comparison of the coverage settling time between
the proposed StaCo approach and the classical coverage ap-
proach for robotic swarms of different sizes in convex envi-
ronments (Staňková et al., 2013).

free standing obstacles, holes, and/or areas with nonconvex
boundaries.

Problem Properties
Existence of the optimal Voronoi configuration: Unlike
in a convex environment, the optimal solution does not nec-
essarily exist in a nonconvex environment. This is caused by
the fact that the centroids of Voronoi regions are computed
in the convex environment, not taking any obstacles into ac-
count. However, the centroid of the region might lie on an
obstacle or be part of an unreachable region, as shown in
Figure 2a. Considering only the situations in which the cen-
troids of the optimally chosen Voronoi regions are reachable,
the globally optimal solution exists (but may be impossible
to find with standard algorithms).

Uniqueness of the optimal Voronoi configuration: The
solution configuration does not need to be unique, as there
might be multiple solution configurations that are permuta-
tions of each other. See Figure 2b for an example of a circu-
lar region with a circular obstacle in the middle. Independent
of how many multiple robots would be placed in this region,
there exist infinitely many optimal Voronoi tessellations in
this region.

StaCo Voronoi Coverage of a Nonconvex
Environment

Theoretical Foundation & Properties
In this section we formulate multi-robot coverage problem
in a nonconvex environment as a dynamic Stackelberg game
with one leader and multiple followers, with additional as-
sumptions on the robot’s obstacle avoidance behavior. The
approach proposed in this section will be referred to as
StaCo: Stackelberg-based Coverage Approach. For more
details on Stackelberg-based Coverage of convex environ-
ments, see (Staňková et al., 2013).
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(a) (b)

Figure 2: Properties of the Voronoi coverage of a nonconvex
environment: (a) Example of the region an obstacle in which
the optimal configuration is unreachable. The crosses denote
the optimal positions of the robots. (b) Example of a region
with (infinitely) many optimal Voronoi tessellations.

Let Ω ⊂ R2 be a convex region. Let n convex obsta-
cles o1, . . . , on be placed in Ω. Let us consider M robots
(players) placed in the region at time t = 0 in Ω \ { n∪

j=1
oj}.

One of the players, denoted for the sake of simplicity as
player 1, is the leader, all other players, denoted by 2,
. . . , M, are the followers. The roles of the players are as-
sumed to be fixed during the entire duration of the game.
Let x(t)

def
= {x1(t), x2(t), . . . , xM (t)} be the configura-

tion of the robots at time t, with t ∈ [0, T ], x(0) =
{x1(0), x2(0), . . . , xM (0)} being the initial configuration of
the robots and x(T ) = {x1(T ), x2(T ), . . . , xM (T )} being
their final configuration at final time T, with xi(t) �= xj(t)
if i �= j. Note that xi(t) ∈ R2 for each i ∈ {1, . . . ,M}.
Let Vi(t) indicate the Voronoi region (cell) in which i-th
robot is located at time t. For each x(t) the Voronoi re-
gions are defined by the Voronoi partition of Ω at time t,
V(t) = {V1(t), . . . , VM (t)}, generated by the points x(t) =(
x1(t), . . . , xM (t)

)
: Vi(t) = {ω ∈ Ω : ‖ω − xi(t)‖ ≤

‖ω − xj(t)‖, ∀j �= i}. System dynamics are given by the
following system of ordinary differential equations:

ẋi(t) = ui(t), i = 1, . . . ,M (1)

where ui(t) ∈ R2 is the control (decision) of the i-th robot
at time t. The cost functions for the leader (robot 1) at time
t is given by

C1(t) =
∑

i∈{1,...,M}

∫

Vi(t)

‖ω − xi(t)‖2dω. (2)

Let us assume from now on that T is defined as the so-
called stopping time, i.e., the minimal time such that for
each τ > T the cost C1(τ) does not change: T = min{ν :
C1(τ) = C1(ν) ∀ τ > ν}. Then the leader minimizes
C1(T ). Alternatively, the leader might minimize T. The cost
function for the follower j ∈ {2, . . . ,M} at time t is

Cj(t) =

∫

Vj(t)

‖ω − xj(t)‖2dω. (3)

The problem of the leader (robot 1) can be then defined as

(PStaCo)





Find u
(S)
1 (·) = argmin

u1(·)
C1(T ), w.r.t.

uj(·) = argmin
uj(·)

∫
Vj(t)

‖ω − xj(t)‖2dω.

ẋi(t) = ui(t),

with j = 2, . . . , N, i = 1, . . . , N. Note that in a noncon-
vex case, u(S)

1 involves both obstacle avoidance and reach-
ing the goal behavior. Therefore, the underlying assumption
here is that obstacle avoidance is one of the possible controls
in (1). Moreover, we want to see how quickly the optimal
Voronoi tessellation is found, i.e., the secondary goal is to
minimize T.

Proposition 1. Let at time t each player i know only state
xi(t) and corresponding Vi(t) and let Hessian of (2) be pos-
itive definite at each t. Then the so-called continuous-time
Lloyd descent (Cortes et al., 2004)

u∗
i (t) = κ

(∫
Vi(t)

x dxi∫
Vi(t)

dxi
− xi(t)

)
, (4)

κ > 0, extended by the standard path planning algorithm
for obstacle avoidance (Breitenmoser et al., 2010), asymp-
totically converges to minimal C1(T ) and to minimal Cj(T )
for j = 2, . . . ,M, provided that the final configuration in
which the minimal C1(T ) is reachable (i.e., no optimal xi

lies on an obstacle or in an unreachable region).

Proof. As shown in (Cortes et al., 2004), u∗
i (t) defined by

(4) with respect to żi(t) = ui(t) converges asymptotically
to the set of critical points of (2). The critical points of (2)
coincide with critical points of (3). If corresponding Vi is
finite, this solution is global due to positive definiteness of
(2), as follows from (Du et al., 1999). Assuming that the
obstacle avoidance is one of the possible moves in (1) for
each robot and that the optimal configuration is reachable
from the initial configuration, this concludes the proof.

Validation of the positive definiteness of (2) is an open
problem (Cortes et al., 2004) and even if the convergence to
the global optimum is guaranteed, in general no guarantees
on the speed of this convergence exist. This leads us to the
question whether there exist algorithms that perform better
than the standard Lloyd algorithm (combined with the ob-
stacle avoidance (Breitenmoser et al., 2010) as the covered
environment is nonconvex) if we allow the leader (robot 1)
to have more information about the state and decisions of
the followers.

Note that while a certain position might be unreachable
using the classical Lloyd algorithm (a robot might, for ex-
ample, get stuck on an obstacle, while the Lloyd algorithm
would lead the robot to continue through the obstacle), it
might be reachable using combination of the Lloyd algo-
rithm and path planning (Breitenmoser et al., 2010). In the
reminder of the article, we will refer to the combination
of the the Lloyd algorithm and a path planner for obstacle
avoidance as the standard approach, assuming tacitly that
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the StaCo approach uses the same obstacle avoidance mech-
anisms as the standard approach.

The solution of (PStaCo) strongly depends on the so-
called information pattern, i.e., the amount of information
that each player knows and recalls over her own state, the
state of the others, and action made by herself and the oth-
ers during the game (Başar and Olsder, 1999; Staňková and
De Schutter, 2011; Staňková et al., 2013). If at each time
t ∈ [0, T ] robot P1 knows only x(t), the standard approach
and the Stackelberg approach might coincide (unless more
locally optimal solutions exist). However, if P1 has more in-
formation available, the StaCo approach will perform better
than the standard approach (Staňková et al., 2013). The fol-
lowing proposition extends Proposition IV.1. in (Staňková
et al., 2013).
Proposition 2. Let player 1 know xj(τ) and uj(τ) (for all
j �= 1) for τ ∈ [t, t + ∆], with ∆ > 0, where uj(t) is
defined by (4). Let u(S)

1 (t) denote the optimal control of
player 1, possibly dependent on uj(τ), τ ∈ [t, t + ∆]. Let
T (S), and C

(S)
1 (T (S)) denote the corresponding stopping

time and the final payoff for player 1 in such a situation,
respectively. Then C

(S)
1 (T (S)) ≤ C

(L)
1 (T (L)), where C

(L)
1

and T (L) denote the cost of the player 1 if the classical ap-
proach, combining the Lloyd algorithm and a path plan-
ning, is adopted and the corresponding stopping time, re-
spectively. This inequality holds if the optimal final configu-
ration x(T ) is reachable from the initial configuration x(0).

Moreover, if C(S)
1 (T (S)) = C1(T

(L)), then T (S) ≤ T (L).

Proof. The leader’s decision is not bound by any restric-
tions. If all past configurations of the StaCo approach and
the Lloyd approach coincide, setting the leader’s decision
to (4) leads to T (S) = T (L), C(S)

1 (T (S)) = C1(T
(L)). Note

that the Hessian of (2) might not be positive definite with the
leader’s decision defined by (4). Thus, u(S)

1 (t) either coin-
cides with (4) when the standard approach is adopted, or, if
this choice would lead to only sub-optimal solution, u(S)

1 (t)
differs from (4) and leads to a better outcome. This outcome
readily follows from Proposition IV.3. in (Staňková et al.,
2013).

Giving more information to the leader almost always
leads to a better outcome for the leader also in a very general
setting (Başar and Olsder, 1999; Staňková, 2009), while the
StaCo approach never leads to an outcome worse than that
reached by standard methods (Cortes et al., 2004; Staňková
et al., 2013). This follows from the fact that the classical
Lloyd algorithm in which there is no hierarchy among the
robots is a special case of the StaCo approach in which the
leader does not predict possible position of the other robots
and optimizes only locally. Should this behavior be optimal,
it would also be adapted by the leader in the StaCo approach.

Implementation
Following the theoretical description provided in the previ-
ous section, in this section we will explain implementation

of the StaCo approach for coverage of nonconvex environ-
ments.

In StaCo, the leading robot (we assume that this robot is
only one, while keeping in mind that the StaCo approach
allows for multiple leaders) has a higher computational ca-
pability and more information than the following robots.
Subsequently, the overall performance of the system is im-
proved, and the StaCo approach can reach the optimal con-
figuration faster than classical coverage approaches. More-
over, the StaCo approach can also reach the global configu-
ration even if the standard approach fails.

The proposed StaCo approach for nonconvex environ-
ments combines three different components. The first one
is the Lloyd algorithm, which is already used in the classi-
cal Voronoi-based coverage approach (e.g., by Cortes et al.
(2004)), and has been mentioned also in the previous sec-
tion. The second component is the Stackelberg game (de-
scribed in the previous work of the authors (Staňková et al.,
2013)). The third component is a local path planner, in-
cluding object avoidance and wall following behaviors. This
component helps the robot to pass nonconvexities (e.g., ob-
stacles) and move efficiently toward its goal.

Decision making of leading and following robots: The
leader’s prediction of the possible future behavior of other
robots and enforcing their optimal behavior via the leader’s
own movements (without a direct communication) are the
main ideas behind StaCo.

The followers follow the simple rules of Lloyd algo-
rithms, as shown in Figure 3a. Each follower continuously
computes its Voronoi region center, sets this center as its
goal, and tries to reach it, where the goal is a particular
point in the 2D-space. Computing the Voronoi center can be
done both via having access to global coordination of other
robots, or via local communication as proposed by Cortes
et al. (2004).

The decision making for the leader is more complex. The
leader computes its own movement trajectory efficiently di-
recting the entire group to the best possible configuration.
Theoretically, this can be achieved by finding the explicit so-
lution of PStaCo, introduced in previous section. However,
computation of such a solution analytically is very compli-
cated and therefore, we compute the approximate solution of
PStaCo in a numerical way. In this numerical computation,
the leader predicts possible behavior of the other robots as
a response to its own behavior only for a fixed time interval
and fixed number of directions for the leader’s next move.
The direction which implies the minimal cost function value
is chosen as the immediate leader’s goal. The immediate
goal will be updated by the same procedure after the a pri-
ori fixed time. The sequence of such short-term goals de-
fines the leader’s movement trajectory. See Figure 3b for the
scheme of the leader’s behavior.
Remark 3. Note that the leader’s prediction quality is di-
rectly influenced by the type and amount of information that
is available to the leader. In our experiments, it is assumed
that the leader knows the position of other robots and knows
their dynamics. Additionally, the leader knows the map of
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(a)

(b)

Figure 3: Scheme of robot behaviors/decisions: (a) simple
behavior of a follower robot, in which the goal is a specific
location in 2D space that the robot tries to reach using a
local path planner. (b) the decision making of a leader robot
in which the leader figures out which movement direction
concludes to the best overall performance of the group.

the environment (more precisely, the position of obstacles).
As long as only one robot or a very few number of robots
has these abilities among a large number of simple robots,
we can consider these assumptions as being practical and
feasible, especially due to high capabilities of most modern
robots.
Remark 4. Solving the PStaCo problem in a numerical way
can be improved in different aspects. First of all, the more
movement directions the leader considers, the more accurate
the movement, and the higher efficiency. Any metaheuristic
which helps the robot in finding the best movement direc-
tion can be incorporated into the proposed approach. For
example, with use of the A* search algorithm one can pe-
nalize choosing a trajectory passing very close to the obsta-
cles, as opposed to an obstacle-free trajectory. Many other
search heuristics (e.g., GA and Simulated Annealing) can
be used to find the best movement directions in the fast and
accurate manner (Resende and de Sousa, 2004). However,
study of these techniques is beyond the main scope of this
paper, which focuses on overall applicability and efficiency
of StaCo.

Local path planner design: Local path planner has an
important role in adapting the StaCo approach for con-
vex environment, proposed in previous work of the authors
(Staňková et al., 2013), to coverage of nonconvex environ-
ments. Different local path planners are available for au-
tonomous robots (Buniyamin et al., 2011). In (Breitenmoser
et al., 2010) the TangentBug planner was used to tackle en-
vironment nonconvexities. In this paper, we use the hybrid
controller proposed by Egerstedt (2000), in which robots
follow three basic behaviors of go-to-goal, avoid-obstacle,

Figure 4: Hybrid automata used as local path planner de-
signed for local path planning in nonconvex environments.

and sliding along walls. The hybrid automaton for this
behavior-based path planner is shown in Figure 4, where the
transitions and resetting values are explained qualitatively.
We have adopted this path planner, as it is widely used by
other robotic researchers, due to its simplicity of implemen-
tation, its robustness to environment changes, and its effi-
ciency in finding the best available trajectory avoiding the
obstacles of different shapes. Interested readers are referred
to (Egerstedt, 2000) for more details on the design of this
local path planner.

While the robot is moving toward its goal (i.e., Voronoi
region center), if an obstacle appears in its way, the robot
slides on the surface of the obstacle, until it gets to a posi-
tion from which the goal is closer than it was before detect-
ing the obstacle (i.e., the obstacle is already passed), then
it switches back to the standard goal following. If at some
point the robot gets very close to the obstacle, a pure repul-
sive behavior emerges which avoids collision with the ob-
stacle.

Remark 5. The hybrid controller used for local path plan-
ning is always able to pass obstacles and move toward the
reachable goals (Egerstedt, 2000). However, when the goal
is unreachable (i.e., inside of an obstacle or bounded by ob-
stacles), the path planner keeps moving the robot along the
borders of the obstacle. In this paper we let the robot move
around the obstacle as far as it is required, which will make
an average position closer to the goal. However, a useful al-
ternative is to stop the robot after one full cycle around the
obstacle, as proposed by Breitenmoser et al. (2010).

Simulations
In this section, we will study the performance of the
proposed StaCo approach in comparison to the classical
Voronoi-based coverage approach in nonconvex environ-
ments introduced by Breitenmoser et al. (2010). Firstly,
the simulation environment and the mobile robot platform
will be introduced. Secondly, the efficiency of the StaCo ap-
proach compared to the classical approach will be illustrated
in two case studies.
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Simulation Setting
For examining the performance of the proposed coverage
approach, Sim.I.am, a MATLAB-based educational soft-
ware developed by de la Croix and Egerstedt (2013), is used
in different coverage scenarios. The mobile robot platform,
which is implemented in Sim.I.am, is the Khepera III (K3).
The K3 is equipped with 11 infrared (IR) range sensors, nine
of which are located in a ring around the robot and two are
located on the underside of the robot. The IR sensors are
complemented by a set of five ultrasonic sensors.

In the previous work of the authors (Staňková et al.,
2013) the simulations of the proposed approach were car-
ried out with a group of mass-less robots (i.e., neither the dy-
namic nor the kinematic model of the real-world robots were
considered). In contrast, in the new simulator the robots
(the nonholonomic Khapera robots) are much more realis-
tic. Therefore, compared to (Staňková et al., 2013) and vast
majority of papers on the Voronoi coverage, simulations in
this paper are much closer to the real-world scenarios.

In the simulation environment, we have access to the array
of nine IR sensors that encompass the K3. IR range sensors
are effective in the range 0.02 m to 0.2 m only. Since the
K3 has a differential wheel drive, it has to be controlled by
specifying the angular velocities of the right and left wheels
(vl, vr). Therefore, the conversion between a unicycle in-
put, the forward and angular speeds, to differentially driven
inputs are implemented based on following equation for the
ith robot:

ẋ1
i = R(vl + vr) cos(θ)

ẋ2
i = R(vl + vr) sin(θ) (5)

θ̇i = R(vr − vl)L

where x1
i and x2

i denote coordination of the robot in hori-
zontal and vertical directions, R is the radius of the wheels,
and L is the distance between the wheels, which are known
a priori. Wheel encoders are used to provide required infor-
mation to the odometry of robot. The relevant information
needed for odometry is the radius of the wheel, the distance
between the wheels, and the number of ticks per full turn
of the wheel, which are all implemented internally in the
simulator. Note that the equations (5) extend equation (4)
in which the robot is considered to have no mass and to be
holonomic.

The embedded controller described previously in the form
of a hybrid automaton (Figure 4) is used to deal with the
local path planning tasks. The transition for moving from
“go to goal” behavior to the “sliding mode” happens when a
robot is in a distance less than 15 cm, and it will move to the
pure repulsive behavior (i.e., obstacle avoidance) when the
robot is closer than 6 cm to the obstacle.

The prediction time in which the leading robot finds the
approximate best movement direction (Figure 3) is a period
of 3 seconds and the robot calculates the final value for mov-
ing to 8 different directions (i.e., right, up-right, up, up-left,
..., down right) for this period of time. Note that the way in
which the leading robot computes its next step agrees with

the concept of the model predictive control known from the
optimal control theory literature (Mayne et al., 2000).

Results
Efficient coverage behavior of StaCo in convex environ-
ments is reported in our previous work (Staňková et al.,
2013): As shown in Figure 1, the StaCo approach outper-
forms the classical coverage approaches in most of the envi-
ronmental settings, and in the worst case StaCo and classical
techniques have equal performance.

We use two case studies to show the high performance of
StaCo in coverage of nonconvex environments and simulta-
neously we compare the results with the approach proposed
by Breitenmoser et al. (2010).

The two non-trivial case studies for examining the StaCo
approach in nonconvex environments are illustrated in Fig-
ure 5. In both scenarios five robots are initiated at random
positions. The obstacles make the environment nonconvex
which consequently makes an efficient coverage difficult.

(a) (b)

Figure 5: Initial settings for two experiments with five
robots: (a) Scenario I. (b) Scenario II.

In both scenarios (Figures 5a and 5b), first the classical
coverage approach for nonconvex environments is applied.
In this approach, robots move toward their goals while a
local path planner is used for obstacle avoidance and ob-
stacle following purposes. Afterwards, we apply the StaCo
approach to the same initial configurations, where one (ran-
domly selected) robot acts as the leader. In Figure 5a, the
robot in the center and in Figure 5b, the leftmost robot are
the leaders. As explained earlier, the leader enforces its de-
cisions on the other robots via its movements in the environ-
ment.

The coverage results of initial configurations shown in
Figs. 5a and 5b are shown in Figures 6a-6c and Figures 6d-
6e, respectively. Firstly, the robot trajectories for both clas-
sical coverage and StaCo approaches are shown (Figures 6a
and 6d). Subsequently, the final configuration and the fi-
nal Voronoi tessellation for each approach is illustrated (Fig-
ures 6b and 6e). Finally, the cost functions (2) for both ap-
proaches are plotted in Figures 6c-6f with respect to time.

As shown in Figures 6c and 6f, the StaCo approach finds
the optimal configuration in a short time, while the clas-
sical approach is unable to find this optimal configuration
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(a) (b) (c)

(d) (e) (f)

Figure 6: Experimental comparison between classical coverage approach (dash-dotted line) and StaCo approach (continuous
line): (a) robot trajectories for Scenario I. (b) final robot configurations and final Voronoi tessellations for Scenario I. (c)
cost function comparison for Scenario I. (d) robot trajectories for Scenario II. (e) final robot configurations and final Voronoi
tessellations for for Scenario II. (f) cost function comparison for Scenario II.

even in the long term. From the trajectories of the individ-
ual robots (Figures 6a and 6d) it can be seen that while the
classical approach moves the robots toward the optimal po-
sitions blindly (they can not predict whether obstacles will
cause problems or not), in the StaCo approach, the leader
which has access to more information and higher computa-
tion abilities, can enforce the entire group to move to the
optimal configuration more efficiently.

Discussion, Conclusions & Future Research
In this paper we have shown the high potential of the StaCo
approach in the coverage of a nonconvex environment. In
the situations in which the leader can predict the long-term
behavior of the other robots, the StaCo approach outper-
forms the standard approaches for coverage of nonconvex
environments. Moreover, we have shown that the StaCo
approach outperforms the standard approaches even if the
prediction capabilities of the leading robot are very limited.
Extending the leader’s prediction horizon will then lead to
even better results. The main advantage of StaCo compared
to any possible centralised coverage approach, is that StaCo
does not rely on any direct communication between robots.

Leader’s predictions might become computationally ex-
pensive especially in an environment with many obstacles
and/or if the robotic swarm is very large. More advanced
optimization methods might then have to be applied to over-
come this possible drawback. Our next research step is to
address this issue.

Moreover, we plan to implement StaCo in a real-robot set-
ting using a combination of TurtleBots as the leaders and
e-pucks as the followers. Although we do not expect imple-
mentation problems due to the available advanced robots,
we need to explore in detail the level of StaCo precision that
can be achieved in in-field scenarios that have different en-
vironmental and technical conditions.

Last but not least, our future research will include express-
ing the optimal leader’s behavior in explicit form and ex-
tending the number of leaders (in such a case the hierarchy
between the individual leaders might play a role).
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Staňková, K. and De Schutter, B. (2011). Stackelberg equi-
libria for discrete-time dynamic games – Part I: Determin-
istic games. In Proceedings of the 2011 IEEE Interna-
tional Conference on Networking, Sensing and Control,
pages 249 – 254, Delft, The Netherlands.
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