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Abstract. Existing reinforcement learning approaches are often ham-
pered by learning tabula rasa. Transfer for reinforcement learning tack-
les this problem by enabling the reuse of previously learned results, but
may require an inter-task mapping to encode how the previously learned
task and the new task are related. This paper presents an autonomous
framework for learning inter-task mappings based on an adaptation of
restricted Boltzmann machines. Both a full model and a computation-
ally efficient factored model are introduced and shown to be effective in
multiple transfer learning scenarios.
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1 Introduction

Reinforcement learning (RL) has become a popular framework for autonomous
behavior generation from limited feedback [4,13], but RL methods typically learn
tabula rasa. Transfer learning [17] (TL) aims to significantly improve learning
by providing informative knowledge from a previous (source) task to a learning
agent in a novel (target) task. If the agent is to be fully autonomous, it must:
(1) automatically select a source task, (2) learn how the source task and target
tasks are related, and (3) effectively use transferred knowledge when in the target
task. While fully autonomous transfer is not yet possible, this paper advances
the state of the art by focusing on (2) above. In particular, this work proposes
methods to automatically learn the relationships between pairs of tasks and then
use this learned relationship to transfer effective knowledge.

In TL for RL, the source task and target task may differ in their formulations.
In particular, when the source task and target task have different state and/or
action spaces, an inter-task mapping [18] that describes the relationship between
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the two tasks is needed. While there have been attempts to discover this mapping
automatically, finding an optimal way to construct this mapping is still an open
question. Existing technique either rely on restrictive assumptions made about
the relationship between the source and target tasks, or adopt heuristics that
work only in specific cases.

This paper introduces an autonomous framework for learning inter-task map-
pings based on restricted Boltzmann machines [1] (RBMs). RBMs provide a
powerful but general framework that can be used to describe an abstract com-
mon space for different tasks. This common space is then used to represent the
inter-task mapping between two tasks and can successfully transfer knowledge
about transition dynamics between the two tasks.

The contributions of this paper are summarized as follows. First, a novel
RBM is proposed that uses a three-way weight tensor (i.e., TrRBM). Since this
machine has a computational complexity of O(N3), a factored version (i.e., FTr-
RBM) is then derived that reduces the complexity to O(N2). Experiments then
transfer samples between pairs of tasks, showing that the proposed method is ca-
pable of successfully learning a useful inter-task mapping. Specifically, the results
demonstrate that FTrRBM is capable of:

1. Automatically learning an inter-task mapping between different MDPs.
2. Transferring informative samples that reduce the computational complexity

of a sample-based RL algorithm.
3. Transferring informative instances which reduce the time needed for a

sample-based RL algorithm to converge to a near-optimal behavior.

2 Preliminaries

This section provides a brief summary of background knowledge needed to un-
derstand the remaining of the paper.

2.1 Reinforcement Learning

In an RL problem, an agent must decide how to sequentially select actions
to maximize its expected return. Such problems are typically formalized as a
Markov decision process (MDP), defined by 〈S,A, P,R, γ〉. S is the (potentially
infinite) set of states, A is the set possible actions that the agent may execute,
P : S×A×S → [0, 1] is a state transition probability function, describing the task
dynamics, R : S×A×S → R is the reward function measuring the performance
of the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S × A → [0, 1]
is defined as a probability distribution over state action pairs, where π(s, a)
represents the probability of selecting action a in state s. The goal of an RL
agent is to find a policy π� which maximizes the cumulative future rewards. It
can be attained by taking greedy actions according to the optimal Q-function
Q�(s, a) = maxπ Eπ [

∑∞
t=0 γ

tR(st, at)|s = s0, a = a0]. In tasks with continuous
state and/or action spaces, Q and π cannot be represented in a table format,
typically requiring sampling and function approximation techniques. This paper
uses one such common technique, Least Squares Policy Iteration [4] (LSPI).
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2.2 Transfer Learning for Reinforcement Learning

Transfer learning (TL) aims to improve learning times and/or behavior of
an agent by re-using knowledge from a solved task. Most often, TL uses a
single source task, T1, and a single target task, T2. Each task is described
by MDPs, which may differ significantly. Specifically, task T1 is described by
〈S1, A1, P1, R1, γ1〉 and T2 by 〈S2, A2, P2, R2, γ2〉. To enable transfer between
tasks with different state and/or action spaces, an inter-task mapping χ is re-
quired, so that information from a source task is applicable to the target task.
Typically, χ is divided into two mappings: (1) an inter-state mapping χS , and
(2) an inter-action mapping χA. The first relates states from the source task
to the target task, while the second maps actions from the source task to the
target task. This paper learns such mappings for samples in a pair of tasks.
We define the inter-task mapping to relate source and target transitions (i.e.,
χ : S1×A1×S1 → S2×A2×S2). This allows the algorithm to discover dynamical
similarities between tasks and construct the an inter-task mapping accordingly,
enabling the transfer of near-optimal1 transitions.

2.3 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are energy-based models for unsuper-
vised learning. They use a generative model of the distribution of the data for
prediction. These models are stochastic with stochastic nodes and layers, making
them less vulnerable to local minima [15]. Further, due to multiple layers and the
neural configurations, RBMs possess excellent generalization abilities. For exam-
ple, they have successfully discovered informative hidden features in unlabeled
data [2]. Formally, an RBM consists of two binary layers: one visible and one
hidden. The visible layer represents the data and the hidden layer increases the
learning capacity by enlarging the class of distributions that can be represented
to an arbitrary complexity [15]. This paper follows standard notation where i
represents the indices of the visible layer, j those of the hidden layer, and wi,j

denotes the weight connection between the ith visible and jth hidden unit. We
further use vi and hj to denote the state of the ith visible and jth hidden unit,
respectively. According to the above definitions, the energy function is given by:

E(v, h) = −
∑

i,j

vihjwij −
∑

i

vibi −
∑

j

hjbj (1)

where bi and bj represent the biases. The first term,
∑

i,j vihjwij , represents the
energy between the hidden and visible units with their associated weights. The
second,

∑
i vibi, represents the energy in the visible layer, while the third term

represents the energy in the hidden layers. The joint probability of a state of the
hidden and visible layers is defined as:

P (v, h) ∝ exp (−E(v, h))

1 When using function approximation techniques, RL algorithms typically learn near-
optimal behaviors.
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To determine the probability of a data point represented by a state v, the
marginal probability is used, summing out the state of the hidden layer:

p(v) =
∑

h

P (v, h) ∝
∑

h

⎛

⎝exp

⎛

⎝−
∑

i,j

vihjwij −
∑

i

vibi −
∑

j

hjbj

⎞

⎠

⎞

⎠ (2)

The above equations can be used for any given input to calculate the probability
of either the visible or the hidden configuration to be activated. The calculated
probabilities can then be used to perform inference to determine the conditional
probabilities in the model.

To maximize the likelihood of the model, the gradient of the log-likelihood
with respect to the weights from the previous equation must be calculated. The
gradient of the first term, after some algebraic manipulations, can be written as:

∂ log (
∑

h exp (−E(v, h)))

∂wij
= vi · P (hj = 1|v)

However, computing the gradient of the second term (i.e.,
∂ log(

∑
x,y exp(−E(x,y)))

∂wij
= P (vi = 1, hj = 1)) is intractable.

2.4 Contrastive Divergence Learning

Because of the difficulty of computing the derivative of the log-likelihood gra-
dients, Hinton proposed an approximation method called contrastive diver-
gence (CD) [6]. In maximum likelihood, the learning phase actually mini-
mizes the Kullback-Leiber (KL) measure between the input data distribution
and the approximate model. In CD, learning follows the gradient of CDn =
DKL(p0(x)||p∞(x)) − DKL(pn(x)||p∞(x)) where pn(.) is the distribution of a
Markov chain starting from n = 0 and running for a small number of n steps.
To derive the update rules of wij for the RBM, the energy function is re-written

in a matrix form as E(v,h;W) = −hTWv. v = [v1, . . . , vnv ], where vi is the
value of the ith visible neuron and nv is the index of the last visible neuron.
h = [h1, . . . , hnh

], where hj is the value of the jth hidden neuron and nh is
the index of the last hidden neuron. W ∈ R

nh×nv is the matrix of all weights.
Since the visible units are conditionally independent given the hidden units and
vice versa, learning in such an RBM is easy. One step of Gibbs sampling can be
carried in two half-steps: (1) update all the hidden units, and (2) update all the
visible units. Thus, in CDn the weight updates are done as follows:

wτ+1
ij = wτ

ij + α
(〈
〈hjvi〉p(h|v;W)

〉
0
− 〈hjvi〉n

)

where τ is the iteration, α is the learning rate,
〈
〈hjvi〉p(h|v;W)

〉
0

=
1
N

∑N
n=1 v

(n)
i P (h

(n)
i = 1|h;W), and 〈hjvi〉n = 1

N

∑N
n=1 v

(n)Gl

i P (h
(n)Gl

j |h(n)Gl ;
W) with N the total number of input instances and Gl indicating that the
states are obtained after l iterations of Gibbs sampling from the Markov chain
starting at p0(.). In this work, a variant of the CD algorithm is used to better
learn the neural configuration of the proposed FTrRBM model and is explained
in Section 3.2.
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Fig. 1. This picture diagrams the overall structure of the proposed full model. The
three-way weight tensor is shown in the middle with its connections to the visible
source layer, visible target layer, and hidden layer.

3 RBMs for Transfer Learning

The core hypothesis of this paper is that RBMs can automatically build an inter-
task mapping using source task and target task samples, because an RBM can
discover the latent similarities between the tasks, implicitly encoding an inter-
task mapping. To construct an algorithm to test this hypothesis, the TrRBM
framework consists of three layers as shown in Figure 1. The first is the source
task visible layer (describing source samples), the second is the target task visible
layer (describing target samples), and the third is the hidden layer that encodes
similarities between the two tasks. This hidden layer therefore encodes a type of
inter-task mapping, which will be used to transfer samples from the source to
the target.

The next section presents a derivation of the full model. However, this model
is computationally expensive, and a factored version of the model is developed
in Section 3.2.

3.1 Transfer Restricted Boltzmann Machine

TrRBM is used to automatically learn the inter-task mapping between source
and target tasks. TrRBM consists of three layers: (1) a visible source task task
layer, (2) a visible target task layer, and (3) a hidden layer. The number of
units in the visible layers is equal to dimensionality of each of the source and
target task transitions (i.e., 〈sit, ait, si′t 〉) for i ∈ {1, 2}, respectively. Since the
inputs might be of continuous nature, the units in the visible units are set to be
Gaussians with means, which are learned as described later in this section. These
three layers are connected with a three-way weight tensor. Formally, the visible
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source layer is VS = [v
(1)
S , . . . , v

(VS)
S ], where v

(i)
S is a Gaussian N (μ

(i)
S , σ

(i)2
S ), with

a mean μ
(i)
S and a variance σ

(i)2
S . The visible target layer VT = [v

(1)
T , . . . , v

(VT )
T ],

where v
(k)
T is a Gaussian N (μ

(j)
T , σ

(j)2
T ), with a mean μ

(j)
T and a variance σ

(j)2
T ,

and the hidden layer H = [h(1), . . . , h(H)] consists of sigmoidal activations.
Next, the mathematical formalizations of TrRBM are represented.2

Energy of the Full Model. The energy function, analogous to Equation 1,
that is needed to determine the update rules is as:

E1(VS ,VT ,H) = −(vS,α − aα)Σ
αα
S (vαS − aα)− bβh

β

− (vT,γ − cγ)Σ
γγ
T (vγT − cγ)−WαβγΣ

γγ
T vγTh

βΣαα
S vαS

where v.,α is the covector of v.αs , aα is the covector of the visible layer biases
aα, bβ is the covector of the hidden layer biases bβ , and cγ is the covector of the
visible layer biases cγ . Σαα

. is a second order diagonal tensor representing the
variances of the different layers, and Wαβγ is the third order tensor representing
the weight connections.

Inference in the Full Model. Because there are no connection between the
units in each of the three layers, inference is conducted in parallel. Formally,

μα::
S = Wα::

βγ v
γ
Th

β + aα::

μ::γ
T = W ::γ

αβh
βvαS + b::γ

s:β: = W :β:
αγ v

α
T v

α
S + c:β:

where α :: are slices in the tensor field in the α direction, : β : are slices in the
tensor field in the β direction, and :: γ are these in the γ direction. Therefore,

p(VS |VT ,H) = ×α N (μα::
S , Σ:αα)

p(VT |VS ,H) = ×γ N (μ::γ
T , Σ:γγ)

p(H|VT ,VS) = ×β sigmoid(s:β:)

where ×. are tensor products in the corresponding · fields.

Update Rules of the Full Model. In this section, the update rules to learn
the weights and the biases of TrRBM are described. These rules are attained by
deriving the energy function of Equation 1 with respect to weight tensor yielding
the following:

2 A word on notation: Because of space concerns, we resorted to Einstein’s 1916
tensor index notation and conventions [5] for the mathematical details. As we real-
ize this is not standard in ML literature, a more expansive derivation using more
standard notation can be found in the expanded version of this paper.
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∇Wαβγ
=

〈
vαThβvS,α

〉

0
−
〈
vαThβvS,α

〉

λ

Δaα ∝ 〈vαS 〉0 − 〈vαS〉λ
Δbβ ∝ 〈hβ〉0 − 〈hβ〉λ
Δcγ ∝ 〈vγT 〉0 − 〈vγT 〉λ

where 〈.〉0 is the expectation over the original data distribution and 〈.〉λ is the
expected reconstruction determined by a Markov Chain of length λ, attained
through Gibbs sampling that started at the original data distribution.

3.2 Factored Transfer Restricted Boltzmann Machine

TrRBM, as proposed in the previous section, is computationally expensive. Be-
cause TL is a speedup technique, any TL method must be efficient or it will not
be useful in practice. This section presents a factored version of the algorithm,
FTrRBM. In particular, the three-way weight tensor is factored into sums of
products through a factoring function, thus reducing the computational com-
plexity from O(N3) for TrRBM to O(N2) for FTrRBM.

Energy of the Factored Model. As mentioned previously, the three-way
weight tensor among the different layers is now factored. Therefore, the energy
function is now defined as:

E(VS ,VT ,H) = −(vS,α − aα)Σ
αα
S (vαS − aα)− bβh

β

− (vT,γ − cγ)Σ
γγ
T (vγT − cγ)− w

(VS)
fα Σαα

S vαSw
(h)
fβ w

(VT )
fγ Σγγ

T vγT

where f is the number of factors used to decompose the weight tensor.

Inference in the Factored Model. Inference in the factored version is done
in a similar manner to that of the full model with different inputs for the nodes.
In particular, because there are no connections between the units in the same
layer, inference is done in parallel for each of the nodes. Mathematically these
are derived as:

μ:α
S = w

(VS):α
f w

(h)
fβ h

βw
(VT )
fγ vγT + a:α

μ:γ
T = w

(VT ):γ
f w

(h)
fβ h

βw
(VS)
fα vαS + b:γ

s:β = w
(h):β
f w

(VS)
fα vαSw

(VT )
fγ vγT + c:β

Update Rules for the Factored Model. Learning in the factored model is
done using a modified version of Contrastive Divergence. The derivatives of the
energy function are computed again, this time yielding:
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Δw
(VS)
:fα ∝

〈

Σα:
S vα:S w

(h)
:fβh

βw
(VT )
:fγ Σγγ

T vγT

〉

0

−
〈

Σα:
S vα:S w

(h)
:fβh

βw
(VT )
:fγ Σγγ

T vγT

〉

λ

Δw
(VT )
:fγ ∝

〈

Σγ:
S vγ:T w

(h)
:fβh

βw
(VS)
:fα Σαα

S vαS

〉

0

−
〈

Σγ:
S vγ:T w

(h)
:fβh

βw
(VS)
:fα Σαα

S vαS

〉

λ

Δw
(h)
:fβ ∝

〈

h:βw
(VT )
:fγ Σγγ

T vγTw
(VS)
:fα Σαα

S vαS

〉

0

−
〈

h:βw
(VT )
:fγ Σγγ

T vγTw
(VS)
:fα Σαα

S vαS

〉

λ

where f is the index running over the number of factors, 〈.〉0 is the expectation
from the initial probability distribution (i.e., data), and 〈.〉λ is the expectation
of the Markov chain, starting at the initial probability distribution, and sampled
λ steps using a Gibbs sampler. The update rules for the biases are the same as
for the full model.

Unfortunately, learning in this model cannot be done with normal CD. The
main reason is that if CD divergence was used as is, FTrRBM will learn to
correlate random samples from the source task to random samples in the target.
To tackle this problem, as well as ensure computational efficiency, a modified
version of CD is proposed. In Parallel Contrastive Divergence (PCD), the data
sets are first split into batches of samples. Parallel Markov chains run to a
certain number of steps on each batch. At each step of the chain, the values of
the derivatives are calculated and averaged to perform a learning step. This runs
for a certain number of epochs. At the second iteration the same procedure is
followed but with randomized samples in each of the batches. Please note that
randomizing the batches is important to avoid fallacious matchings between
source and target triplets.

4 Using the Inter-task Mapping

Using FTrRBMs for transfer in RL is done using two phases. First, the inter-task
mapping is learned through source and target task samples. Second, samples are
transferred from the source to the target, to be used as starting samples for a
sample-based RL algorithm (which proceeds normally from this point onward).
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Algorithm 1. Overall Transfer Framework

1: Input: Random source task samples DS = {〈s(i)S , a
(i)
S , s

′(i)
s 〉}mi=1, random target

task samples DT = {〈s(j)T , a
(j)
T , s

′(j)
T 〉}nj=1, optimal source task policy π�

S

2: Use DS and DT to learn the intertask mapping using FTrRBM.
3: Sample source task according to π�

S to attain D�
S .

4: Use the learned RBM to transfer D�
S and thus attain D0

T .
5: Use D0

T to learn using a sample-based RL algorithm.
6: Return: Optimal target task policy π�

T .

4.1 Learning Phase

When FTrRBM learns, weights and biases are tuned to ensure a low reconstruc-
tion error between the original samples and the predicted ones from the model.
The RBM is initially provided with random samples from both the source and

the target tasks. Triplets from the source task (i.e., {〈s(i)1 , a
(i)
1 , s

′(i)
1 〉}mi=1) and

target task (i.e., {〈s(j)2 , a
(j)
2 , s

′(j)
2 〉}nj=1) are inputs to the two visible layers of the

RBM. These are then used to learn good hidden and visible layer feature rep-
resentations. Note that these triplets should come from random sampling—the
RBM is attempting to learn an inter-task mapping that covers large ranges in
both the source and target tasks’ state and actions spaces. If only “good” sam-
ples were used the mapping will be relevant in only certain narrow areas of both
source and target spaces.

4.2 Transfer Phase

After learning, the FTrRBM encodes an inter-task mapping from the source to
the target task. This encoding is then used to transfer (near-)optimal sample
transitions from the source task, forming sample transitions in the target task.
Given a (near-)optimal source task policy, π�

S , the source task is sampled greedily
according to π�

S to acquire optimal state transitions. The triplets are passed
through the visible source layer of FTrRBM and are used to reconstruct initial
target task samples at the visible target layer, effectively transferring samples
from one task to another. If the source and target task are close enough3, then
the transferred transitions are expected to aid the target agent in learning an
(near-)optimal behavior. They are then used in a sample based RL algorithm,
such as LSPI to learn an optimal behavior in the target task (i.e., π�

T ). The
overall process of the two phases is summarized in Algorithm 1.

(a) Inverted Pendulum (b) Cart Pole (c) Mountain Car

Fig. 2. Experimental domains

3 Note that defining a similarity metric between tasks is currently an open problem
and beyond the scope of this paper.
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5 Experiments and Results

To asses the efficiency of the proposed framework, experiments on different RL
benchmarks were performed. Two different transfer experiments were conducted
using the tasks shown in Figure 24.

5.1 Inverted Pendulum to Cart-Pole Transfer

To test the transfer capabilities of FTrRBMs, transfer was conducted from the
Inverted Pendulum (IP) (i.e., Figure 2(a)) to the (CP) (i.e., Figure 2(b)).

Source Task. The state variables of the pendulum are 〈θ, θ̇〉. The action space
is a set of two torques {−10, 10} in Newton meters. The goal of the agent is
again to balance the pole in an upright position with 〈θ = 0, θ̇ = 0〉. A reward
of +1 is given to the agent when the pole’s angle is in − π

12 < θ < π
12 and −1

otherwise.

Target Task. The target task was a CP with, l = 0.5. The target action space,
transition probability and reward functions are different from the source task.
The action space of the target agent was changed to AT = {−10, 0, 10} and the
reward function was changed to cos(θ), giving the agent a maximum value of +1
when the pole is the upright position.

Experiment. 3000 random source task samples and 2000 target task samples
were used to learn the inter-task mapping. The RBM contained 80 hidden units
and 25 factors. Learning was performed as before, with FTrRBM converging
in about 3.5 minutes. Transfer was accomplished and tested similarly to the
previous experiment. The results are reported in Figure 3. It is again clear that
transfer helps the target agent in his learning task. LSPI again converged with
fewer iterations when using transfer. LSPI convergence time also decreased on
different transferred samples. For example, LSPI converged with only 9 iterations
on 5000 transferred samples compared to 12 using random ones and with 17
compared to 19 on 8000 transferred and random samples, respectively. The time
needed to reach near optimal behavior was reduced from 22 to 17 minutes by
using a transferred policy to initialize LSPI. Therefore,

ConclusionI: FTrRBM is capable of learning a relevant inter-task mapping
between a pair of dissimilar tasks.

5.2 Mountain Car to Cart-Pole Transfer

A second experiment shows the transfer performance of FTrRBMs between pairs
even less similar tasks than in the previous section. The target task remained the

4 The samples required for learning the inter-task mapping were not measured as extra
samples for the random learner in the target. Please note, that even if these were
included the results as seen from the graphs will still be in favor of the proposed
methods.
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Fig. 3. Transfer versus no transfer comparison on different tasks

same cart-pole as before, while the source task was chosen to be the Mountain-
Car (MC) problem. Although very different, successful transfer results between
these tasks had previously been shown in our previous work [3].

Source Task. The system is described with two state variable 〈x, ẋ〉. The agent
can choose between two actions {−1, 1}. The goal of the agent is to drive the car
up the hill to the end position. The car’s motor is not sufficient to drive the car
directly to its goal state — the car has to oscillate in order to acquire enough
momentum to drive to the goal state. The reward of the agent is −1 for each
step the car did not reach the end position. If the car reaches the goal state, the
agent receives a positive reward of +1 and the episode terminates. Learning in
the source task was performed using SARSA.

Experiment. 4000 random source task samples and 2000 target task samples
were used to lean the inter-task mapping as before. The RBM contained 120
hidden units and 33 factors and converged in about 3.5 minutes to the lowest
reconstruction error. The results of transfer (performed as before) are reported in
Figure 4. It is clear that transfer helps even when tasks are highly dissimilar. As
before, LSPI converged with fewer iterations when using transfer than without
using transfer. For example, LSPI converged with only 10 iterations on 5000
transferred samples compared to 12 using random ones. LSPI converged to an
optimal behavior in about 18 minutes compared to 22 minutes for the non-
transfer case. Therefore,

ConclusionII: FTrRBM is capable of learning a relevant inter-task mapping
between a pair of highly dissimilar tasks.
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Fig. 4. Transfer versus no transfer comparison on highly dissimilar tasks

5.3 FTrRBM Robustness

To provide a comprehensive comparison between FTrRBM and the work in [3],
two additional experiments were conducted. The source task was either the IP or
the MC, while the target task was the CP system. 1000 and 500 target samples
were used to learn an intertask mapping using either FTrRBM or a method
from our previous [3]. Having these intertask mappings, (near-)optimal source
task samples5 were then transferred to provide an initial batch for the target RL
agent to learn on. Performance, measured by the number of successful control
steps in the target, was then reported in Figures 5 and 6.

Figure 5 shows two comparison graphs. The left graph reports the performance
when using 1000 target samples to learn the intertask mapping. These clearly
demonstrate that FTrRBM performs better than sparse coded intertask map-
pings, where for example, FTrRBM attains about 570 control steps compared
to 400 in the sparse coded case at 5000 transferred samples. As the number of
control steps increases, the performance of both methods also increases, to reach
around 1300 control steps for FTrRBM compared to 1080 in the sparse coded
case at 10000 transferred samples. The right graph shows the results of the same
experiments, however, when using only 500 target samples to learn the intertask
mapping. Again these results show that apart from the first two points, FTrRBM
outperforms the Sparse coded intertask mapping.

In Figure 6 the results of the same experiments on highly dissimilar tasks are
shown. In the left graph, 1000 target samples were used to learn an intertask
mapping using either FTrRBM or the approach of [3]. The results clearly mani-
fest the superiority of FTrRBM compared to the sparse coded approach, where
at 5000 transferred samples FTrRBM attains 600 control steps, with 410 steps
for the sparse coded intertask mapping. This performance increases to reach

5 The optimal policy in the source was again attained using SARSA.
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Fig. 5. These graphs compare the performance of transfer from IP to CP using FTr-
RBM or Sparse Coded inter-task mappings [3]. The left graph shows the results of
transfer when using 1000 target samples to learn the intertask mapping, while the
right presents the results when using 500 samples to learn such a mapping.

about 1300 control steps for FTrRBM with 1050 for the sparse coded approach
on 10000 transferred samples. In the right graph the same experiments were
repeated by using 500 samples to learn the intertask mapping. It is again clear
that FTrRBM outperforms the approach of [3].

6 Related Work

Learning an inter-task mapping has been of major interest in the transfer learn-
ing community [17] because of its promise of a fully autonomous speed-up
method for lifelong learning. However, the majority of existing work assumes
that 1) the source task and target task are similar enough that no mapping is
needed, or 2) an inter-task mapping is provided to the agent.

For example, many authors have considered transfer between two agents which
are similar enough that learned knowledge in the source task can be directly
used in the target task. For instance, the source and target task could have
different reward functions (e.g., compositional learning [12]) or have different
transition functions (e.g., changing the length of a pole over time in the cart
pole task [11]). More difficult are cases in which the source task and target
task agents have different state descriptions or actions. Some researchers have
attempted to allow transfer between such agents without using an inter-task
mapping. For example, a shared agent space [7] may allow transfer between such
pairs of agents, but requires the agents to share the same set of actions and
an agent-centric mapping. The primary contrast between these methods and
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Fig. 6. These graphs compare the performance of transfer from MC to CP using FTr-
RBM or Sparse Coded inter-task mappings [3]. The left graph shows the results of
transfer when using 1000 target samples to learn the intertask mapping, while the
right presents the results when using 500 samples to learn such a mapping. It is clear
that FTrRBM transfer outperforms that described in [3].

the current work is that this paper is interested in learning a mapping between
states and actions in pairs of tasks, rather than assuming that it is provided, or
rendered unnecessary because of similarities between source task and target task
agents, a requirement for fully autonomous transfer. There has been some recent
work on learning such mappings. For example, semantic knowledge about state
features between two tasks may be used [8,10], background knowledge about the
range or type of state variables can be used [14,19], or transition models for each
possible mapping could be generated and tested [16].

There are currently no general methods to learn an inter-task mapping
without requiring 1) background knowledge that is not typically present in RL
settings, or 2) an expensive analysis of an exponential number (in the size of
the action and state variable sets) of inter-task mappings. This paper overcomes
these problems by automatically discovering high-level features and using them
to transfer knowledge between agents without suffering from an exponential
explosion. The closest work to the proposed method is that of our previous
work [3]. This method is based on sparse coding, sparse projection, and sparse
Gaussian processes to learn an inter-task mapping between MDPs with arbitrary
variations. However, the we relied on a Euclidean distance correlation between
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source task and target task triplets, which may fail in highly dissimilar tasks.
The work in the current paper overcomes these problems by adopting a more
robust feature extraction technique and by avoiding the need for such a distance
correlation as shown in the experiments of Section 5.3.

Others have focused on transferring samples between tasks. For instance,
Lazaric et al. [9] transfers samples in batch reinforcement learning using a com-
pliance measure. The main difference to this work is that we neither assume
any similarities between the transition probabilities, nor restrict the framework
to similar state and/or action feature representations. In contrast to all exist-
ing methods (to the best of our knowledge), this paper allows for differences
between all variables describing Markov Decision Processes for the source and
target tasks and robustly learns an inter-task mapping, rather than a mapping
based on state features.

7 Discussion and Conclusions

This paper introduces a theoretically grounded method for learning an inter-task
mapping based on RBMs. The approach was validated through experimental ev-
idence. The proposed technique successfully learned a useful inter-task mapping
between highly dissimilar pairs of tasks. Furthermore, a comparison between the
proposed technique and our earlier work [3] showed that FTrRBM outperforms
sparse coded inter-task mappings when fewer samples are available.

Although successful, the approach is not guaranteed to provide useful trans-
fer. To clarify, the reward was not included in the definition of the inter-task
mapping, but when transferring near-optimal behaviors sampled according to
near-optimal policies such rewards are implicitly taken into account and thus,
attaining successful transfer results.

Despite that these experiments showed transfer between tasks with different
reward functions, negative transfer may occur if the rewards of the source task
and target tasks were highly dissimilar. Such a mismatch may lead to an incor-
rect mapping because the reward is not considered in the presented method. A
solution to this potential problem is left for future work, but will likely require
incorporating the sampled reward into the current approach.

A second potential problem may occur during the learning phase of FTrRBM,
which could be traced back to quality of the random samples. If the number of
provided samples is low and very sparse6, the learned mapping may be uninfor-
mative. This problem is also left for future work, but could possibly be tackled
by using a deep belief network to increase the level of abstraction.

Acknowledgments. This work was supported in part by NSF IIS-1149917.

6 Sparse in this context means that the samples arrive from very different locations in
the state-space and areas of the state space are not sufficiently visited.
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4. Buşoniu, L., Babuška, R., De Schutter, B., Ernst, D.: Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press, Boca Raton
(2010)

5. Einstein, A.: The Foundation of the General Theory of Relativity. Annalen
Phys. 49, 769–822 (1916)

6. Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation 14(8), 1771–1800 (2002)

7. Konidaris, G., Barto, A.: Autonomous shaping: knowledge transfer in reinforcement
learning. In: Proceedings of ICML (2006)

8. Kuhlmann, G., Stone, P.: Graph-based domain mapping for transfer learning in
general games. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
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