
Chapter IV

Software Engineering – Processes and Tools

Gerhard Weiss, Gustav Pomberger

Wolfgang Beer, Georg Buchgeher, Bernhard Dorninger, Josef Pichler,

Herbert Prähofer, Rudolf Ramler, Fritz Stallinger, Rainer Weinreich

Introduction 1

Software engineering traditionally plays an important role among the differ-
ent research directions located in the Software Park Hagenberg, as it provides
the fundamental concepts, methods and tools for producing reliable and high
quality software. Software engineering as a quite young profession and en-
gineering discipline is not limited to focus on how to create simple software
programms, but in fact introduces a complex and most of the time quite costly
lifecycle of software and derived products. Some efforts have been made to
define software engineering as a profession and to outline the boundaries of
this emerging field of research [PP04, Som04]. Several different definitions of
the term software engineering appeared since its first mentioning on a NATO
Software Engineering Conference1 in 1968. A good example of an early defi-
nition of the term software engineering which is often cited in the literature
is the following:

The practical application of scientific knowledge in the design and construction of
computer programs and the associated documentation required to develop, operate,
and maintain them. [Boe76]

Another generally accepted definition of software engineeering was given by
the IEEE Computer Society:

(1) The application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of engineering
to software. (2) The study of approaches as in (1). [IEE90]

1 Proceedings of the famous 1968 and 1969 NATO Software Engineering Workshops are
available at http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

158 Gerhard Weiss, Gustav Pomberger et al.

In a first, joint effort of a scientific and industrial initiative a commonly
accepted knowledge base had been created with the goal to define the bound-
aries of the modern software engineering profession. This “Software Engineer-
ing Body of Knowledge” (SWEBOK) [ABD+04] introduces the following ten
relevant Knowledge-Areas (KAs):

• Software requirements
• Software design
• Software construction
• Software testing
• Software maintenance
• Software configuration management
• Software engineering management
• Software engineering process
• Software engineering tools and methods
• Software quality

In fact, empirical studies show that software products continue to reflect
significantly lower quality than other industrial products and that software
projects fail significantly more often than other projects. This clearly indi-
cates that software production has not yet advanced from a handicraft to
industrial production. As state-of-the art research in the software domain
shows, this raises a very broad spectrum of research issues and themes. Soft-
ware production can not longer be seen as an activity where a single gifted
developer implements an unmated algorithm. Instead, to develop software
products means to follow a clear process composed of a large number of pos-
sibly complex activities which may be spatially and temporally distributed
across multiple development teams. Software continues to grow in size and
complexity, and software is involved in most everyday activities, such as mak-
ing a phone call, making payments and driving a car. An IEEE article titled
“Why software fails” [Cha05] states that a typical mobile phone contains
around two million lines of software code, and according to General Motors
the software used in a car will have 100 million lines of code in 2010. This
article also highlights the fact that failing software and IT projects tend to
seriously hazard the economic activity of companies, as software typically
implements and automates essential business activities. Identified reasons for
this failure are as follows:

• Unrealistic or unarticulated project goals
• Inaccurate estimates of needed resources
• Badly defined system requirements
• Poor reporting of the project’s status
• Unmanaged risks
• Poor communication among customers, developers, and users
• Use of immature technology
• Inability to handle the project’s complexity

IV Software Engineering – Processes and Tools 159

• Sloppy development practices
• Poor project management
• Stakeholder politics
• Commercial pressures

As several of these reasons indicate, a structured and precise defined set of
requirements represents the basis for communication about the development
progress, planned quality or changes within the products features over time.
One of the major responsibilities of a software project manager is to balance
the features and quality of software and the time and costs of development.
Software development projects often fail according to an unbalanced focus
on a specific aspect at the expense of others (e.g., a focus on the number of
demanded software features at the expense of the quality of the software to
be developed). Significant progress has been made over the past decades in
establishing methods and techniques that help to master demands on software
and the software development process. However, as the theory and practice
of software engineering shows, a pressing need remains for improving these
methods and techniques, inventing new ones, and proving their relevance in
an industrial context.

This chapter overviews selected R&D activities conducted in response
to this need at Software Competence Center Hagenberg GmbH (SCCH,
http://www.scch.at) during the previous years. The chapter’s focus is on
four related key topics in software science which are of particular practical
relevance:

• the software development process (Section 2)
• the quality of software (Section 3)
• architectures for software systems (Section 4)
• domain-specific languages and modeling (Section 5)

The work described in this chapter has been done in close cooper-
ation with the Institute of Business Informatics – Software Engineering
(Prof. Pomberger) and the Institute of System Software (Prof. Mössenböck)
from Johannes Kepler University (JKU) Linz, which both are long-standing
scientific partners of SCCH, with the intention to bridge the gap between lat-
est scientific know-how in the area of software engineering on the one hand
and software challenges companies are confronted with in their everyday busi-
ness on the other hand.

Software Process Engineering 2

Informally spoken, a software process is the set of activities, methods, and
practices that are used in the production and evolution of software. IEEE de-

160 Gerhard Weiss, Gustav Pomberger et al.

fines a process as “a sequence of steps performed for a given purpose” [IEE90]
and more detailed a software development process as “the process by which
user needs are translated into a software product (. . .)”. For our purposes a
software process can be defined as a set of activities, methods, practices, and
transformations that people use to develop and maintain software and the as-
sociated work products (see [PCCW93]). It is important to note that we use
the term software process intentionally in a broad view referring not only to
an organization’s overall software process, but to any process or sub-process
used by a software project or organization and any identifiable activity that
is undertaken to produce or support a software product or software service.
Besides planning, designing, coding, testing this view thus also includes ac-
tivities like estimating, inspecting, reviewing, measuring, and controlling.

From a business point of view, the processes that software organizations
apply to develop products and services play a critical role in the implemen-
tation of strategies and related plans and objectives. Organizations that are
able to control their processes are able to better predict characteristics of their
products and services as well as costs and schedules and can improve the ef-
fectiveness, efficiency, and—as a consequence—profitability of their business
[FPC97].

From an engineering and scientific point of view, software engineering is
emerging and maturing as an engineering discipline [Sha90, Was96]. Although
it is recognized that due to the great variations among application types
and organizational cultures it is impossible to be prescriptive of the software
process, the concept of software process is seen as one of the pillars of a
foundation for a software engineering discipline (see [Was96]). Software en-
gineering as an engineering discipline also comprises the scientific treatment
of the software engineering process (see e.g. [BD04]) in order to understand
and systematically improve the software engineering process so that software
systems can be built and evolved with high quality, on time and within bud-
get.

Software process management, on the other side, deals with the activi-
ties that are essential for managing the processes associated with developing,
maintaining, and supporting software products in a way, that the produced
products and services adhere to internal and external customer requirements
and that they support the business objectives of the organization producing
them. Key activities identified to be central to software process management
are process definition, process measurement , process control , and process im-
provement [FPC97].

The objectives of software process management are to ensure that defined
processes are followed and performing as expected, and to make improve-
ments to the processes in order to help meeting business objectives. From
an individual’s perspective, the objective of software process management is
to ensure that the processes he/she operates or supervises are predictable,
meet customer needs, and are continually being improved. From the overall

IV Software Engineering – Processes and Tools 161

organizational perspective, the objective is to ensure that the above objective
is fulfilled for every process within the organization (see [FPC97]).

With software becoming more and more important for our daily life at
increasing speed and with faster turnover cycles, in particular the field of
software process improvement as a means to deliver better quality products
and increase efficiency and effectiveness of software development has become
an important part of the software engineering discipline. As a consequence,
the work with software processes has emerged as a field of its own, similarly
to product development, but with the proper software process as the product
that has to be developed, kept up and maintained. As a consequence, it is no
longer appropriate to talk about software process improvement or software
process management, but about software process engineering, indicating that
the same quality models and process improvement and maintenance efforts
applied to software product development should be applied to the proper
software process work and its work products (see [Kin01]). Consequently
the terms software process management and software process engineering are
often used widely synonymously.

SCCH has carried out a series of application-oriented research projects
related to the concepts, models and methods of software process engineering,
namely:

• Project HighLight (ongoing): identification of the specific needs of small
and very small enterprises with respect to software process improvement;
development of a lightweight process improvement methodology; applica-
tion of a product line approach to software process modeling.

• Project Hephaistos (ongoing): identification of best practices for the inte-
gration of business-driven product lifecycle management and engineering-
focused product development in multi-product and product family con-
texts; current focus on the integration of product management, require-
ments management and architecture mangement, and change impact anal-
ysis.

• Project GDES-Reuse: enhancement of a process reference and process as-
sessment meta-model to integrate the concepts of continuous process ca-
pability and staged organizational reuse maturity; identification of the
relationship of reuse paradigms; development of a process reference model
for reuse and of an organizational reuse maturity model for industrial
engineering; development of methods for reuse assessment and reuse im-
provement measure identification and planning.

• Project SISB : development of a methodology for the evaluation of engi-
neering strategies as reference framework for process management; iden-
tification of “strategy objects” for industrial engineering; mapping and
validation of “strategy objects” against best practice process areas.

The remainder of this section shortly provides an overview on relevant con-
cepts related to the field of software process engineering. Based on this, we
present details and results of the above listed projects by identifying se-

162 Gerhard Weiss, Gustav Pomberger et al.

lected research challenges within the field of software process engineering
and demonstrating how the results of the projects contribute to tackling
these challenges.

2.1 Concepts Related to Software Process Engineering

This subsection shortly introduces selected key concepts related to software
process engineering in order to facilitate the understanding of the subse-
quent subsection on software process engineering research challenges. These
key concepts are: levels of models in software process engineering, benefits
and importance of software process engineering, relationship ”process qual-
ity” – “product quality”, best practice software process models and process
model classification, software process capability and maturity frameworks,
and methods for software process evaluation and improvement.

Levels of Models in Software Process Engineering

Figure 1 depicts the four main levels of models involved in software process
engineering and identifies the corresponding software process engineering ac-
tivities associated with model instantiation.

Software Process
Model

Software Process
Meta-model

Software Process

Software Product

Process Modeling

Process Instantiation

Process Execution

Figure 1 Levels of models in software process engineering.

IV Software Engineering – Processes and Tools 163

Software process meta-models define the “conceptual framework for ex-
pressing and composing software process models”[Lon93]. They describe the
relevant software process sub-models, their basic concepts, and their relation-
ships and define the notation and language for expressing software process
models. Software process models are the key result of the process modeling
activity and serve as abstract representations of software processes. They pre-
scribe a software process in terms of the activities to be carried out, the roles
and work product types involved, etc. Software processes on the other side are
the result of a process instantiation for a specific software development en-
deavor. This step often also includes tailoring or customizing of the software
process model to the specific needs and goals of a project. The assignment of
tools or other instruments for supporting the carrying out of activities and
the assignment of resources to roles is typical for this level. The execution of
a specific software process within a specific software development endeavor
finally leads to the creation of the proper software product that in this view
itself is seen as an instantiation of the software process.

Generally, software processes are complex entities comprised of a num-
ber of steps, resources, artifacts, constraints, etc. Depending on the intended
usage, software process models reflect this complexity to a certain degree.
Key motivators for meta-model-based process modeling are process model
reuse, as sharing and composing process models and process model com-
ponents require proper interfaces, and the automation of process execution.
Examples of process meta-models range from simple models that only explain
the basic relationships among activity types and result types (e.g. cascade
model [Chr92]) to fully-fledged meta-models for software and systems engi-
neering claiming to be capable of instantiating any software process model
and method ([Obj08]). [HSSL02] presents a process meta-model and process
model concept for component-based software engineering that incorporate
the concept of process capability assessment (see “Software Process Capabil-
ity and Maturity Frameworks” on page 167) into software process modeling.
Pointers to examples for software process models can be found in “Best Prac-
tice Software Process Models and Process Model Classification” on page 165.

Benefits and Importance of Software Process Engineering

Software process models play an important role in software engineering. They
allow the separation of process aspects from product aspects and provide a
basis for the unification of methods and tools. Further general goals pursued
with the use of software process models encompass the facilitation of the
understanding and communication of the process, the establishment of a basis
for the automation of software engineering activities and the establishment
of a basis for analyzing and improving an organization’s software process (see
e.g. [GJ96]). Moreover, the use of software process models provides a series of

164 Gerhard Weiss, Gustav Pomberger et al.

further, less quantifiable benefits, like better teachability of the process and
easier familiarization of new employees with an organization’s practices and
procedures, increased independence of specific persons and the establishment
of a general basis for professionalism and credibility.

Motivated by the overall goal of enhancing performance, improving an or-
ganization’s software process has become a central topic in software process
engineering. Research shows that improving an organization’s process quality
can lead to substantial gains in productivity, early defect detection, time to
market, and quality, that in total add up to significant returns on the invest-
ment in software process improvement. Further identifiable benefits refer to
improved cost performance, improved estimates and deliveries on schedule,
and increased customer as well as employee satisfaction [HCR+94].

Relationship ”Process Quality – Product Quality”

Software quality is generally regarded a key to economic success for soft-
ware developing organizations and has been an issue since the early days
of software development. Consequently, a serious of definitions of software
quality from many different viewpoints has emerged. According Garvin five
such major approaches to the definition of quality can be identified, namely:
the transcendent approach of philosophy, the product-based approach of eco-
nomics, the user-based approach of economics, marketing, and operations
management, and the manufacturing-based and the value-based approaches
of operations management [Gar84].

Incorporating these different viewpoints for software engineering, ISO/IEC
9126 [ISO01] and ISO/IEC 25000 [ISO05] provide a quality model for software
that at the top-level decomposes software quality into the aspects of process
quality, product quality, and quality in use (see Figure 2). Product quality,
in this context, is determined by the degree to which the developed software
meets the defined requirements, while quality in use addresses the degree to
which a product is fit for purpose when exposed to a particular context of
use (see Section 3 on “Software Quality Engineering” for more details).

Process quality within this quality model expresses the degree to which
defined processes were followed and completed and assumes that software
processes implement best practices of software engineering within an organi-
zation. The basic assumption that the quality of a software product is largely
influenced by the process used to develop it and that therefore, to improve the
quality of a software product, the quality of the software process needs to be
improved is the underlying principle of a series of software process capability
and maturity frameworks and related methods for software process evaluation
and improvement (see subsections below). It is meanwhile explicitly recog-
nized in the international standard on “Software product Quality Require-
ments and Evaluation” (SQuaRE) together with the assumption that the

IV Software Engineering – Processes and Tools 165

Quality
in use

attributes

External
quality

attributes

Internal
quality

attributes

Process
quality

Software
process

Software
product

Effect of
software product

Contexts
of use

process
measures

quality in use
measures

external
measures

internal
measures

Software quality model according ISO/IEC 25000. Figure 2

quality of a software process is the extend to which this process is explicitly
defined, managed, measured and continuously improved [ISO05]. [SDR+02]
describes an approach to component based-software engineering, which ex-
plicitely adds process capability information to the quality information of
software components.

Best Practice Software Process Models and Process
Model Classification

The history and evolution of software process models dates back to the very
beginning of software engineering. While early models suggested a code and
fix cycle, the first major milestone in software process modeling is the wa-
terfall development model [Roy70], that groups activities into major phases
based on the ideal assumption of sequential execution, but does not explicitly
foresee changes or a prototyping oriented development approach. To overcome
these weaknesses the spiral model [Boe88] suggests a cyclical, risk-driven de-
velopment approach, in which - before entering a new cycle - the project risks
are analyzed and appropriate measures taken. More recent examples of in-
dustry driven software process models are iterative and incremental models
like the Rational Unified Process (RUP) [Kru03] or its open source subset
Open Unified Process (OpenUP) [Ope08] that also incorporate principles of
agile development.

Further, standardization plays a major role in software process modeling.
An example of a quasi-standard is the German V-Model, which considers the
development of a software system from the side of the supplier as well as from
the side of the acquirer. It is organized with a focus on work products and
provides work product quality standards and state models and also foresees

166 Gerhard Weiss, Gustav Pomberger et al.

ORGANIZATIONAL Life Cycle
Processes

PRIMARY Life Cycle
Processes

Acquisition Process Group (ACQ)
ACQ.1 Acquisition preparation
ACQ.2 Supplier selection
ACQ.3 Contract agreement
ACQ.4 Supplier monitoring
ACQ.5 Customer acceptance

Supply Process Group (SPL)
SPL.1 Supplier tendering
SPL.2 Product release
SPL.3 Product acceptance support

Engineering Process Group (ENG)
ENG.1 Requirements elicitation
ENG.2 System requirements analysis
ENG.3 System architectural design
ENG.4 Software requirements analysis
ENG.5 Software design
ENG.6 Software construction
ENG.7 Software integration
ENG.8 Software testing
ENG.9 System integration
ENG.10 System testing
ENG.11 Software installation
ENG.12 Software and system maintenance

Management Process Group (MAN)
MAN.1 Organizational alignment
MAN.2 Organizational management
MAN.3 Project management
MAN.4 Quality management
MAN.5 Risk management
MAN.6 Measurement

Operation Process Group (OPE)
OPE.1 Operational use
OPE.2 Customer support

Process Improvement Process Group
(PIM)
PIM.1 Process establishment
PIM.2 Process assessment
PIM.3 Process improvement

Resource and Infrastructure Process
Group (RIN)
RIN.1 Human resource management
RIN.2 Training
RIN.3 Knowledge management
RIN.4 Infrastructure

Reuse Process Group (REU)
REU.1 Asset management
REU.2 Reuse program management
REU.3 Domain engineering

SUPPORTING Life Cycle Processes
Support Process Group (SUP)

SUP.1 Quality assurance SUP.2 Verification
SUP.3 Validation SUP.4 Joint review
SUP.5 Audit SUP.6 Product evaluation
SUP.7 Documentation SUP.8 Configuration management
SUP.9 Problem resolution management SUP.10 Change request management

Figure 3 Software life cycle processes according ISO/IEC 12207.

predefined project execution strategies depending on predefined project types
[V-M06]. At an international level the standard ISO/IEC 12207 [ISO95] on
software life cycle processes provides a best practice software process model
(see Figure 3) that also includes organizational and supporting processes. In
the form presented in AMD1 and AMD2 to the standard this model also
serves as a process reference model for process capability evaluation.

The available software process models vary significantly regarding the level
of detail provided and the project or organizational scope covered by the pro-
cesses defined. Regarding the level of detail, [Hum89] distinguishes between

IV Software Engineering – Processes and Tools 167

universal level models providing general guidelines, principles and policies as
high-level framework, worldly level models providing procedures that imple-
ment policies at working level and practices that guide daily work, and atomic
level models providing detailed refinements like standards, tools, techniques,
etc. that are appropriate for process automation.

A further important distinction of software process models at conceptual
level in the context of software process evaluation and improvement is the
classification into process implementation models, process assessment models,
and process reference models. While process implementation models provide
the necessary details and guidance to be directly instantiated for process ex-
ecution (see Figure 1), process reference models serve for the evaluation of
process capability and benchmarking purposes of the actually implemented
processes and—informally spoken—define the requirements for process im-
plementation models from a best practice perspective. Process assessment
models, finally, break down the requirements of process reference models into
measureable indicators of practices and work products and are used within
a process evaluation.

Software Process Capability and Maturity Frameworks

A promissing means to continuously improve the software development pro-
cess is to regularly evaluate the software process against some kind of best
practice based measurement scale. Also a number of so-called assessment-
based methods for software process improvement and corresponding mea-
surement scales have been developed, there are essentially two types of such
measurement concepts:

Staged models of process maturity: These models define a maturity scale at
organizational level and typically relate each of the levels within the ma-
turity scale to recommended practices necessary for achieving this level.

Continuous models of process capability: These models measure the soft-
ware process at process level along two axes—the process dimension com-
prised of a number of processes subject to measurement and typically
defined in a process reference model, and the generic process capability
dimension (see Table 1) comprised of process attributes and process ca-
pability levels that are applied to characterize each process of the process
dimension.

The Capability Maturity Model (CMM) [Hum95, PCCW93] is a typical
model of the staged type. The approach of continuous process capability
was developed within the SPICE project [Dor93] and has been standard-
ized within the international standard series ISO/IEC 15504 on Information
Technology – Process Assessment [ISO03]. According their underlying meta-
models, staged models typically provide a predefined road map for organi-

168 Gerhard Weiss, Gustav Pomberger et al.

Optimizing Process
Process Innovation Attribute
Process Optimization Attribute

Level 5
PA 5.1
PA 5.2

Predictable Process
Process Measurement Attribute
Process Control Attribute

Level 4
PA 4.1
PA 4.2

Established Process
Process Definition Attribute
Process Deployment Attribute

Level 3
PA 3.1
PA 3.2

Managed Process
Performance Management Attribute
Work Product Management Attribute

Level 2
PA 2.1
PA 2.2

Performed Process
Process Performance Attribute

Level 1
PA 1.1

Optimizing Process
Process Innovation Attribute
Process Optimization Attribute

Level 5
PA 5.1
PA 5.2

Predictable Process
Process Measurement Attribute
Process Control Attribute

Level 4
PA 4.1
PA 4.2

Established Process
Process Definition Attribute
Process Deployment Attribute

Level 3
PA 3.1
PA 3.2

Managed Process
Performance Management Attribute
Work Product Management Attribute

Level 2
PA 2.1
PA 2.2

Performed Process
Process Performance Attribute

Level 1
PA 1.1

Table 1 Process capability levels and attributes according ISO/IEC 15504.

zational improvement by identifying improvement priorities generally true
for most software organizations. Continuous models, on the other hand, do
not prescribe any particular improvement path except the evolution of single
processes, but come up with a customizable process dimension.

Models for Software Process Evaluation and Improvement

Beside the process engineering activities built into software best practice
process models as own processes or activities, two major types of models for
software process evaluation and improvement can be distinguished regarding
the issue of scale of the intended improvement activity [Kin01]:

• Software process improvement action life cycle models
• Software process improvement program life cycle models.

Software process improvement action life cycle models are primarily meant for
guiding a single improvement action and generally fail to give the necessary
guidelines for a full software process improvement program. As they do not
address improvement program-level issues, they are typically kept relatively
simple. Examples of such models are:

• the Plan-Do-Check-Act (PDCA) model [She31]
• the Process Improvement Paradigm-cycle [Dio93] (see Figure 4).

IV Software Engineering – Processes and Tools 169

• Document

• Disseminate

• Institutionalize

• Instrument

• Measure

• Analyze

• Adjust
• Confirm

• Automate

Projects

Process stabilization

Pr
oc

es
s

ch
an

ge Process control

Process improvement paradigm cycle. Figure 4

Models of this type are primarily intended for software process staff, pro-
cess owners, and non-process professionals having a role in a software process
improvement action.

Software process improvement program life cycle models on the other side,
put more emphasis on aspects such as initiation, management and coordina-
tion of the overall improvement program and in particular on the coordination
of individual process improvement actions. Examples of such models are:

• the IDEAL (Initiating-Diagnosing-Establishing-Acting-Learning) cycle
[McF96] and

• the ISO 15504-7 cycle [ISO98] (see Figure 5).

These models are mainly intended for people who have been entrusted the
management of a large scale process initiative. They are important for staging
and managing a successful improvement program and represent a major step
towards an institutionalized software process engineering system.

170 Gerhard Weiss, Gustav Pomberger et al.

Software process
improvement request

Organization’s needs

Initiate
process

improvement

2 Initiate
process

improvement

2

Monitor
performance

8
Monitor

performance

8

Prepare and
conduct process

assessment

3
Prepare and

conduct process
assessment

3
Analyze results
and derive
action plan

4
Analyze results
and derive
action plan

4

Implement
improvements

5
Implement

improvements

5

Confirm
improvements

6
Confirm

improvements

6

Sustain
improvement

gains

7 Sustain
improvement

gains

7Examine
organization‘s

needs

1
Examine

organization‘s
needs

1

Current assessed
capability

Assessment
request

Industrial
benchmarks

Practice descriptions
from assessment

model

Target capability
profiles from capability

determination

Figure 5 ISO/IEC 15504-7 process improvement cycle.

2.2 Software Process Engineering Research Challenges and
Application-oriented Research at SCCH

In this section we present selected challenges within the field of software
process engineering that are tackled by research projects performed at SCCH
together with partner companies. The challenges dealt with are:

• Software process improvement for small and very small enterprises
• Integration of product engineering and lifecycle management
• Integrating process capability and organizational reuse maturity
• Alignment of process improvement with strategic goals

Software Process Improvement for Small and Very
Small Enterprises

The project HighLight is an ongoing research project focusing on the specific
needs and requirements of small and medium sized enterprises (SMEs) with
respect to software process improvement. Specific attention is devoted to very
small enterprises as a relevant subset of SMEs.

IV Software Engineering – Processes and Tools 171

SMEs constitute a significant part of the Austrian as well as European
industry. In particular software-oriented SMEs, i.e. either SMEs that develop
software for customers or SMEs for which software developed in-house rep-
resents an essential part of their products or services are confronted with the
need to improve the quality of their products in general and of software in
particular and to react quickly to changing market and customer needs.

From a software engineering perspective such small development compa-
nies have to cope with challenges quite similar to that of large companies,
like the need to manage and improve their software processes, to deal with
rapid technology advances, to maintain their products, to operate in a global
environment, and to sustain their organizations through growth. In the case
of small companies however, different approaches to tackle these challenges
are required because of specific business models and goals, market niche,
size, availability of financial and human resources, process and management
capability, and organizational differences [RvW07].

Over the last twenty years the software engineering community has paid
special interest to the emerging field of software process improvement as a
means to increase software product quality as well as software development
productivity. However, the rise of software process improvement was primar-
ily driven through its successful implementation in large companies and there
is a widespread opinion stressing the point that the success of software pro-
cess improvement is only possible for large companies. Nevertheless, within
the last five years the software engineering community has shown an increas-
ing interest in tackling the software process improvement challenge for small
companies and there is a growing interest of the software engineering com-
munity to adapt the models and methods developed for software process
improvement in the large to the specific needs of SMEs. [PGP08] presents
a systematic review on software process improvement in small and medium
software enterprises through analysis of published case studies. The challenge
to provide systematic support for software process improvement to small and
in particular very small enterprises is meanwhile also subject to international
standardization efforts (see [ISO09]).

The overall goal of HighLight is therefore to research into, improve and
develop innovative concepts, models and methods for the identification and
efficient transfer of software engineering best practices to small and medium
sized software enterprises. The specific goals and pursued results include:

• the identification of the specific needs, constraints and expectations of
SMEs with respect to software process and quality improvement;

• the investigation into the state of the art in software process and qual-
ity improvement approaches, methods and standards, particularly with
respect to their applicability to SMEs;

• the investigation into the reasons for success or failure of software process
and quality improvement initiatives at SMEs and the identification of the
critical success factors for such endeavors;

172 Gerhard Weiss, Gustav Pomberger et al.

• the compilation of a comprehensive pool of software engineering best prac-
tices or pointers to those covering the specific contexts of SMEs;

• the development of a lightweight software process and product improve-
ment methodology specifically targeted for SMEs and particularly tai-
lorable to their strategic and business needs and project and product con-
texts;

• the validation of the developed concepts, models and methods in selected
real-world improvement projects;

• the setup of a forum for discussion and exchange for SMEs interested in
software process and quality improvement.

The work within HighLight is explicitly based on and driven by the needs and
constraints of SMEs with respect to software process and quality improve-
ment. The project builds on existing experience and integrates a process,
product and business view on software process and quality management into
a lightweight improvement methodology for SMEs. The project focuses on
identifying selected development phase, paradigm and—where appropriate—
technology-specific software engineering best practices and compiling them
into compact, modular and integrated process reference models particularly
suited for SMEs. The work will also include the development of concepts and
methods for supporting the evolution of an organization’s processes through
changing paradigms and evolving organizational contexts, in particular com-
pany growth and increasing software productization.

As a means to implement such an approach the study of the applicability
of concepts from the software product line area [CN02] to software process
engineering and the creation of a “software process line” for SMEs is envi-
sioned. In such an approach—in analogy to software product features used in
software product line approaches to determine the concrete software product
within a software product line—the characteristics that describe the organi-
zational, project, product and market context of a software organization are
envisioned to determine the software process model out of a software process
model line that is most appropriate for the respective organization. An initial
literature research shows that a similar approach—in a limited scope—has
so far only been applied for the definition of project-specific processes for
hardware/software co-design in an embedded system domain (see [Was06]).

Furthermore, HighLight concentrates on identifying lightweight and effi-
cient methods for transferring the identified best practices into SMEs and will
also seek feedback on and try to empirically validate the developed concepts
and methodologies. HighLight will therefore seek liaison with software devel-
opment projects at SCCH and within SCCH’s partner companies and will
establish links with established communities and institutions in the field of
software process and quality improvement. Particularly SMEs that generally
do not possess any kind of organization development departments will gain
a lightweight, efficient and effective method that supports them in adapt-
ing to high-quality, state-of-the-art, lean and efficient software engineering
processes.

IV Software Engineering – Processes and Tools 173

Integration of Product Engineering and Lifecycle Management

The development of software products today is strongly driven by business
considerations and market forces throughout the whole lifecycle. Traditional
project-focused software development emphasizes distinct project phases and
a functionally separated organization with distinct and specialized roles. As
a consequence, problems emerge from different stakeholder perspectives on
the same underlying product, locally optimized processes, isolated tools, and
redundant, inconsistent and often locally stored product data. In real-world
contexts these problems are additionally increased, as software organizations
often have to manage a number of interrelated and interplaying products
and services or as software is only part of the offered product or service. Key
challenges in the management of software product development are thus to
align the different perspectives to the overall business objectives; to estab-
lish consistent and integrated processes, methods and tools that span the
different groups; to manage the relationship between the development arti-
facts produced by the different groups and processes; and to monitor product
development progress across the whole lifecycle. The ongoing project Hep-
haistos carried out together with two local project partners tackles these
challenges by identifying best practices for the integration of business-driven
product lifecycle management and engineering-focused product development.

In this subsection we report about initial, interim results of Hephaistos
with respect to software process engineering and provide an outlook on fur-
ther research to be carried out in this context. These interim results are:

• an identification of key problems related to the integration of product
engineering and lifecycle management,

• the identification of solution concepts addressing the identified problems,
and

• the development of a conceptual model relating the identified solution
concepts to core software engineering and management activities.

By analyzing the organizational context of one of the partner companies
we identified a number of company-specific problems that were generalized
into key problem areas, that also correspond to and are confirmed through
issues and obstacles observed in many other industrial projects. These key
problem areas related to the integration of product engineering and lifecycle
management are [PRZ09]:

• lack of reuse of lifecycle artifacts beyond code, e.g. of requirements, design,
• unclear rationale regarding past informal and undocumented decisions,

e.g. regarding requirements or architecture,
• intransparent consequences of changes, in particular during software prod-

uct maintenance and enhancement,
• imbalance between management oriented lifecycle activities and overem-

phasised core engineering activities,

174 Gerhard Weiss, Gustav Pomberger et al.

• heterogeneous tool-infrastructures lacking integration and interoperability
and as a consequence hampering collaboration of roles,

• disruption of workflows and processes as a consequence of limited interop-
erability of tools that lead to redundant activities and data and increased
overhead, error-prone work, and inconsistencies,

• intransparent status of artifacts and work progress due to heterogeneous
tool landscapes,

• inability to reconstruct past states, in particular of non-code lifecycle ar-
tifacts, and

• missing integration of product management and project management, in
particular when software products evolve over years and are maintained
and enhanced in a series of ongoing, parallel projects.

Application lifecycle management (ALM) promises to tackle a wide spectrum
of the above challenges and over the last years a large number of ALM solu-
tions have been announced. However, the term is quite new, lacks a common
understanding and is mostly driven by tool vendors in order to emphasize
their move towards integrated tool suites covering the whole application life-
cycle.

In order to help analyze and compare these solutions objectively, we iden-
tified two main goals of ALM by matching the tool vendors’ propositions
with the key problem areas listed above. These goals are:

1. Seamless integration of engineering activities at tool and process level
across the whole lifecycle of an application;

2. Emphasis on management activities to shift the technical perspective of
engineering towards the business perspective of software management.

We then further refined these two main goals into the following solution
concepts for the integration of product engineering and lifecycle management
[PRZ09]:

Traceability: Traceability is defined as “the degree to which a relationship
can be established between two or more products of the development
process, especially products having a predecessor-successor or master-
subordinate relationship to one another” [IEE90].

Version control: Over the lifecycle of an application multiple versions evolve
and require consistent control for managing releases, maintaining defined
states and baselines across different artifacts, as well as allowing reverting
to these defined states.

Measurement: Retrieving information about products, processes and re-
sources as well as their relationships is the basis for establishing trans-
parency, objective evaluation and planning. The role of measurement is
essential for the management of software projects [DeM86] and has to be
expanded to the entire application lifecycle.

Workflow support: Workflows bring together a sequence of operations, re-
sources, roles and information flows to achieve a result. Approaches are

IV Software Engineering – Processes and Tools 175

necessary that provide interoperability of tools and processes to establish
workflows across the entire lifecycle of an application.

Collaboration support: As software development is a team endeavor, con-
cepts and tools for collaboration have found their way into software devel-
opment.

Shared services: In addition to the above solution concepts a number of
further basic services were identified like managing users and access rights,
etc. which are relevant for every activity and tool applied.

The solution concepts identified above have a strong focus on integration in
two directions: firstly, they provide support for the integration of engineer-
ing activities over the whole application lifecycle at tool level as well as at
process level, addressing the first goal; secondly, the same concepts also en-
able the integration of engineering activities with management activities by
establishing the link between the technical and the business perspective, ad-
dressing the second goal. Figure 6 depicts these three dimensions showing the
engineering activities and the management activities according to [BD04] on
the x-axis and the y-axis respectively. The solution concepts identified above
are depicted as third dimension to clearly distinguish them from engineering
and management activities and to highlight their role of tying the different
engineering and management activities together.

The model depicted in Figure 6 by now has been used to support the defi-
nition of a strategy for improving the integration of product engineering and
lifecycle management activities and for process improvement in the analyzed
company. The strategy is subject to implementation, with a current focus on
the integration of product management, requirements management and ar-
chitecture design. Preliminary results confirm the applicability of the model
as guidance for identifying and prioritizing problem areas as well as planning
for a tailored ALM solution.

Integrating Process Capability and Organizational
Reuse Maturity

The goal of the project GDES 2-Reuse that we carried out together with
Siemens Corporate Technology was the development of an assessment-based
methodology for evaluating an industrial engineering organization’s reuse
practices and identifying and exploiting its reuse potential.

While software engineering deals with software only, industrial engineer-
ing has to enable the parallel development of different engineering disciplines,
like mechanical engineering, electrical engineering, and communications and
control system engineering. Industrial engineering projects range from rather

2 Globally Distributed Engineering and Services

176 Gerhard Weiss, Gustav Pomberger et al.

S
of

tw
ar

e
R

eq
ui

re
m

en
ts

Software Engineering Management

Software Process Management

Software Quality Management

S
of

tw
ar

e
D

es
ig

n

S
of

tw
ar

e
T

es
tin

g

S
of

tw
ar

e
C

on
st

ru
ct

io
n

S
of

tw
ar

e
M

ai
nt

en
an

ce

Software Configuration Management

Collaboration

Workflow Support

Measurement

Version Control

Traceability

Shared Services

Concepts (z)

Management (x)

E
n

g
in

ee
ri

n
g

 (
y)

Figure 6 Conceptual model for product engineering and lifecycle management in-
tegration.

simple and small projects (e.g. semi-automated assembly line) to large and
highly complex projects (e.g. nuclear power plants). Like software engineer-
ing, industrial engineering today has to cope with increasing demands for
more flexible, more reliable, more productive, faster, and cost optimized plan-
ning and realization of industrial solutions. Simultaneously, industrial engi-
neering has to deal with more demanding customer requirements, increased
complexity of solutions and harder competition in a global market. Increasing
reuse has therefore been identified as one key element for increasing quality
and productivity in industrial engineering (see [LBB+05]). Reuse is one of the
most basic techniques in industrial engineering and pervades all engineering
phases and all engineering artifacts. Although recognized as a fundamental
and indispensable approach, it is hardly systematized and often only applied
in an ad hoc manner. As a consequence the reuse potential in industrial en-
gineering organizations is rarely exploited and in most cases not even known.

On the other side, reuse is well understood in the domain of software en-
gineering (see e.g. [JGJ97, Sam01, MMYA01]) and the distinction between
bottom-up reuse concepts like component-oriented reuse and top-down ap-
proaches like copy-and-modify, reuse of prefabricates (e.g. application frame-
works), the application of platforms, or the system-family or software product

IV Software Engineering – Processes and Tools 177

line approach [CN02] is well established. In the context of industrial engineer-
ing top-down approaches are particularly interesting, as they imply that the
reusing organization has a general understanding of the overall structure of
an engineering solution.

Our core development work for the overall reuse improvement methodology
was preceded by the evaluation of relevant process and product evaluation
approaches and standards and respective models and meta-models as well as
reuse improvement approaches. This resulted in the selection of a process-
centered approach, focusing on the identification of best practices for reuse in
industrial engineering based on an adaption of the meta-model of ISO/IEC
(TR) 15504 for process reference models and process assessment models as
implicitly defined in [ISO03].

The methodology for improvement of reuse in industrial engineering de-
veloped within GDES-Reuse is intended to be applicable to all kinds of or-
ganizations and market segments of industrial engineering and is comprised
of three sub-methodologies that are partly also independently applicable:

• a methodology for the evaluation of the actual situation of an engineering
organization with respect to reuse, that allows to assess to what extent the
respective organization fulfills the identified reuse best practices, focused
around three distinct, but interplaying and interrelated models: the process
reference model, the reuse maturity model, the assessment model for reuse
in industrial engineering,

• a methodology for potentials analysis that—based on the results of the
evaluation and under consideration of external factors and organizational
goals—supports the identification of an optimal set of reuse practices for
the respective organization, and

• a methodology for action planning that—based on the results of the eval-
uation and the potentials analysis—identifies and prioritizes the necessary
measures for introducing or improving reuse.

Table 2 provides an overview of the process reference model. The model defines
the results necessary for successful reuse and organizes these results according
the typical phases of the engineering life cycle which are themselves grouped
into categories. The overall objective is to support the representation of evalu-
ation results and to make them comparable across organizational boundaries.
Further details on the categories and phases can be found in [SPP+06].

The reuse maturity model for industrial engineering defines the results nec-
essary for successful reuse. Based on [PRS00], it organizes these results into
distinct organizational reuse maturity stages that build one upon the other
in order to provide general guidance for the introduction and improvement of
reuse within an engineering organization. The model foresees four maturity
stages that are characterized in Table 3.

The assessment model, finally, breaks down the reuse results into reuse
base practices and input and output artifacts that are used as indicators
during evaluation.

178 Gerhard Weiss, Gustav Pomberger et al.

EWR.1 System Requirements Analysis
EWR.2 Basic Engineering
EWR.3 Detail Engineering:
- EWR.3.1 Detail Eng. - Discipline
- EWR.3.2 Detail Eng. - Integration
EWR.4 Realization and Operational Test
EWR.5 Start of Operation
EWR.6 Maintenance and Servicing

Engineering with Reuse (EWR)

CON.1 Acquisition/Initiation
CON.2 Customer Requirements Analysis
CON.3 Bid Preparation
CON.4 Customer Acceptance

Contracting (CON)

EWR.1 System Requirements Analysis
EWR.2 Basic Engineering
EWR.3 Detail Engineering:
- EWR.3.1 Detail Eng. - Discipline
- EWR.3.2 Detail Eng. - Integration
EWR.4 Realization and Operational Test
EWR.5 Start of Operation
EWR.6 Maintenance and Servicing

Engineering with Reuse (EWR)

CON.1 Acquisition/Initiation
CON.2 Customer Requirements Analysis
CON.3 Bid Preparation
CON.4 Customer Acceptance

Contracting (CON)

OSR.1 Reuse Program Management
OSR.2 Improvement of Reuse
OSR.3 Measurement of Reuse
OSR.4 Asset Management
OSR.5 Quality Assurance
OSR.6 Change Management
OSR.7 Problem Resolution

Organizational Support of Reuse (OSR)

EFR.1 Domain Analysis
EFR.2 Domain Design
EFR.3 Domain Implementation
- EFR.3.1 Domain Impl. - Discipline
- EFR.3.2 Domain Impl. - Integration

Engineering for Reuse (EFR)

OSR.1 Reuse Program Management
OSR.2 Improvement of Reuse
OSR.3 Measurement of Reuse
OSR.4 Asset Management
OSR.5 Quality Assurance
OSR.6 Change Management
OSR.7 Problem Resolution

Organizational Support of Reuse (OSR)

EFR.1 Domain Analysis
EFR.2 Domain Design
EFR.3 Domain Implementation
- EFR.3.1 Domain Impl. - Discipline
- EFR.3.2 Domain Impl. - Integration

Engineering for Reuse (EFR)

Table 2 Structure of the reference model for reuse in industrial engineering.

4 – Strategic: The whole organization is strategically oriented towards reuse.
Reuse is performed systematically and integrated across all phases of the
engineering life cycle. This is reflected in the business strategy and in the
orientation of all business functions towards reuse, including marketing,
sales, acquisition, etc. The portion of reused artifacts is high, as well as the
contribution of reuse to achieving business goals.

3 – Domain-oriented: The domain specific benefits of reuse are exploited.
The business is analyzed and reusable artifacts are defined based on the
analysis of recurring requirements. Reusable artifacts are thus customized to
the business domain. Reuse is supported by organization and processes. An
organization wide infrastructure for reuse is in place and planning,
coordination and controlling of a reuse oriented engineering process is
established. Domain specific reference architectures are typical at this stage.

2 – Systematical: Reuse is pursued systematically. The technical and
organizational measures for structured reuse are in place. Solutions are
designed modular and the reuse of artifacts is supported by in-house
development, purchasing and documentation of artifact usage. Reuse of
artifacts is based on conformance with industry specific standards as well as
definition and compliance with internal standards or interfaces.

1 – Chaotic: Reuse is done ad-hoc only and not systematically. If needed,
artifacts from previous projects are used as starting point for new ones.
Reuse takes place unplanned, uncoordinated, undocumented, informal,
occasional, and local and randomly on a small scale. Form and degree
heavily depend on persons. Its contribution to achieving business goals is
limited.

4 – Strategic: The whole organization is strategically oriented towards reuse.
Reuse is performed systematically and integrated across all phases of the
engineering life cycle. This is reflected in the business strategy and in the
orientation of all business functions towards reuse, including marketing,
sales, acquisition, etc. The portion of reused artifacts is high, as well as the
contribution of reuse to achieving business goals.

3 – Domain-oriented: The domain specific benefits of reuse are exploited.
The business is analyzed and reusable artifacts are defined based on the
analysis of recurring requirements. Reusable artifacts are thus customized to
the business domain. Reuse is supported by organization and processes. An
organization wide infrastructure for reuse is in place and planning,
coordination and controlling of a reuse oriented engineering process is
established. Domain specific reference architectures are typical at this stage.

2 – Systematical: Reuse is pursued systematically. The technical and
organizational measures for structured reuse are in place. Solutions are
designed modular and the reuse of artifacts is supported by in-house
development, purchasing and documentation of artifact usage. Reuse of
artifacts is based on conformance with industry specific standards as well as
definition and compliance with internal standards or interfaces.

1 – Chaotic: Reuse is done ad-hoc only and not systematically. If needed,
artifacts from previous projects are used as starting point for new ones.
Reuse takes place unplanned, uncoordinated, undocumented, informal,
occasional, and local and randomly on a small scale. Form and degree
heavily depend on persons. Its contribution to achieving business goals is
limited.

Table 3 Characteristics of reuse maturity stages.

IV Software Engineering – Processes and Tools 179

The core objective of the potentials analysis methodology is to derive an
optimal reuse-oriented target scenario for the engineering processes within
the assessed organizational unit based on the organizational unit’s business
and organizational goals, evaluation results, and exogenous factors like cus-
tomer or market requirements, available or future technologies, character-
istics of competition, etc. The potentials analysis methodology represents
the link between the evaluation of the current situation regarding reuse and
the method for action planning for improvement of reuse. It serves to iden-
tify highly rewarding and not yet implemented reuse practices for subse-
quent action planning for the implementation of these practices and is rather
strategically and tactically oriented. The identification of improvements for
reuse in industrial engineering is much more complex compared to “tradi-
tional” capability-oriented process improvement. Orthogonal to improving
along the process capability dimension it also involves strategic decisions on
the overall design of the engineering process, the pursued engineering and
reuse paradigms, the desired organizational reuse maturity stages, etc. More
details on the potentials analysis method and the related action planning
method can be found in [SPPV09].

The methodology deliverables briefly described above are based on the es-
tablishment of a conceptual framework through the enhancement of existing
meta-models in order to integrate the concept of organizational reuse matu-
rity with the concept of continuous process capability that itself represents a
sigificant achievement of the GDES-Reuse project [SPP+06]. All three mod-
els, the process reference model (PRM), the reuse maturity model (RMM),
and the process assessment model (PAM) for reuse in industrial engineering,
capture reuse best practices at different levels of abstraction and organize
and represent them from different points of view (see Figure 7):

The PRM as well as the RMM contain the same set of reuse results in the
sense of ISO/IEC 15504 process outcomes. While the PRM organizes these
reuse results by phases of the engineering life cycle which are themselves
grouped into categories of phases, the RMM organizes these reuse results into
stages of organizational reuse maturity. The PAM on the other hand picks up
the set of reuse results as defined in the PRM and RMM together with the
organization of these reuse results by phases from the PRM and breaks down
these reuse results into reuse base practices and input and output artifacts
as indicators during evaluation. Reuse results represent the core conceptual
element of the GDES-Reuse methodology providing the bridge between the
continuous PRM and the staged RMM and in consequence between the eval-
uation methodology and the methodology for potentials analysis. From a
meta-model point of view the PRM is fully compliant to the requirements of
ISO/IEC 15504 [ISO03] for process reference models. It can be interpreted
as a partial model of the overall engineering life cycle containing and de-
scribing those processes or parts of processes relevant for successful reuse.
Consequently the measurement framework for process capability as defined
in ISO/IEC 15504 can be directly applied to the reuse results of the PRM

180 Gerhard Weiss, Gustav Pomberger et al.

Phase

Purpose

Reuse Purpose

Maturity Stage

Stage Characteristic

Reuse Result

Process Reference Model Reuse Maturity Model

Base Practice

Artifact (I/O)
Assessment Model

Figure 7 Process reference model and reuse maturity model—conceptual frame-
work.

and aggregated towards the phases of the PRM on the one side and towards
the maturity stages of the RMM on the other side.

A major value of the work performed within GDES-Reuse lies in the inte-
gration and systematisation of best practices from a series of reuse approaches
in a single model and in the integration of a “staged” reuse maturity model
with a “continuous” process model. The focus of the work was on providing
a best practice framework for the strategic design of engineering processes in
the sense of which paradigm or development approach or combination of those
to use. The approach chosen to resolve this problem is compliant to estab-
lished process assessment and improvement approaches like CMMI [CMM06]
or SPICE [ISO03] but much more focused with respect to modelling depth
and thus rather a complement to those models than a substitution of those.

Furthermore, we regard the project’s results re-transformable and applica-
ble to the domain of software engineering, as the various reuse paradigms and
approaches developed in the field of software engineering represented a start-
ing point for model development. Moreover, the engineering of control and
communication systems, as one of the core industrial engineering disciplines,
typically includes software engineering as a major sub-discipline.

The methodology for the evaluation of an actual reuse situation has so far
been applied in two real world evaluation projects (see [SPV07]).

IV Software Engineering – Processes and Tools 181

Alignment of Processes Improvement with Strategic Goals

Under the umbrella of the project SISB3 together with Siemens Corporate
Technology we carried out research into methods for the evaluation and de-
velopment of engineering strategies for the industrial solutions business. In
this section we highlight results from this research that are relevant for the
area of process engineering. These main results are:

• an understanding of the role of engineering strategies in the overall strategy
development context of an organization,

• the development of a meta-model for describing engineering strategies,
• the identification of the engineering strategy objects relevant for the in-

dustrial solutions business, and
• the development of a methodology to support the evaluation and develop-

ment of engineering strategies.

In order to understand strategy development at the engineering level we have
to relate engineering strategies to the overall strategy development efforts in
an organization. Typically a distinction is made between the corporate strat-
egy, various division strategies and various functional strategies [VRM03].
While a corporate strategy deals with determining which market segments
should be addressed with which resources, etc., a division strategy refines
the corporate strategy by addressing the major question how to develop a
long term unique selling proposition compared to the market competitors
and how to develop a unique product or service. Functional strategies on the
other side define the principles for the functional areas of a division in accor-
dance with the division strategy and therefore refine the division strategy in
the distinct functional areas, like marketing, finance, human resources, engi-
neering, or software development. Depending on the size and structure of a
company there might be no explicit distinction between corporate strategies
and division strategies, but nevertheless they are part of the relevant context
for the development of functional strategies.

Figure 8 depicts the conceptual framework (meta-model) developed for the
description of functional strategies. The core elements of such a strategy are
strategic goals, strategy objects and strategic statements. The strategic goals
formulated in the engineering strategy are refinements of strategic goals on
the corporate respectively divisional level, mapped on the functional area.
A strategy object is a topic (e.g. process management) that refines one ore
more strategic goals. As the strategy objects—and therefore also the strate-
gic statements—are targeted towards the functional strategic goals it is also
assured that the divisional or corporate goals are not violated. Although not
necessary on the conceptual level, the grouping of strategy objects facilitates
understanding of strategy objects on a more abstract level and also allows
focusing of the strategy assessment or development process. The approach for

3 Systematic Improvement of the Solutions Business

182 Gerhard Weiss, Gustav Pomberger et al.

grouping strategy objects we finally decided to use, groups strategy objects
simultaneously along three dimensions: strategy key areas like people, process,
products and services, methods and tools; strategy target groups denoting the
typical responsibility for a strategy object, e.g product management, sales,
etc.; and priority.

Strategic
Goal

Strategy
Object

refined by

contributes to

1+
1+

Strategic
Statement

1+

1
described by

Grouping
Dimension

grouped by
3

*

Priority Strategy
Key Area

Strategy
Target Group

Figure 8 Meta-model for describing functional strategies.

Strategy objects in the context of an engineering strategy can be under-
stood as a subject area that needs to be dealt with on a strategic level. In order
to identify the strategy objects relevant for the industrial solutions business,
strategy objects from the software engineering domain were used as a start-
ing point. These were evaluated and adapted for their use in the industrial
solutions business and additional strategy objects were identified. These addi-
tional strategy objects were identified by analyzing existing functional strate-
gies from engineering organizations. Examples of strategy objects include ar-
chitecture management, change management, competence management, do-
main engineering, tool and data integration, process management, quality
management, requirements management, reuse management, and standards
management. The full list of identified strategy objects together with their
definition, identification of typical topics dealt with, examples of strategic
statements and the assignment to the three grouping dimensions is provided
in [PSN08]. Additionally, it has to be noted that a major step during the
strategy development process is to select—and where necessary add—the ap-
propriate strategy objects according to their importance and urgency.

IV Software Engineering – Processes and Tools 183

The general approach of the methodology for the systematic assessment of
existing engineering strategies is to conduct a strategy development process
with an assessment emphasis. The typical strategy development process for
functional engineering strategies is shown in Figure 9, structured into the de-
velopment and prioritization of strategic goals, strategy objects and strategic
statements.

Determination of
General Goals

Determination of
Strategic Goals

Determination of
Strategy Objects

Strategy
Structure

Description of
Strategy Objects

Strategy Review
by Management

Strategy
Tuning

First Strategy
Concept

Second
Strategy Concept

(Reviewed)

Strategy Review
by Staff

Strategy
Tuning

Binding (Final)
Strategy

Determination of
General Goals

Determination of
Strategic Goals

Determination of
Strategy Objects

Strategy
Structure

Description of
Strategy Objects

Strategy Review
by Management

Strategy
Tuning

First Strategy
Concept

Second
Strategy Concept

(Reviewed)

Strategy Review
by Staff

Strategy
Tuning

Binding (Final)
Strategy

Process of engineering strategy development. Figure 9

As the assessment method simulates parts of a strategy development pro-
cess the participation of the management responsible for strategy develop-
ment in a division or company is inevitable. The method itself consists of
four main activities:

Engineering strategy assessment – kickoff: Determination of the strategy
objects relevant for the company or division and identification of infor-
mation sources.

Evaluation of strategy objects: Assignment of existing strategic statements
to the selected strategy objects and assessment of the maturity of each
strategy object and identification of gaps in the engineering strategy.

Consolidation of the evaluation: Adjustment of the assignments of strate-
gic statements as well as of the assessment of the strategy objects together
with the responsible management.

184 Gerhard Weiss, Gustav Pomberger et al.

Finalization and presentation of results: Finalization of the assessment re-
port and management presentation of the results.

The result of this assessment method is a qualitative report indicating the
general maturity of the engineering strategy regarding form and structured-
ness, strategy objects that should have been considered in the engineering
strategy, the completeness and maturity of strategic statements for each im-
portant strategy object, those strategy objects where existing strategic state-
ments are to weak or few with respect to the relevance of the strategy object,
gaps in the engineering strategy in the sense of strategy objects important
for the company or division without coverage by strategic statements.

In order to validate the identified strategy objects regarding completeness
and coverage of relevant organizational processes, the strategy objects have
been mapped against the key process areas of CMMI [CMM06]. As CMMI
is a widespread process improvement maturity model for the development of
products and services that aims at a wide coverage of engineering disciplines,
it was assumed that the process areas described there cover a wide range of
organizational processes. The detailed mapping of strategy objects against
process aeras is described in [PSN08].

As in particular the strategy key area “Process” groups all strategy objects
that deal with the management of processes in general, with value chain man-
agement, quality management, etc., this grouping allows a customized view
on strategic objects and strategic statements from the point of view of process
engineering. It thus facilitates capturing and understanding the strategic con-
straints for the process engineering activity as set by the engineering strategy
of an organization.

3 Software Quality Engineering

At about the same rate as software systems have been introduced in our
everyday life, the number of bad news about problems caused by software
failures increased. For example, last year at the opening of Heathrow’s Ter-
minal 5, in March 2008, technical problems with the baggage system caused
23.000 pieces of luggage to be misplaced. Thousands of passengers were left
waiting for their bags. A fifth of the flights had to be cancelled and—due to
theses problems—British Airways lost 16 million pounds. An investigation
revealed that a lack of software testing has to be blamed for the Terminal 5
fiasco (ComputerWeekly.com4, 08 May 2008).

In August 2003 a massive blackout cut off electricity to 50 million peo-
ple in eight US states and Canada. This was the worst outage in North

4 http://www.computerweekly.com/Articles/2008/05/08/230602/lack-of-software-testing-
to-blame-for-terminal-5-fiasco-ba-executive-tells.htm

IV Software Engineering – Processes and Tools 185

American history. USA Today reported: “FirstEnergy, the Ohio energy com-
pany . . . cited faulty computer software as a key factor in cascading problems
that led up to the massive outage.” (USA Today5, 19 Nov 2003).

These and similar reports are only the tip of the iceberg. A study com-
missioned by the National Institute of Standards and Technology found that
software bugs cost the U.S. economy about $59.5 billion per year [Tas02].
The same study indicates that more than a third of these costs (about $22.2
billion) could be eliminated by improving software testing.

The massive economic impact of software quality makes it a foremost con-
cern for any software development endeavor. Software quality is in the focus
of any software project, from the developer’s perspective as much as from
the customer’s. At the same time, the development of concepts, methods,
and tools for engineering software quality involves new demanding challenges
for researchers.

In this chapter we give an overview of research trends and practical impli-
cations in software quality engineering illustrated with examples from past
and present research results achieved at the SCCH. Since its foundation,
SCCH has been active in engineering of high quality software solutions and
in developing concepts, methods, and tools for quality engineering. A num-
ber of contributions have been made to following areas, which are further
elaborated in the subsequent subsections.

• Concepts of quality in software engineering and related disciplines.
• Economic perspectives of software quality.
• Development of tool support for software testing.
• Monitoring and predicting software quality.

Concepts and Perspectives in Engineering of
Software Quality

3.1

Definition of Software Quality

Software quality has been an issue since the early days of computer program-
ming [WV02]. Accordingly a large number of definitions of software quality
have emerged. Some of them have been standardized [IEE90]6, but most of
them are perceived imprecise and overly abstract [Voa08]. To some extent,
this perception stems from the different viewpoints of quality inherent in

5 http://www.usatoday.com/tech/news/2003-11-19-blackout-bug x.htm
6 The IEEE Standard 610.12-1990 defines software quality as “(1) The degree to which
a system, component, or process meets specified requirements. (2) The degree to which a
system, component, or process meets customer or user needs or expectations.”

186 Gerhard Weiss, Gustav Pomberger et al.

the diverse definitions. As a consequence, the ISO/IEC Standard 9126:2001
[ISO01] and its successor ISO/IEC Standard 25000:2005 [ISO05] decompose
software quality into process quality, product quality, and quality in use.
The standard recognizes software as product and reflects Garvin’s general
observation about different approaches to define product quality [Gar84].

Process quality: Software processes implement best practices of software
engineering in an organizational context. Process quality expresses the
degree to which defined processes were followed and completed.

Product quality: Software products are the output of software processes.
Product quality is determined by the degree to which the developed soft-
ware meets the defined requirements.

Quality in use: A product that perfectly matches defined requirements does
not guarantee to be useful in the hands of a user when the implemented
requirements do not reflect the intended use. Quality in use addresses the
degree to which a product is fit for purpose when exposed to a particular
context of use.

Quality Models

Measurable elements of software quality, i.e. quality characteristics, have to be
defined in order to assess the quality of a software product and to set quality
objectives. A series of attempts to define attributes of software products by
which quality can be systematically described (see [Mil02]) has been combined
in the ISO/IEC standards 9126:2001 [ISO01] and 25000:2005 [ISO05] respec-
tively. The standards provides a quality model with six quality characteris-
tics, namely functionality, reliability, usability, efficiency, maintainability and
portability, which are further refined in sub-characteristics (see Figure 10).

Bugs, i.e. defects, indicate the deviation of the actual quantity of a quality
characteristic from the expected quantity. Defects are often associated with
deviations in the behavior of a software system, affecting its functionality. The
quality model, however, makes clear that defects concern all quality charac-
teristics of a software system. Hence, a deviation from a defined runtime
performance is therefore as much a defect as a deviation from the expected
usability or a flawed computation.

Quality models are a valuable vehicle for systematically eliciting quality
requirements and for adopting a quality engineering approach covering all
relevant qualities of a software product. For example, in the research project
WebTesting, a guideline for methodical testing of Web-based applications (see
[RWW+02] and [SRA06]) has been derived from a domain-specific quality
model.

IV Software Engineering – Processes and Tools 187

Software
Quality

Functionality Reliability Usability

Suitability

Accuracy
Interoperability

Compliance
Security

Maturity Learnability

Fault
Tolerance

Understandability

Operability

Recoverability

Efficiency Maintainability Portability

Time
Behaviour

Stability

Analyzability
Changeability

Testability

Installability

Replaceability
Adaptability

Conformance Resource
Behaviour

Characteristics and sub-characteristics of software quality. Figure 10

Quality Assurance Measures

Quality must be built into a software product during development and main-
tenance. Software quality engineering [Tia05] ensures that the process of in-
corporating quality into the software is done correctly and adequately, and
that the resulting software product meets the defined quality requirements.

The measures applied in engineering of software quality are constructive
or analytical in their nature. Constructive measures are technical (e.g., appli-
cation of adequate programming languages and tool support), organizational
(e.g., enactment of standardized procedures and workflows), and personnel
measures (e.g., selection and training of personnel) to ensure quality a pri-
ori. These measures aim to prevent defects through eliminating the source
of the error or blocking erroneous human actions. Analytical measures are
used to asses the actual quality of a work product by dynamic checks (e.g.,
testing and simulation) and static checks (e.g., inspection and review). These
measures aim to improve quality through fault detection and removal.

Economic Perspective on Software Quality

Applying quality assurance measures involves costs. The costs of achieving
quality have to be balanced with the benefits expected from software quality,
i.e., reduced failure costs and improved productivity. Engineering of software
quality, thus, is driven by economic considerations, entailing what Garvin
[Gar84] described as “value-based approach” to define quality.

188 Gerhard Weiss, Gustav Pomberger et al.

Value-based software engineering [BAB+05] therefore elaborates on the
question “How much software quality investment is enough?” [HB06]. In
[RBG05] we describe how an analysis of the derived business risks can be
used to answer this question when making the investment decision, which
can be stated as trade-off. Too little investments in quality assurance mea-
sures incur the risk of delivering a defective product that fails to meet the
quality expectations of customers and results in lost sales. This risk has to be
opposed with the risk of missed market opportunities and, thus, lost sales due
to too much quality investments prolonging the time-to-market. Neither too
little nor too much quality investments are economically reasonable. From an
economic perspective a “good enough” approach to software quality [Bac97]
is considered the optimal solution.

Engineering of software quality in practice has to be coherent with eco-
nomic constraints. Hence, in any application-oriented research, the economic
perspective of software quality is a dominant factor. Further examples about
economic considerations will be presented in the next subsections as part of
the discussion about manual versus automated testing and the prioritization
of tests based on the prediction of defect-prone software modules.

3.2 Management and Automation of Software Testing

Software testing is one of the most important and most widely practiced
measures of software quality engineering [LRFL07] used to validate that cus-
tomers have specified the right software solution and to verify that developers
have built the solution right. It is a natural approach to understand a software
system’s behavior by executing representative scenarios within the intended
context of use with the aim to gather information about the software system.
More specifically, software testing means executing a software system with
defined input and observing the produced output, which is compared with the
expected output to determine pass or fail of the test. Accordingly, the IEEE
Standard 610.12-1990 defines testing as “the process of operating a system or
component under specified conditions, observing or recording the results, and
making an evaluation of some aspect of the system or component” [IEE90].

Compared to other approaches to engineer software quality, testing pro-
vides several advantages, such as the relative ease with which many of the
testing activities can be performed, the possibility to execute the program
in its expected environment, the direct link of failed tests to the underlying
defect, or that testing reduces the risk of failures of the software system. In
contrast, however, software testing is a costly measure due to the large num-
ber of execution scenarios required to gather a representative sample of the
real-world usage of the software system. In fact, the total number of possi-
ble execution scenarios for any non-trivial software system is so high that

IV Software Engineering – Processes and Tools 189

complete testing is considered practically impossible [KFN99]. Test design
techniques (e.g., [Bei90, Cop04]) are therefore applied to systematically con-
struct a minimal set of test cases covering a representative fraction of all
execution scenarios. Still, testing can consume up to 50 percent and more of
the cost of software development [HB06].

As a consequence, automation has been proposed as a response to the
costly and labor-intensive manual activities in software testing. Test automa-
tion [FG99] has many faces and concerns a broad variety of aspects of software
testing: The automated execution of tests, the automated setup of the test
environment, the automated recording or generation of tests, the automation
of administrative tasks in testing. In all these cases, tool support promises to
reduce the costs of testing and to speed up the test process.

In the following, we present results from research projects conducted at
SCCH that involved tool-based solutions addressing different aspects of test
automation.

• The first example, TEMPPO, outlines the tool support for managing large
test case portfolios and related artifacts such as test data, test results and
execution protocols.

• In the second example, a framework for the automation of unit tests in
embedded software development has been used to introduce the paradigm
of test-driven development to a large software project in this domain.

• We conclude this subsection with a study about balancing manual and
automated software testing subsuming ongoing observations and lessons
learned from several research and industrial projects. In addition, we
present a tool-based approach (TestSheets) for user interface testing as
an example for blending automated and manual testing.

Tool Support for Test Management

Testing tools are frequently associated with tools for automating the execu-
tion of test cases. Test execution, however, is only one activity in the software
testing process, which also involves test planning, test analysis and design,
test implementation, evaluating exit criteria and reporting, plus the parallel
activity of test management. All of these activities are amenable to automa-
tion and benefit from tool support.

In the following we describe a tool-based approach specifically for test
management and present some results from the research project TEMPPO
(Test Execution Managing Planning and rePorting Organizer) conducted by
Siemens Austria and SCCH. The project results are an excellent example
for the sustaining benefit that can be achieved by linking science and indus-
try. The project fostered a fruitful knowledge exchange in both directions.
Requirements for managing testing in step with actual practice in large soft-

190 Gerhard Weiss, Gustav Pomberger et al.

ware development projects have been elicited by Siemens, and appropriate
solution concepts have been developed by researchers at SCCH. The cooper-
ation led to a prototype implementation of a test management environment
that addressed a number of research issues significant for tool-based test
management in industrial projects.

• A light-weight test process for managing the different stages in the genesis
of test cases had to be defined, providing support for the inception of the
initial test ideas based on a software requirements specification, the design
of test cases and their implementation, the manual test execution as well
as the automated execution in subsequent regression testing.

• An efficient structure for organizing and maintaining large hierarchical
portfolios of up to several thousand test cases had to be developed.
The high volumes of related data included an extendable set of meta-
information associated to test cases and a range of artifacts such as asso-
ciated test scripts, test results and execution protocols accumulated over
the whole software development and maintenance lifecycle.

• Changes of the test structure and test cases are inevitable in any large soft-
ware project once new requirements emerge or test strategies are updated.
To accommodate these changes, an integrated versioning and branching
mechanism became necessary. It makes sure that results from test execu-
tions are linked to the executed version of the test cases even after changes
took place.

• Sophisticated query and grouping aids had to be applied for constructing
test suites combining a set of test cases for execution. Results from several
consecutive test executions had to be merged in a coherent test report for
assessing and analyzing the project’s quality status.

• Test management as the coordinating function of software testing interacts
with a variety of other development and testing activities such as require-
ments management and change and defect management. For example, the
integration of test management and unit testing is described in [RCS03].
These integrations imply interfaces that realize a synchronization between
the underlying concepts and workflows of test management and the in-
tersecting activities, which go beyond a mere data exchange between the
involved tools.

The prototype developed in the joint research project has been extended with
additional features by Siemens and evolved to an industry-strength test man-
agement solution. SiTEMPPO7 (Figure 11) has been successfully applied in
projects within the Siemens corporation all over the world, and it is licensed
as commercial product for test management on the open market with cus-
tomers from a broad range of industrial sectors and application domains.

7 http://www.pse.siemens.at/SiTEMPPO

IV Software Engineering – Processes and Tools 191

The test management solution SiTEMPPO. Figure 11

Automation of Unit Testing in Embedded Software Development

Test-driven development (TDD) [Bec02] has been one of the outstanding in-
novations over the last years in the field of software testing. In short, the
premise behind TDD is that software is developed in small increments fol-
lowing a test-develop-refactor cycle also known as red-green-refactor pattern
[Bec02].

In the first step (test), tests are implemented that specify the expected
behavior before any code is written. Naturally, as the software to be tested
does not yet exist, these tests fail – often visualized by a red progress bar.
Thereby, however, the tests constitute a set of precisely measurable objectives
for the development of the code in the next step. In the second step (develop),
the goal is to write the code necessary to make the tests pass – visualized
by a green progress bar. Only as much code as necessary to make the bar
turn from red to green should be written and as quickly as possible. Even the
intended design of the software system may be violated if necessary. In the
third step (refactor), any problematic code constructs, design violations, and
duplicate code blocks are refactored. Thereby, the code changes performed
in the course of refactoring are safeguarded by the existing tests. As soon
as change introduces a defect breaking the achieved behavior, a test will fail

192 Gerhard Weiss, Gustav Pomberger et al.

and indicate the defect. After the refactoring has been completed, the cycle
is repeated until all planned requirements have finally been implemented.

Amplified by the paradigm shift towards agile processes and the inception
of extreme programming [BA04], TDD has literally infected the developers
with unit testing [BG00]. This breakthrough is also attributed to the frame-
work JUnit8, the reference implementation of the xUnit family [Ham04] in
Java. The framework provides the basic functionality to swiftly implement
unit tests in the same programming language as the tested code, to combine
related tests to test suites, and to easily run the tests or test suites from the
development environment including a visualization of the test results.

TDD has been successfully applied in the development of server and desk-
top applications, e.g., business software or Web-based systems. The develop-
ment of embedded software systems would also benefit from TDD [Gre07].
However, it has not been widely used in this domain due to a number of
unique challenges making automated unit testing of embedded software sys-
tems difficult at least.

• Typical programming languages employed in embedded software develop-
ment have been designed for runtime and memory efficiency and, thus,
show limited support for writing testable code. Examples are limitations
in error and exception handling, lack of comprehensive meta-information,
rigid binding at compile-time, and little encouragement to clearly separate
interfaces and implementation.

• The limiting factor is usually the underlying hardware with its harsh re-
source and timing constraints that forces the developers to design for run-
time and memory efficiency instead for testability. When the code is tuned
to produce the smallest possible memory footprint, debugging aids as well
as additional interfaces to control and to introspect the state of the soft-
ware system are intentionally removed.

• Cross-platform development with a separation between host development
environments and target execution platforms is a typical approach in build-
ing embedded software systems. The development tools run in a host en-
vironment, usually including a hardware simulator. Larger increments are
cross-compiled and tested on the actual target system once it becomes
available.

• In addition, unit testing is concerned with a number of domain-specific
issues causing defects that demand domain-specific test methods and tool
support. In embedded software development, these specific issues include,
for example, real-time requirements, timing problems, and asynchronous
execution due to multi-threaded code or decentralized systems.

The goal of the project was to tackle these challenges and to introduce the
concept of TDD to the development of embedded software for mobile and
handheld devices. Together with the partner company we developed a frame-
work for automated unit testing with the aim to resemble the design of the

8 http://www.junit.org

IV Software Engineering – Processes and Tools 193

xUnit family as closely as possible, so unit tests could be written in the
restricted C++ language variant used for programming embedded devices.
Beyond that, the framework comprises extensions such as to run as applica-
tion directly on the mobile device or to remotely execute unit tests on the
target device via a TCP/IP or a serial connection, while the test results are
reported back to the the development environment on the host (Figure 12).
Many defects only prevalent on the target hardware can so be detected early
in development, before the system integration phase.

Host Development Environment

Development
of Test and Code

Analysis
of Test Results

Exexution
of Tests

Target Environment
Remote Execution

of Tests

trigger remote
test execution

report
test results

cross-compile
and deploy

TCP/IP or
serial connection

Workflow for unit testing in the host development environment as well
as on the target device.

Figure 12

Balancing Manual and Automated Software Testing

Questions like “When should a test be automated?” or “Does test automa-
tion make sense in a specific situation?” fuel an ongoing debate among re-
searchers and practitioners (e.g. [BWK05]). Economic considerations about
automation in software testing led to the conclusion that – due to generally
limited budget and resources available for testing – a trade-off between man-
ual and automated testing exists [RW06]. An investment in automating a test

194 Gerhard Weiss, Gustav Pomberger et al.

reduces the limited budget and, thus, the number of affordable manual tests.
The overly simplistic cost models for automated testing frequently found in
the literature tend to neglect this trade-off and fail to provide the necessary
guidance in selecting an optimally balanced testing strategy taking the value
contribution of testing into account [Ram04].

The problem is made worse by the fact that manual and automated test-
ing cannot be simply traded against each other based on pure cost consid-
erations. Manual testing and automated testing have largely different defect
detection capabilities in terms of what types of defects they are able to reveal.
Automated testing targets regression problems, i.e. defects in modified but
previously working functionality, while manual testing is suitable for explor-
ing new ways in how to break (new) functionality. Hence, for effective manual
testing detailed knowledge about the tested software system and experience
in exploring a software system with the aim to find defects play an important
role [BR08]. In [RW06] we propose an economic model for balancing manual
and automated software testing and we describe influence factors to facili-
tate comprehension and discussion necessary to define a value-based testing
strategy.

Frequently, technical constraints influence the feasibility of automaton ap-
proaches in software testing. In the project Aragon, a visual GUI editor as a
part of an integrated development environment for mobile and multimedia de-
vices, has been developed [PPRL07]. Testing the highly interactive graphical
user interface of the editor, which comprises slightly more than 50 percent of
the application’s total code, involved a number challenges inherent in testing
graphical user interfaces such as specifying exactly what the expected results
are, testing of the aesthetic appearance, or coping with frequent changes.

While we found a manual, exploratory approach the preferable way of
testing the GUI, we also identified a broad range of different tasks that can
effectively be automated. As a consequence we set up the initiative TestSheets
utilizing Eclipse cheat sheets for implementing partial automated test plans
embedded directly in the runtime environment of the tested product [PR08].
This integration enabled active elements in test plans to access the product
under test, e.g., for setting up the test environment, and allows to tap into
the product’s log output. Test plans were managed and deployed together
with the product under test.

We found that partial test automation is an effective way to blend manual
and automated testing amplifying the benefit of each approach. It is primar-
ily targeted at cumbersome and error-prone tasks like setting up the test
environment or collecting test results. Thereby, partial automation enhances
the capability of human testers, first, because it reduces the amount of low-
level routine work and, second, because it provides room for exploring the
product under test from various viewpoints including aspects like usability,
attractiveness and responsiveness, which are typically weakly addressed by
automated tests.

IV Software Engineering – Processes and Tools 195

Monitoring and Predicting Software Quality 3.3

Software quality engineering is an ongoing activity. Beyond measures to
achieve software quality, it requires paying close attention to monitor the
current quality status of software systems and to anticipate future states as
these software systems continue to evolve. In the following we show how a re-
search project integrating software engineering data in a software cockpit can
provide the basis for monitoring and predicting software quality of upcoming
versions of software products.

Software Cockpits

Continuous monitoring and management of software quality throughout the
evolution of a software system [MD08] requires a comprehensive overview
of the development status and means to drill-down on suspicious details to
analyze and understand the underlying root causes. Software cockpits (also
known as dashboards or software project control centers [MH04]) have been
proposed as key to achieve this vision by integrating, visualizing and exploring
measurement data from different perspectives and at various levels of detail.
Typical sources of measurement data are software repositories and corporate
databases such as versioning systems, static code and design analysis tools,
test management solutions, issue tracking systems, build systems, and project
documentation.

Each of these repositories and databases serves a specific purpose and
provides a unique view on the project. For a holistic view on software quality,
the relevant aspects of these individual views have to be integrated. Thereby,
in order to support the analysis of the project situation, it is not enough to
simply present the data from different sources side by side. The integration
requires modeling and establishing the relationships between the different
software repositories and databases at data level [RW08]. The topic of data
integration has been successfully addressed by the concept of data warehouses
with its associated ETL (extract, transform, load) technologies in database
research and practice [KC04].

Data warehouses are the basis for business intelligence solutions, which
support managers in making decisions in a dynamic, time-driven environ-
ment based on information from diverse data sources across an organization.
Test managers and quality engineers operate in a similar environment under
pressure to meet high-quality standards and, at the same time, to deliver in
a tight schedule and budget. Hence, as partner in the competence network

196 Gerhard Weiss, Gustav Pomberger et al.

Softnet Austria9 we investigated and adopted the idea of business intelligence
for software development and quality engineering [LR07].

In a study of existing approaches and solutions offering software cockpits
for testing and quality management, we found an overemphasis of the re-
porting aspect. The main purpose of most of the studied cockpits was to
generate static views of aggregated data, usually retrieved from a single data
source. In contrast, Eckerson [Eck05] illustrates the nature of cockpits as the
intersection between static reporting and interactive analysis. We therefore
implemented a software cockpit with the objective to further explore the re-
quirements and solution concepts for interactive data analysis. We based the
cockpit on an open source data warehouse as platform for integrating project-
specific data sources from development and test tools. The retrieved data was
harnessed in customized software metrics and models [Kan02], which were vi-
sualized and analyzed via the cockpit. Our first prototype implementation of
the software cockpit supported data extraction from open source software
engineering tools such as the issue tracking tool Bugzilla or the versioning
system CVS.

The three main tiers of the cockpit’s architecture are shown in Figure 13
(from bottom to top):

1. Data adapters periodically extract relevant data from different repositories
and databases, e.g., Bugzilla’s issue database or the change log of CVS.
The data is transformed to a standard data structure and stored in the
central data warehouse.

2. The data warehouse organizes the data as cubes amenable for on-line an-
alytical data processing. The data schema supports recording the project
history for analyzing the evolution and forecasting of trends.

3. The user interface of the cockpit visualizes aggregated information and
offers the flexibility to customize views, metrics and models. The Web-
based implementation provides easy access to visual representation of the
integrated data.

The first prototype of the cockpit has been developed in close coopera-
tion with an industrial software project pursuing an iterative development
process. Over a series of rapid prototyping cycles, the Web-based user in-
terface (Figure 14) has evolved including a number of features to visualize
and to analyze quality-related measurement data. Building on these results,
the software cockpit has been successfully adopted in other projects and or-
ganizations, for example, a software product company developing business
software involving a development team of more than 100 persons [LRB09].

We identified a number of features that constitute key success factors
for the successful implementation and application of software cockpits in
practice.

9 http://www.soft-net.at/

IV Software Engineering – Processes and Tools 197

System architecture of the software cockpit. Figure 13

Interface of the software cockpit for developers. Figure 14

198 Gerhard Weiss, Gustav Pomberger et al.

• A user-centered design that supports the users’ daily activities keeps the
administrative overhead at a minimum and is in line with personal needs
for feedback and transparency.

• A comprehensive overview of all relevant information is presented as a
set of simple graphics on a single screen as the lynchpin of the software
cockpit. It can be personalized in terms of user specific views and filters.

• The presented information (i.e. in-process metrics from software develop-
ment and quality engineering) is easy to interpret and can be traced back
to the individual activities in software development. Abstract metrics and
high-level indicators have been avoided. This encourages the users to re-
flect on how their work affects the overall performance of the project and
the quality status of the product.

• In addition, the interactive analysis of the measurement data allows drilling
down from aggregated measurements to individual data records and in-
place exploration is supported by mechanisms such as stacked charting of
data along different dimensions, tooltips showing details about the data
points, and filters to zoom in on the most recent information.

Predicting Defect-prone Modules of a Software System

Data about the points in time where defects are introduced, reported, and
resolved, i.e. the lifecycle of defects [Ram08], is gathered in the data ware-
house and can be used to construct the history and current state of defective
modules of a software system. The data about the software system’s past
states can also serve as the basis for predicting future states of a software
system, indicating which modules are likely to contain defects in upcoming
versions.

The rationale for identifying defect-prone modules prior to analytical qual-
ity assurance (QA) measures such as inspection or testing has been sum-
marized by Nagappan et al.: “During software production, software quality
assurance consumes a considerable effort. To raise the effectiveness and effi-
ciency of this effort, it is wise to direct it to those which need it most. We
therefore need to identify those pieces of software which are the most likely
to fail—and therefore require most of our attention.” [NBZ06] As the time
and effort for applying software quality assurance measures is usually limited
due to economic constraints and as complete testing is considered impossible
for any non-trivial software system [KFN99], the information about which
modules are defect-prone can be a valuable aid for defining a focused test
and quality engineering strategy.

The feasibility and practical value of defect prediction has been investi-
gated in an empirical study we conducted as part of the research project
Andromeda, where we applied defect prediction for a large industrial soft-
ware system [RWS+09]. The studied software system encompasses about 700

IV Software Engineering – Processes and Tools 199

KLOC of C++ code in about 160 modules. Before a new version of the system
enters the testing phase, up to almost 60 percent of these modules contain
defects. Our objective was to classify the modules of a new version as poten-
tially defective or defect-free in order to prioritize the modules for testing. We
repeated defect prediction for six consecutive versions of the software system
and compared the prediction results with the actual results obtained from
system and integration testing.

The defect prediction models [KL05] we used in the study have been based
on the data retrieved from previous versions of the software system. For every
module of the software system the data included more than 100 metrics like
the size and complexity of the module, the number of dependencies to other
modules, or the number of changes applied to the module over the last weeks
and months. Data mining techniques such as fuzzy logic-based decision trees,
neural networks, and support vector machines were used to construct the
prediction models. Then, the models were parameterized with the data from
the new versions to predict whether a module is defective or defect-free.

Preliminary results showed that our predictions achieve an accuracy of
78 (highest) to 67 percent (lowest). On average 72 percent of the modules
were accurately classified. Hence, in case testing has to be stopped early and
some modules have to be left untested, a test strategy prioritizing the mod-
ules based on the predicted defectiveness is up to 43 percent more effective
than a strategy using a random prioritization. Even in with the lowest pre-
diction accuracy the gain can be up to 29 percent compared to a random
testing strategy when only 60 percent of all modules are tested. The gain
over time is illustrated in Figure 15. The testing strategy based on average
defect prediction results (blue) is compared to the hypothetical best case—a
strategy ordering the modules to be tested according to their actual defec-
tiveness (green)—and the worst case—a strategy ordering the modules purely
random (red).

The depicted improvements in testing achieved by means of defect pre-
diction are intermediate results from ongoing research. So far, the prediction
models have been based on simple metrics derived from selected data sources.
Combining the data in more sophisticated ways allows including additional
aspects of the software system’s history and, thus, promises to further in-
crease the prediction performance [MGF07]. In a specific context of a project,
the results can be improved even further by tuning of the applied data min-
ing methods. For the future, we plan to extend this work to a larger set of
industrial projects of various sizes and from different domains.

200 Gerhard Weiss, Gustav Pomberger et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Total modules tested

D
ef

ec
tiv

e
m

od
ul

es
 c

ov
er

ed
Optimal Strategy
Random Strategy
Prediction Strategy

Figure 15 Improvement gain achieved by defect prediction.

4 Software Architecture Engineering

A software system’s architecture is an abstraction of its implementation,
omitting details of implementation, algorithm and data representation, see
[BCK03]. The architecture of a software system is often represented by dif-
ferent models, each consisting of abstract elements and relationships. Each
of these models can be used to describe a particular abstract view of im-
portant structural relationships, facilitating understanding and analysis of
important qualities of a software system. The fact that the abstraction de-
fined by an architecture is not made up by one but by different structures
and views providing different perspectives on a software system is reflected in
a widely accepted definition of software architecture provided by the Bass et
al. [BCK03], where software architecture is defined as “the structure or struc-
tures of the system, which comprise software elements, the externally visible
properties of these elements, and the relationships among them”. Architec-
ture is the result of design. This is reflected in a broader definition provided
by Medvidovic et al. [MDT07] which state that “a software system’s archi-
tecture is the set of principal design decisions about a system”. This includes
design decisions related to structure, behavior, interaction, non-functional
properties, the development process, and to a system’s business position (see
[MDT07]).

IV Software Engineering – Processes and Tools 201

The architecture of a software system is one of the most important con-
cepts during software development. It is among the first artifacts produced in
the development and contains early design decisions [Cle96] that are usually
long lasting and expensive to change later in the development. Fundamental
system qualities like performance, security, or scalability are determined by
a system’s architecture. For developers it is a blueprint [Gar00] of the system
that guides and constrains implementation. For stakeholders it is a means
of communication. Formal architecture representations (architecture models)
can be used for automatic analysis of important system qualities; informal
architecture representations (architecture documentation) are an important
means of communication during and system documentation during all phases
of a software life-cycle.

Superficially, software architecture research can be classified into two main
research areas: general software architecture research and domain-specific
software architecture research. General software architecture research encom-
passes concepts, methods, and tools for creating, describing, and managing
software architectures, ideally independent of a particular domain. Domain-
specific software architecture research focuses on the application and adaption
of general software architecture principles for specific domains and includes
the creation of domain-specific architecture languages, tools, reference archi-
tectures, and patterns.

In this section we describe both basic and applied research projects in the
area of software architectures that are conducted by SCCH with academic
and industrial partners. The remainder of this section is structured as fol-
lows: Subsection 4.1 provides an overview of the field of software architectures
and highlights important research challenges. Subsection 4.2 describes a re-
search cooperation between SCCH and the Software Engineering Group at
the Department of Business Informatics, Johannes Kepler University Linz,
focusing on languages and tools for comprehensive and integrated software
architecture management. Subsection 4.3 describes applied software architec-
ture research for industrial software systems. Finally, Subsection 4.4 describes
architecture-related research activities for enterprise information systems.

General Research Areas and Challenges 4.1

In this subsection we provide an overview of research fields and challenges in
the area of general software architecture research. Important research fields
in this area are architecture design, architecture implementation, architecture
analysis and evaluation and architecture documentation [TvdH07, KOS06].

202 Gerhard Weiss, Gustav Pomberger et al.

Architecture Design

Architecture design is the activity that creates a system’s architecture. While
design is performed in all phases of software development fundamental design
decisions are usually made before the implementation phase [TMD09]. When
creating the initial architecture, a wide range of aspects has to be taken into
consideration. Since it is not possible to fulfill the concerns of all stakeholders
the architecture of a software system represents a tradeoff between stakehold-
ers concerns [RW05]. Architecture design experience is represented by pat-
terns [MKMG97], styles [MKMG97], and reference architectures [TMD09].
Architecture is also implicitly reused through the use of frameworks [SB03]
and middleware [SB03] for a particular domain.

Architecture Implementation

Implementing a defined architecture is in fact the task of mapping the con-
cepts defined during design to implementation artifacts [TMD09]. This pro-
cess can be performed manually and automatically. If the architecture is
implemented manually, a major problem is to ensure that the system imple-
mentation conforms to the intended architecture. This problem is known as
architectural decay [AGM05], architectural drift [PW92], architectural ero-
sion [PW92] and design erosion [vGB02]. If existing libraries, middleware and
frameworks are used, architecture and design is effectively reused and the
possible architectural drift is reduced. Since a framework usually defines the
architecture for a family of applications in a particular domain, architectural
drift is still possible. Approaches for checking architecture conformance like
Lattix [SJSJ05], Sotoarc [Sof07] and SonarJ [Hel07] operate at the level of
programming-language concepts. They lack high-level architecture support
and are not integrated well enough with the development process. Model-
driven development [Sch06] can be used for automatically deriving (parts of)
an implementation from an architecture. Since architecture is an abstraction
of a software system and no specification, only code skeletons can be gen-
erated, which have to be implemented manually. The synchronization of the
manually modified code with the models used for code generation is a central
problem of model-driven software development [HT06].

Architecture Analysis and Evaluation

The purpose of software architecture analysis is to analyze the software ar-
chitecture to identify potential risks and verify that the quality requirements
have been addressed in the design [LH93]. Analysis activities can take place

IV Software Engineering – Processes and Tools 203

before the system has been build, during it is built and after the system has
been built [DN02]. Architecture analysis can be performed manually by using
architecture evaluation methods or automatically using architecture analysis
tools.

Architecture evaluation methods like the Software Architecture Analysis
Method (SAAM) [CKK02] or its successor the Architecture Tradeoff Analysis
Method (ATAM) [CKK02] are scenario-based evaluation methods that have
been developed particularly to validate quality attributes, which are usually
difficult to analyze. Architecture evaluation methods are time-consuming and
resource-intensive processes. They are usually used for evaluating the ini-
tial design of a software system with its stakeholders and for assessing the
architecture of an already implemented system. They are not intended for
continuous architecture analysis.

Architecture Description Languages (ADLs) are formal languages to rep-
resent the architecture of a software system [Cle96]. They allow the automatic
analysis of system properties before it has been built [Cle95]. An ADL de-
scribes a system in terms of components, connectors and their configurations
[MT00]. Usually ADLs have a textual as well as a graphical representation
[Cle96]. A large number of general purpose and domain-specific ADLs ex-
ist [MT00]. Disadvantages of ADLs are lack of tool support [MDT07, MT00],
lack of implementation integration [MT00] and lack of standardization. Some
ADLs allows code generation in the sense of model-driven software develop-
ment, which may lead to problems in synchronizing architecture and code as
mentioned above. While UML is sometimes discussed as a general purpose
ADL, its suitability as an ADL is still subject of study and debate [MDT07].
In most cases UML, is used for architecture documentation as described be-
low.

Architecture Documentation

Since the architecture of a software system is not entirely contained in the
implementation it must be documented separately [Hof05]. Documenting soft-
ware architecture is quite different from architectural descriptions that are
created for analysis [IMP05]. While the latter requires a formal description
that can be processed by tools, architecture descriptions for documentation
purposes are usually described informal using natural language. Researchers
have proposed a view-based approach for describing software architectures
[RW05, Kru95, CBB+02, HNS99]. An architectural view is a representation of
a system from the perspective of an identified set of architecture-related con-
cerns [Int08]. Architecture documentations usually consist of multiple views.
The concepts of view-based architecture documentation are defined in the
ISO/IEC 42010 standard: Systems and Software Engineering – Architectural
Description [Int08].

204 Gerhard Weiss, Gustav Pomberger et al.

The Unified Modeling Language (UML) [Obj07] is the standard model-
ing language in software development. UML is primary a visual notation
[WH05] that consists of over ten different loosely connected individual nota-
tions [MDT07]. UML is often used in architecture documentation. UML 2.0
has adapted many features from ADLs [AGM05].

4.2 Software Architecture Management – Languages
and Tools

While numerous approaches for individual architecture-related activities ex-
ist and have found wide-spread use in practice, architecture is still not sup-
ported well enough during software development. Often it is not explicitly
and entirely documented; system implementation deviates from the intended
architecture; the documented architecture is out-of-date; architecture confor-
mance checking is not performed continuously and can only be performed at
a low level of abstraction; and finally the architecture is usually described
informal and cannot be used for automatic analysis.

The Software Architecture Engineering (SAE) project is a strategic project
that addresses these problems. The main idea is to support software architec-
ture related activities like modeling, changing, and validating software archi-
tectures as an integral part of other activities in software development. This is
achieved by a central integrated and formalized language for describing soft-
ware architectures (LISA) and an unobtrusive set of integrated architecture
tools working on this model (LISA-toolkit).

Integrated Architecture Language

LISA is an architecture description language which can be used for describing
and validating architectural structures and properties. It has no explicit tex-
tual representation, which is intended for manually creating an architectural
description. Instead, LISA-based architecture models are manipulated by the
tools provided by the LISA toolkit.

While LISA has been designed as a general purpose ADL, it has been de-
signed with specific aims promising to solve some of problems of architecture
engineering described above and with the central aim to raise the abstraction
in software development further by extending modeling concepts provided by
general purpose programming languages by architectural concepts.

From a technical perspective LISA is an extensible meta-model based on
XML-Schema and consists of several integrated and connected sub models.
Contrary to other ADLs it puts a special emphasis on linking architecture to

IV Software Engineering – Processes and Tools 205

implementation and on supporting existing component-models and technolo-
gies. The main elements of LISA are shown in Figure 16. The lower layers

Core Model

Language
Element Model

Basic Structure
Model

Common
Component

Model

Configuration
Model

System Model

Language
Bindings

Technology
Bindings

Technology
Bindings

(Q
ua

lit
y)

 A
ttr

ib
ut

e
M

od
el

s

Java, C#

EJB, Spring,
OSGi, SCA,
Spring-OSGi

The LISA Model. Figure 16

of the LISA language definition shown in Figure 16 can be used for describ-
ing architectural relationships that are defined statically in code. Model ele-
ments at these lower layers can be partly extracted from or mapped to source
code. Examples are the elements of the Language Element Model, which in-
clude concepts like classes and interfaces. These elements can be organized
by structures in the Basic Structure Model. The Basic Structure Model can
be used for defining elements like functional units, subsystems, deployment
units, and layers. Together the elements of the lower layers of the LISA lan-
guage definition enable functionality provided by architecture management
tools. This includes usage and dependency analysis, synchronizing architec-
ture with code, and defining and checking architectural constraints at the
level of programming language concepts. Although the lower layers of LISA
are aligned with concepts found in concrete programming languages they are
still abstract. Bindings to particular programming languages are provided by
Language Binding definitions as shown in Figure 16.

The upper layers of LISA include the definition of abstract models for
describing components, configurations, and whole systems. Again the bind-
ing to specific component technologies and models is provided by Technology
Binding Models. Currently LISA supports bindings for EJB [EJB06], Spring

206 Gerhard Weiss, Gustav Pomberger et al.

[Spr08b], OSGi [OSG07], Spring Dynamic Modules for OSGi [Spr08a], and
SCA [SCA07]. Examples for elements at the higher layers of LISA are compo-
nent, contract, port, composite, application, location and tier. These elements
can be used for describing and analyzing architectures of component-based
and distributed service-oriented software systems. In such systems architec-
tural relationships are not defined in code but through late composition and
configuration. Finally, (Quality) Attribute Models as shown in Figure 16 can
be used for attaching semantic attributes and policies to architectural ele-
ments at all levels of abstraction. Such attributes can be used for annotating
and validating non-functional attributes of a software system.

Pervasive Architecture Toolkit

LISA is not intended to be used directly by means of a textual representation.
Instead creation, manipulation, visualization, and validation of LISA-based
architectural models are supported by the LISA-toolkit. To provide unob-
trusive and integrated support for architecture related activities during the
whole development process, the toolkit is implemented as a set of Eclipse
plug-ins and designed to be integrated into software analysis and develop-
ment tools. An overview of the general structure of the toolkit is shown in
Figure 17. A screenshot of the LISA-Toolkit is depicted in Figure 18.

User Interface

Application Logic

Model

Architecture
Modeling

Integrated
Architecture

Model

Technology
Submodels

Technology
Submodels

Technology
Submodels

Model
Manipulation

Implementation
Connection

Implementation
Connection

Implementation
Synchronization

ValidationValidationValidation

Architecture
Visualization

Figure 17 The LISA Toolkit.

IV Software Engineering – Processes and Tools 207

A Screenshot of the LISA Toolkit. Figure 18

As shown in the figure, the toolkit provides an API for editing a LISA-
based architecture model as well as functional components for validating
architectural constraints and for synchronizing an architecture with a system
implementation. In addition, the toolkit provides user interface components
for architecture modeling and visualization. All UI components are working
on the same architectural model and thus support editing and visualization
of different aspects of a system in a consistent way. Violation of architectural
constraints defined in the model are immediately shown in all graphical and
textual representations of the affected elements.

Examples of available visualizations and modeling tools are shown in Fig-
ures 19 and 20. Figure 19 shows usage and dependency relationships of classes
and interfaces organized in different layers in an object-oriented software sys-
tem. The figure shows layer violations (see (1) and (2) in Figure 19) as an
example for the violation of architectural constraints.

Figure 20 shows diagrams for representing and editing the architecture of
a service-oriented software system using the Service Component Architecture
(SCA). Instead of classes and interfaces, the main elements at this layer of
abstraction are components and contracts. The Component Decomposition
Diagram provides on overview of the components of the system. In LISA
components are independent of a particular implementation technology. The

208 Gerhard Weiss, Gustav Pomberger et al.

(1)

(2)

Figure 19 Language Element Diagrams.

diagram can be used to explore component structure and decomposition of
composite components. Component usage relationships are typically not im-
plemented in source code but rather configured during system assembly or
created automatically based on component specifications. The System Rela-
tion Diagram shows the configuration of a system in terms of components
and their relations. Relations and element properties violating architectural
constraints are also indicated at this level of abstraction.

Figure 20 Component Diagrams.

IV Software Engineering – Processes and Tools 209

Addressed Problem Domains and Research Challenges

The approach supports architecture related activities in different areas of
software development and addresses several challenges described above.

Architecture Design: The LISA-toolkit can be used for modeling architec-
tural elements and relationships. A system can be modeled from low level
elements at the level of classes and interfaces to higher level components
at the level of systems. LISA supports in particular component-based and
distributed service-oriented systems.

Architecture Implementation: An architecture model can be used for gener-
ating component implementation skeletons and other application parts in
the sense of model-driven development. However, the central benefit of the
approach in this area is the support for binding architecture to implemen-
tation and for continuous synchronization of architecture and implemen-
tation. This addresses the problems of outdated architecture description
and of architectural drift.

Architecture Analysis and Evaluation: Since the approach is based on a
central formalized architecture model, architectural constraints can be
defined similar to other architectural description languages. Contrary to
other approaches constraints can be defined at the level of the architecture
model as well as the level of the implementation and technology binding.
Since the same model is used during the whole software life-cycle, archi-
tectural constraints can be checked during analysis, implementation and
also during maintenance.

Architecture Documentation: Architecture documentation is best supported
by a view-based approach as described above. LISA supports architecture
documentation by providing diagrams that can be used for describing ar-
chitectural views.

To summarize, the main elements of the architecture management ap-
proach are a central formalized architecture model and set of tools working
on this model. Distinct features are the possibility to integrate the architec-
ture tools with other development tools, close integration and synchroniza-
tion with implementation, the support of component-based systems and the
support of existing component models and technologies. First results of the
approach have been published in [BW08].

210 Gerhard Weiss, Gustav Pomberger et al.

4.3 Software Architectures for Industrial Applications

In the context of this subsection, the term industrial applications refers to
software, which handles tasks related to manufacturing, process control and
-automation. This includes applications for manufacturing operations man-
agement (e.g. product tracking, product resource management, product data
collection) as well as software for basic control of devices and machines. Of
course, industrial applications are not solely restricted to manufacturing in-
dustries, the term also applies to software solving similar tasks in areas like
aviation, the automotive industry, and building automation.

Challenges and Requirements

Industrial applications tend to have stricter requirements concerning relia-
bility and efficiency (in the sense of ISO-9126) than desktop software. This
is particularly the case for software that handles mission- and safety-critical
tasks. Reliability means that such industrial applications must provide high
availability with minimal downtimes, be robust to failure and be able to fully
recover to an operational state in case of faults in underlying or neighbored
systems. Efficiency covers the aspects of time and resource behavior. While
managing resources like memory efficiently should be important to software
applications in general, industrial applications, and especially applications for
process control, often must fulfill hard or soft real-time demands. These re-
quirements demand special considerations when designing and implementing
industrial applications. Designing real-time systems is particularly challeng-
ing [Dou02, Ste00]. Several frameworks aid in designing and developing indus-
trial applications. They range from domain specific control frameworks such
as OROCOS [Bru01] to general purpose component frameworks like OSGi
[OSG07], which can be used equally for industrial and desktop software.

Case Study ProMoRTE

ProMoRTE [Dor09] is an online (i.e. process controlling) OSGi-based runtime
platform for computation algorithms in the steel industry. The following list
of requirements was important for designing the architecture of the platform:

• Easy and flexible installation, configuration and operation of computation
algorithms at runtime.

• Versioning support for computation algorithms.

IV Software Engineering – Processes and Tools 211

• Prescription of unified interfaces for computation algorithms (data access,
behaviour control).

• Integration with an IDE for developing and maintaining algorithms.
• Support of legacy code to allow the reuse of existing algorithms coded in

C/C++.

The pivotal quality requirement addressed the reliability of the platform.
Since it had to be deployed in a 24x7 production environment, a maximum
of stability and a minimum of downtime was demanded. Manipulations on
a certain algorithm (e.g. reconfiguration), failed computations or crashed al-
gorithm executions had not to influence the operation of other algorithms in
the platform. In case of a hardware fault or system crash, a full recovery of
the platform and all installed algorithms was mandatory. Other important
quality demands concerned portability of the system (OpenVMS, Windows,
Linux) and performance. Hard real-time capabilities were not deemed neces-
sary, though.

Of course, these requirements affected the architecture of ProMoRTE. To
achieve portability we opted to base our implementation on Java. OSGi as the
base framework was chosen for its flexible component oriented architecture
allowing hot deployment of components (aka bundles) and providing explicit
versioning support. Besides, OSGi easily integrates with the popular Eclipse
IDE—since Eclipse builds on OSGi, too.

Support of legacy code and the reliability requirement interfered with each
other. Incorporating native libraries in Java applications is done via the Java
Native Interface. However, direct integration bears the risk of reduced stabil-
ity and robustness, because defects in native code can not always be handled
by the JNI code or the Java application code. Thus, we had to consider a dis-
tributed architecture to satisfy the reliability needs, which is shown in Figure
21.

The distribution of process algorithms had in turn an effect on perfor-
mance, since communication of platform and algorithms had to pass process
boundaries. In the end, the negative effects could be coped with. The plat-
form has been operative in the project partner’s productive environment for
over two years.

Software Architectures for Enterprise
Information Systems

4.4

To stay competitive, enterprises need a flexible applications architecture that
permits changes and the quick deployment of new functionality with mini-
mal integration effort. Enterprise applications can be integrated at different
levels: data, business logic, and presentation. Integration of heterogeneous

212 Gerhard Weiss, Gustav Pomberger et al.

Figure 21 Distribution of algorithms with ProMoRTE.

systems both within enterprises (EAI) and between enterprises (B2B) re-
quires standardization. Standardization is a strong trend at all integration
levels. Examples are Web Service standards like SOAP and WSDL as well as
higher-level standards for B2B-integration like ebXML and RosettaNet.

To increase reusability and to flexibly adapt to changing business condi-
tions and processes, enterprise applications are increasingly decomposed into
small reusable and composable elements using standardized interfaces. At
the presentation level such elements are portal components, which can be
composed to web portals and customizable workplaces. At the business logic
layer, the central elements for composition are services. Currently, the term
Service-Oriented Architecture (SOA) is usually used for flexible enterprise
information system architectures based on services using standardized (Web
Service) protocols.

Challenges and Requirements

Central challenges of integrating components at the presentation level are the
integration of the components’ user interfaces into a single consistent aggre-
gated application user interface and the support for data exchange between

IV Software Engineering – Processes and Tools 213

these components. Data exchange at the presentation level is complicated by
two main issues. Presentation level components that are to be integrated may
not only be developed by different parties but also managed and operated by
different providers. This means that data exchange needs to support remote
communication and may cross several different security boundaries. In addi-
tion, standardized composition models are needed for integrating components
without additional development effort. These issues have been addressed by
the Enterprise Portal Project at SCCH, which has been conducted to created
customizable workplace solutions in the financial domain.

Central challenges at the business logic level, i.e., for an Service-Oriented
Architecture, are the support for service evolution, service reuse, and service
management. Similar to the presentation level, services at the business-logic
level may be produced and operated by different providers. This means that
any changes to the architecture of a SOA-based system may potentially affect
not only other departments but even other companies. Equally changes of
services operated by a particular company may affect the whole enterprise
information architecture. Aspects of service evolution and management in an
SOA have been addressed by the IT4S project at SCCH.

Enterprise Portal Project (Enipa)

The main result of the Enipa project is a component model for enhanced
integration of portal components in web portals. The model supports not only
the aggregation of components within one web page, but also the composition
of component navigation into a central navigation area, the communication
between local and remote components, and heterogeneous environments. The
approach is based on existing standards like Portlets and WSRP and uses
XML for describing component navigation and communication capabilities.
It is declarative and may also be used for improving integration capabilities
of already existing portal components (see [WZ05] and [WWZ07]).

SOA Evolution and Management (IT4S)

The results of the IT4S project are an approach for SOA governance and a
versioning approach for service evolution. Notable aspects of the governance
approach are an extensible model for describing service metadata of arbi-
trary service types (not only Web services), support for the process of service
specification and service creation, a service browser for service reuse, and
the support for service evolution through information about service version-
ing, service dependencies and service installations [DW06]. The versioning

214 Gerhard Weiss, Gustav Pomberger et al.

approach consists of a versioning model, of suggestions for release manage-
ment, evolution scenarios, and a versioning scheme for enterprise services
[WZD07]. It also includes compatibility rules for the homogeneous evolution
of heterogeneous services [KWZ09].

5 Domain-Specific Languages and Modeling

A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular
problem domain [vDKV00]. There is a common perception to distinguish
between horizontal and vertical domains. Horizontal domains cover different
technical software areas as user interface, database, testing, etc. whereas ver-
tical domains are found in business areas like insurance, telephony, or process
automation.

Domain-specific languages play an important role in various software engi-
neering methodologies. In generative software development [CEC00], a given
system can be automatically generated from a specification written in one
or more textual or graphical domain-specific languages [Cza05]. Domain-
specific languages have also been applied for end-user programming [MKB06]
[PHS+08b]. There has also been a trend in model-driven development towards
representing models using appropriate DSLs resulting in the domain-specific
modeling discipline [VS06, KT08].

Domain-specific modeling (DSM) proposes to model a software system
and to fully generate code from these high-level models. Importantly, both
the language used for modeling as well as code generators are specific to
a certain domain, in contrast to other model-driven approaches like model-
driven architecture [KWB03] that proposes standard modeling languages, e.g.
UML.

Domain-specific modeling is about finding concepts from a certain domain
and to specify a domain-specific language from these concepts. Tolvanen and
Kelly [TK05] identified following driving factors for language construct iden-
tification based on an evaluation of 23 case studies:

1. domain expert concepts,
2. developer concepts,
3. generation output,
4. look and feel of the system build, and
5. variability space,

where the combination of the latter two promises most benefits for DSM
solutions [TK05, KT08].

IV Software Engineering – Processes and Tools 215

The key contribution of domain-specific languages and modeling is to sig-
nificantly increase both productivity and quality in software development by
raising the abstraction level from general-purpose programming languages
and modeling notations toward bespoke domains.

For many realistic industrial software systems, a single DSL only solves a
limited part of a problem [KT08, LH09]. An entire system, hence, is typically
build from a single or multiple DSLs together with system parts developed
traditionally by means of general-purpose programming languages.

The Software Competence Center Hagenberg (SCCH) has carried out var-
ious application-oriented research projects together with partner companies
related to concepts and techniques of domain-specific modeling and lan-
guages:

Aragon: development of a graphical-user interface builder for an object-
oriented application framework for mobile devices [PPRL07].

Testbed: development of a software testbed for mobile software frameworks
[HHK+08].

OdcEditor: development of an end-user programming environment for in-
jection molding machines [PP09].

The remainder of this section focuses on an overview of the field of domain-
specific languages and modeling in general and its application to the afore-
mentioned research projects at SCCH.

Overview of the Field 5.1

Domain-specific modeling has two mutual dependent goals [KT08]: First,
raise the level of abstraction beyond programming by specifying the solution
in a language that directly uses concepts and rules from a specific problem
domain. Second, generate final products in a chosen programming language
or other form from these high-level specifications.

To achieve these goals, a domain-specific modeling solution consists of
following parts (see [KT08]): a domain-specific language, code generators,
and a domain framework.

Domain-Specific Language

A domain-specific language (DSL) provides concepts and rules to represent
elements in the problem domain on language level. In that, it allows express-
ing problems of the given domain in a more natural and intuitive way, raises

216 Gerhard Weiss, Gustav Pomberger et al.

the level of abstraction in the given domain, and brings software specification
closer to the domain experts. In distinction to general-purpose programming
languages, which are universally applicable to many domains, domain-specific
languages are created specifically for problems in the domain and are not in-
tended to problems outside it.

As a formal language, a DSL is defined by its concrete syntax, abstract
syntax, and semantics. The concrete syntax (or notation) specifies the con-
crete appearance of a DSL visible to the user. The notation can be one of
various forms—textual, graphical, tabular, etc.—depending on the problem
domain at hand. The concrete syntax usually is of increased importance for
DSLs, as it—to a great extent—determines acceptance by users.

The goal of the abstract syntax (or meta-model in context of model-driven
development) is to describe the structural essence of a language including
elements and relationships between elements like containment and references.
Concrete and abstract syntax of textual languages are often defined in a single
source [KRV07, GBU08] or the concrete syntax defines the abstract syntax
implicitly [LJJ07, PP08].

Whereas the formal definition of both abstract and concrete syntax is well
elaborated, the language semantics is usually given by the code generators.
Formal definition of language semantics is still an open research field, e.g.
[Sad08].

In general, DSLs are either standalone, embedded into a host language,
or used as domain-specific presentation extensions. A standalone DSL pro-
vides full abstraction of the underlying general-purpose programming lan-
guage used for the solution [KT08]. An embedded DSL is one which extends
an existing general-purpose language (e.g. [AMS08]). A domain-specific pre-
sentation extension of a general-purpose programming language (e.g. [EK07])
facilitates readability and closes the gap between problem and solution do-
main. In context of domain-specific modeling, the focus is on standalone
DSLs.

Code Generators

A code generator extracts information from a DSL program and generates
code in a target language. The target code is either in a general-purpose
programming language, which then will be compiled and linked with the
domain framework [KT08], or is in some intermediate representation that is
interpreted by the domain framework [HHK+08].

Code generation works with transformation rules which specify how the
different elements in the DSL program are transformed into target language
constructs. For textual output, the transformation techniques model-to-text
and text-to-text [LJJ07] are used, depending on the representation of the

IV Software Engineering – Processes and Tools 217

DSL program (model or text). For the former one, two main approaches are
available [CH03]: visitor-based and template-based.

Domain Framework

A domain framework provides the interface between the generated code and
the underlying target platform. Domain-specific frameworks [FJ99] are not
specific to the DSM approach but a general approach for software reuse to
increase productivity in a specific domain. However, a domain framework can
support a DSM approach by providing the immutable part of a solution not
visible to users which can be customized and configured by DSL programs.
In general, a domain framework is written in a general-purpose programming
language by and for software experts, whereas a DSM solution puts a domain-
specific language on top of a framework.

Tool Support

The success of a DSM solution largely depends on provided tool support to
create and manipulate software models in a given domain-specific language
[PP08]. Building a DSM solution should be possible without having to man-
ually program the tool support.

Figure 22 shows the tool chain supporting a DSM approach. A powerful
meta-modeling approach is crucial for defining concrete and abstract syntax
of a DSL language. The goal is to generate editors, compilers and other lan-
guage tools from the declarative specification. On the other side, code gener-
ation is facilitated by the specification of code generation rules, which specify
how the language elements defined in the meta-model should be translated
into target code. Today, several powerful DSL frameworks exist which support
language engineering for graphical as well as textual DSLs, e.g., EMF and
GMF tools for Eclipse [SBPM09], DSL Tools in MS Visual Studio [CJKW07],
or the MetaEdit+ environment [KT08]. A comparison of available platforms
for textual languages can be found in [PP08].

218 Gerhard Weiss, Gustav Pomberger et al.

Figure 22 DSM tool chain.

5.2 Modeling and Code Generation

In this subsection, we present results from an application-oriented research
project carried out by SCCH and its partner company Comneon10. The goal
of this project was to develop a platform-independent builder tool for man-
machine interfaces (MMI) for mobile and embedded devices. Tool support
for graphical user interfaces (GUI) or MMIs are recognized as traditional
domains where domain-specific modeling can improve both productivity and
flexibility by removing the gap between source code and the resulting MMI.
In this research project we have developed modeling, meta-modeling, and
code generation concepts and have implemented them in the builder tool
Aragon [PPRL07]. The tool is used together with the object-oriented C++
framework APOXI developed by Comneon for supporting the multi-stage
customization process carried out by domain experts.

As a typical domain framework, APOXI has been designed to meet the spe-
cial requirements of mobile, embedded devices and provides specific, easy to
use and comprehensible APIs for MMI and application development. Applica-
tion development follows the general idea of application frameworks [Joh99],
combined with a strict separation of application behavior and user interface
to ease the MMI customization process. Mobile phone manufacturers (MPM)
develop customized software solutions based on the framework and customize
and adapt their solutions to meet requirements of different mobile phone net-
work operations and market needs resulting in up to 60 different variants of
an MMI. MPM developers are typical domain experts that find it difficult
to work with plain C++ APIs provided by APOXI. Hence, there is a need
for a domain-specific modeling tool to create, adapt, and customize MMIs of
embedded devices.

The main challenge for developing a platform-independent MMI builder
tool in the domain of mobile and embedded devices were to provide accurate

10 www.comneon.com

IV Software Engineering – Processes and Tools 219

feedback of a resulting MMI even in the modeling (design) phase for a large
set of different devices and to provide code generators that transforms MMI
models into platform-specific code that can be used by the APOXI framework.
Figure 23 shows a screen dump of the tool Aragon which has been developed
on top of the Eclipse platform.

Screen dump of the APOXI GUI Editor. Figure 23

Domain Modeling

Domain modeling in the project started by considering the framework code,
i.e., the APOXI framework, the look and feel of resulting MMIs, the require-
ments of the multi-stage configuration process, and constraints and pref-
erences stemming from the different stakeholders involved. In general, for
building MMI solutions of mobile devices a domain expert has to have means
to specify the screens with user interface elements, their individual settings,

220 Gerhard Weiss, Gustav Pomberger et al.

their layout and positioning, containment relations, and how the user inter-
face gestures are connected to application behavior. In distinction to other UI
builder tools, Aragon pursues an approach which is target agnostic, i.e., the
tool itself is not dependent on the target implementation but fully configured
by meta-information which is realized in a target independent and extensible
form.

As result, the meta-model, i.e., the abstract syntax of the modeling lan-
guage, comprises the following concepts:

• Meta-information on UI components provided by a framework (e.g. APOXI)
and extensions like windows and menus together with their attributes, and
constraints on their configuration, composition, and layout.

• Meta-information on available applications and features provided by ap-
plications. This information is required to connect MMI elements with
application features implemented in a general-purpose programming lan-
guage, e.g., the C++ programming language.

Although, this information can be extracted from source code to a large
extend, domain experts want to define further constraints concerning com-
position of UI components that have to be validated and, hence, must be
included in the meta-model. Aragon therefore supports a dual approach, i.e.,
parts of the meta-information is extracted from source code while additional
information can be provided by the modeller. However, the meta-model is the
sole information Aragon uses for configuring the editor, filling the component
palette with elements, guiding the user actions, and validating domain models
(e.g. window composition).

In a typical DSM solution, only a few domain experts define the meta-
model, whereas users of a DSM solution are not concerned with it. For
Aragon, this is not sufficient because of the multi-stage development pro-
cess including different stakeholders. Besides the framework team that spec-
ify meta-model for the APOXI framework and basic applications, also MPM
developers define meta-models about new applications and extensions to the
APOXI framework. Hence, more powerful tool support to create, maintain,
and validate meta-models by users of the DSM solution is required and
provided by Aragon resulting in more flexibility compared to other meta-
modeling environments [SBPM09, CJKW07, LKT04]. In Aragon therefore, a
flexible meta-modeling scheme based on XML is defined which allows adding
meta-information by simply adding additional XML files.

For graphical DSLs, the concrete syntax, i.e. the visual representation of
the models, is usually defined by specifying the visual representation of the
language elements in the meta-model. In Aragon however, the visual represen-
tation is not part of the tool, but visual feedback is provided directly by the
target framework, e.g. APOXI, as shown in Figure 23. The APOXI instance
accepts a MMI model sent by the Aragon tool, e.g. a screen layout, creates
the corresponding window object with all child objects and sends back the
resulting display image to Aragon. Aragon then merges the resulting image

IV Software Engineering – Processes and Tools 221

with the invisible domain-model. Besides rendering the corresponding visual
representation, some additional information, in particular positioning infor-
mation of UI elements are extracted from the target platform and sent back
to Aragon. This avoids reimplementation of rendering and layout algorithms,
which are provided by the domain framework anyway.

The great advantage of this approach for MMI design is, that any diver-
gence between the visual feedback gained in the design stage and the final
appearance on the target device is eliminated. Aragon guarantees exact visual
feedback according to the target device already in the modeling (or design)
phase. Furthermore, the approach used by the Aragon tools is automatically
extensible because new user interface elements available in a domain frame-
work, e.g. APOXI, can be displayed in the Aragon editors without further
modification of the tools. In addition, by replacing the small interface of
Aragon to the target framework, Aragon can easily be adapted to any target
platform.

Code Generation

According to the DSM architecture, code generators transform models con-
forming to a DSL into target code or an intermediate representation which
then is interpreted on the target. Aragon supports both forms of code gen-
eration, i.e., it allows transforming a window layout alternatively to resource
files or to C++ source code. The former one is used for easier customization
because resource files may be stored on flash memory of a mobile device and
easily replaced. The latter one is more compact and can be loaded fast into
memory, which is required for low-end mobile devices due to limited memory
and CPU resources.

Because of the textual output of both forms, the Aragon code generators
follow the transformation technique model-to-text [LJJ07]. For this technique
two main approaches are available [CH03]: visitor-based and template-based.
However, both approaches hinder extensibility by DSM users as required for
Aragon. The reason is that template languages are often complex and visitors
directly operate on the internal representation of a meta-model, which usually
shall be hidden to DSM users.

As consequence, we have combined both techniques to a two-phase code
generator, which can be extended by DSM users more easily:

1. Domain models given in XML are transformed by means of XSLT into
an intermediate model (model-to-model transformation). The XSLT rules
can be extended by DSM users.

2. A non-extensible visitor transforms the intermediate model into resulting
resource files or C++ source code (model-to-text transformation).

222 Gerhard Weiss, Gustav Pomberger et al.

Besides this, Aragon also provides template-based, non-extensible code gen-
erators that generate and update C++ source code for applications based on
available meta-data of applications. This allows automatic synchronization
of meta-model and C++ source code and increases productivity. In this way,
common application code concerning registration and feature invocation can
be automatically generated from meta-models.

Altogether, the architectural features as described above result in a flex-
ible and extensible tool which, in its core, is independent from the target
framework (which is currently APOXI). Actually, being almost APOXI ag-
nostic and only having a tiny interface, Aragon is readily prepared to be used
together with other frameworks for MMI design.

5.3 Textual Domain-Specific Languages

In this subsection, we present challenges and results from an application-
oriented research project Testbed [HHK+08] aiming the development of
a software testbed for unit/integration/system testing of mobile software
frameworks.

The field of textual domain-specific languages is well elaborated, mainly
from experience over five decades on textual general-purpose programming
languages. This includes language definition (concrete and abstract syntax)
as well as tool support.

Usually, the concrete syntax (CS) is defined in form of a context-free gram-
mar and the abstract syntax (AS) is either explicitly defined and mapped
to concrete syntax, implicitly derived from concrete syntax or concrete and
abstract syntax are defined in single source [PP08]. On contrary, other ap-
proaches [JBK06, MFF+06] allows the description of a textual concrete syn-
tax for a given abstract syntax in form of a meta-model.

Tool support for textual languages includes text-to-model transformation
(parsing), editor support, and code generation. The automatically genera-
tion of compiler frontends including scanner and parser for text-to-model
transformation is an established area and a lot of such tools (e.g. CoCo/R,
LPG, ANTLR) are available. As a consequent further development, actual ap-
proaches as enumerated in [PP08] also automatically generate editor support
from a context-free grammar definition and provide support for template-
based or visitor-based code generation.

For the Testbed project, we followed a DSM approach by providing a tex-
tual domain-specific language to specify test cases that can be executed by a
test environment. Domain-specific language for testing has been applied by
various approaches (e.g. Sinha [SSM03] and Siddhartha [RR99]). In particu-
lar, the usage of DSLs for testing of mobile software frameworks has several
advantages [HHK+08]:

IV Software Engineering – Processes and Tools 223

• Testers usually are not familiar with source code of the system under test
(SUT) even are not usually C++ experts.

• Languages like C++ cause many programming errors, most notable er-
rors concerning memory management. Using a high-level testing language
prevents many programming errors and facilitates more robust test cases
that cannot harm the SUT.

• The use of a separate language (and not the language used to program the
SUT) leads to decoupling of the SUT and test cases. Instead of using the
API of a SUT directly, high-level language constructs defined by a DSL
are more stable with regard of changes of the SUT.

• A DSL also facilitates high-level constructs for testing as well as of the
problem domain.

We defined a textual domain-specific language that includes first-class con-
cepts on language level for testing of mobile software frameworks. Besides
general-purpose elements for assignment, loops, conditional statements, etc.,
the language provides following domain-specific elements:

• Statements to verify test results.
• Statements to control test case execution.
• Statements for logging.
• Statements to simulate the protocol stack for both sending and receiving

signals of different communication protocols from a test case.

Figure 24 gives an (simplified) example of a test case intended to test a
single function of the system under test. The instruction in line 2 simulates a
function call to the SUT which in turn sends a signal (MN ATTACH REQ)
to the protocol stack. This event is consumed and verified from the statement
in line 3. To simulate the response back from the protocol stack to the SUT,
an SDL signal is created and initialized (lines 4–6) and sent to the SUT in
line 7. Triggered by this event, the SUT will call a callback function. This call
is consumed and verified by the script in line 8. Test scripts written in the
defined language are compiled into an intermediate code that is interpreted
by the test environment which can be considered as domain framework in
context of a DSM solution.

End-User Programming 5.4

In this subsection, we present results from an application-oriented research
project carried out by SCCH and the COMET partner company KEBA AG.
The goal of this project was to develop a tool prototype that supports end
users (e.g. machine operators) without detail software development expertise
to program control programs of injection molding machines. Furthermore,

224 Gerhard Weiss, Gustav Pomberger et al.

Figure 24 Notation and editing support for testing language.

the modification of control programs must be possible on the touch screen
on the machine directly.

In general, end-user programmers (EUP) are people who write programs,
but not as their primary job function [MKB06]. Instead, they must write
programs in support of achieving their main goal, which is something else.
End-users are often experts of a certain domain, like electrical engineering,
robotics, or plastics. Such domain experts have to transfer their domain
knowledge into a representation that can be understood by the computer.

We have chosen a DSM approach for several reasons. As reported in
[PHS+08a], current modeling notations and languages in the automation
domain do not satisfy the requirements of a programming language, which
can be used by domain experts. On contrary, domain-specific languages
are a proven approach to bring programming closer to application domains
[PHS+08a], and hence, to domain experts. By following a DSM approach,
the challenge is to provide a language or notation that can be used by end-
users on the machine directly. In this context, end-users are domain experts
as machine operators and commissioning specialists.

Language for End-User Programming

A domain-specific language for programming machine cycles of injection
molding machines has to incorporate machine aggregates, aggregate actions,
and blocks of sequential or parallel actions. On the meta-model level, individ-
ual aggregate actions of a machine connected together according to sequential
and parallel executions result in the abstract syntax graph for an entire ma-
chine cycle.

To visualize a machine cycle to end users, the graph is not displayed di-
rectly but by means of a notation (concrete syntax) that arranges individual

IV Software Engineering – Processes and Tools 225

nodes and their connections in a two dimensional way, as shown in Figure 25.
Nodes representing aggregate actions are placed in horizontal columns result-
ing in a column for each aggregate. The chosen icons together with the order
of columns corresponding to the aggregate position on the actual machine
give more specific information for domain experts to identify individual ac-
tions of aggregates compared to general-purpose programming languages or
software diagrams. Vertically, the actions are placed according to their de-

Notation, interaction, and tool support to manipulate machine cycles on
touch screens.

Figure 25

pendency starting with the very first action of a machine cycle on the top.
The vertical dimension of a single action and, hence, of the entire graph,
corresponds to the time required to execute an action, or the entire machine
cycle respectively. This technique that maps the property duration of an ac-
tion to a visual dimension facilitates to locate time-consuming actions and
to identify actions along the critical path.

The described incorporation of domain aspects (e.g. aggregates and dura-
tion) as elements of a visual domain-specific language is a typical example
how a DSL can facilitate end-user programming for domain exerts.

Visualization and Interaction

As pointed out earlier, the success of a DSM solution largely depends on
provided tool support to create and manipulate software models, e.g. machine
cycles, in a given domain-specific language. From our experience, tool support

226 Gerhard Weiss, Gustav Pomberger et al.

becomes much more important when interaction is done by end-users on touch
screens compared to interaction on personal computers with keyboard and
mouse pointer devices.

For instance, the modification of a machine cycle by inserting a new action
is a non-trivial action on a touch screen that requires special guidelines on
individual steps as shown in Figure 25. After pressing the insert button (2),
the user has to perform several steps to insert a new action, whereas the
editor gives visual feedback about the next step. First, the user selects the
corresponding aggregate from the column headers and, afterwards, selects
from available actions provided by the selected aggregate (3). Second, the
user selects an already existing action and the relative insertion option (4).

For end-user programming, it is also important to achieve a fault tolerance
for user interaction so that users can cancel operations at any time. The
specification of end-users needs in form of personas [MK08] and usability
evaluations provides valuable feedback for the design of both the notation as
well as the interaction concepts.

Acknowledgements

Research and development described in this chapter has been carried out by
Software Competence Center Hagenberg GmbH (SCCH) in close cooperation
with its scientific partners and its partner companies within the frame of the
Austrian Kplus and COMET competence center programs.

References

[ABD+04] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and
Leonard L. Tripp. Guide to the Software Engineering Body of Knowledge
- SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version edition, 2004.

[AGM05] Paris Avgeriou, Nicolas Guelfi, and Nenad Medvidovic. Software architecture
description and uml. pages 23–32. 2005.

[AMS08] Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam. Paradise:
a two-stage dsl embedded in haskell. In ICFP ’08: Proceeding of the 13th
ACM SIGPLAN international conference on Functional programming, pages
225–228, New York, NY, USA, 2008. ACM.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, 2 edition, November
2004.

[BAB+05] Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, and Paul
Grünbacher. Value-Based Software Engineering. Springer Verlag, oct 2005.

[Bac97] James Bach. Good enough quality: Beyond the buzzword. Computer, 30(8):96–
98, 1997.

References 227

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley Professional, April 2003.

[BD04] Pierre Bourque and Robert Dupuis, editors. SWEBOK - Guide to the Software
Engineering Body of Knowledge, 2004 Version. IEEE Computer Society, 2004
version edition, 2004.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Profes-
sional, November 2002.

[Bei90] Boris Beizer. Software Testing Techniques 2E. International Thomson Com-
puter Press, 2nd edition, June 1990.

[BG00] Kent Beck and Erich Gamma. More Java Gems, chapter Test-infected: pro-
grammers love writing tests, pages 357–376. Cambridge University Press, 2000.

[Boe76] B. W. Boehm. Software engineering. Transactions on Computers, C-
25(12):1226–1241, 1976.

[Boe88] B. W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61–72, May 1988.

[BR08] Armin Beer and Rudolf Ramler. The role of experience in software testing
practice. In Proceedings of the 34th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 258–265, Parma, Italy, 2008.
IEEE Computer Society.

[Bru01] H. Bruyninckx. Open robot control software: the OROCOS project. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 3, pages 2523–2528 vol.3, 2001.

[BW08] Georg Buchgeher and Rainer Weinreich. Integrated software architecture man-
agement and validation. In Software Engineering Advances, 2008. ICSEA ’08.
The Third International Conference on, pages 427–436, 2008.

[BWK05] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations and lessons
learned from automated testing. In Proceedings of the 27th international con-
ference on Software engineering, pages 571–579, St. Louis, MO, USA, 2005.
ACM.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley Professional, September 2002.

[CEC00] Krzysztof Czarnecki, Ulrich Eisenecker, and Krzysztof Czarnecki. Genera-
tive Programming: Methods, Tools, and Applications. Addison-Wesley Profes-
sional, June 2000.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of MDA, 2003.

[Cha05] R. N. Charette. Why software fails. IEEE Spectrum, 42(9):42–49, September
2005.

[Chr92] Gerhard Chroust. Modelle der SoftwareEntwicklung. Oldenbourg Verlag
München Wien, 1992. in German.

[CJKW07] Steve Cook, Gareth Jones, Stuart Kent, and Alan C. Wills. Domain Specific
Development with Visual Studio DSL Tools (Microsoft .Net Development).
Addison-Wesley Longman, Amsterdam, May 2007.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley Professional, January
2002.

[Cle95] Paul Clements. Formal methods in describing architectures. In Monterey
Workshop on Formal Methods and Architecture, September 1995.

[Cle96] Paul C. Clements. A survey of architecture description languages. In IWSSD
’96: Proceedings of the 8th International Workshop on Software Specification
and Design, Washington, DC, USA, 1996. IEEE Computer Society.

228 Gerhard Weiss, Gustav Pomberger et al.

[CMM06] CMMI for development, version 1.2. Technical report CMU/SEI-2006-TR-
008, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA 15213-3890, August 2006.

[CN02] P. Clements and L. N. Northrop. Software Product Lines: Practices and Pat-
terns. Addison Wesley Professional Series: The SEI Series in Software Engi-
neering. Addison Wesley, 2002.

[Cop04] Lee Copeland. A Practitioner’s Guide to Software Test Design. Artech House
Publishers, 2004.

[Cza05] Krzysztof Czarnecki. Overview of generative software development. pages
326–341. 2005.

[DeM86] T. DeMarco. Controlling Software Projects: Management, Measurement, and
Estimates. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1986.

[Dio93] R. Dion. Process improvement and the corporate balance sheet. IEEE Soft-
ware, pages 28–35, July 1993.

[DN02] L. Dobrica and E. Niemela. A survey on software architecture analysis meth-
ods. Software Engineering, IEEE Transactions on, 28(7):638–653, 2002.

[Dor93] Alec Dorling. Software Process Improvement and Capability Determination.

Software Quality Journal, 2(4):209–224, December 1993. also in: Information
and Software Technology, vol. 35, no. 6/7, June 1993, p. 404.

[Dor09] Bernhard Dorninger. ProMoRTE: A process model runtime environment based
on OSGi. 2009. accepted for publication at 7th IEEE International Conference
on Industrial Informatics (INDIN 2009).

[Dou02] Bruce Powell Douglass. Real-Time Design Patterns: Robust Scalable Architec-
ture for Real-Time Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[DW06] Patricia Derler and Rainer Weinreich. Models and tools for soa governance. In
International Conference on Trends in Enterprise Application Architecture.
Springer Lecture Notes on Computer Science (LNCS), December 2006.

[Eck05] Wayne W. Eckerson. Performance Dashboards: Measuring, Monitoring, and
Managing Your Business. Wiley, October 2005.

[EJB06] Enterprise javabeans 3.0 specification, 2006.
[EK07] Andrew D. Eisenberg and Gregor Kiczales. Expressive programs through pre-

sentation extension. In AOSD ’07: Proceedings of the 6th international con-
ference on Aspect-oriented software development, pages 73–84, New York, NY,
USA, 2007. ACM.

[FG99] Mark Fewster and Dorothy Graham. Software Test Automation. Addison-
Wesley Professional, September 1999.

[FJ99] Mohamed Fayad and Ralph Johnson. Domain-Specific Application Frame-
works: Frameworks Experience by Industry. John Wiley & Sons, October
1999.

[FPC97] William A. Florac, Robert E. Park, and Anita D. Carleton. Practical software
measurement: Measuring for process management and improvement. Guide-
book CMU/SEI-97-HB-003, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, April 1997.

[Gar84] David A. Garvin. What does product quality really mean? Sloan Management
Review, 26(1):25–45, Fall 1984.

[Gar00] David Garlan. Software architecture: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 91–101, New
York, NY, USA, 2000. ACM Press.

[GBU08] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of concrete
textual syntax mapping approaches. pages 169–184. 2008.

[GJ96] Pankaj K. Garg and Mehdi Jazayeri, editors. ProcessCentered Software Engi-
neering Environments. IEEE Computer Society Press, 1996.

[Gre07] J. Grenning. Applying test driven development to embedded software. Instru-
mentation & Measurement Magazine, IEEE, 10(6):20–25, 2007.

References 229

[Ham04] Paul Hamill. Unit Test Frameworks. O’Reilly Media, Inc., October 2004.
[HB06] LiGuo Huang and Barry Boehm. How much software quality investment is

enough: A Value-Based approach. IEEE Software, 23(5):88–95, 2006.
[HCR+94] James Herbsleb, Anita Carleton, James Rozum, Jane Siegel, and David

Zubrow. Benefits of CMM-based software process improvement: Initial re-
sults. Technical Report CMU/SEI-94-TR-013, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, August 1994.

[Hel07] Hello2morro. Sonarj. http://www.hello2morrow.de, 2007.
[HHK+08] Walter Hargassner, Thomas Hofer, Claus Klammer, Josef Pichler, and Gernot

Reisinger. A script-based testbed for mobile software frameworks. In Proceed-
ings of the First International Conference on Software Testing, Verification
and Validation, pages 448–457. IEEE, April 2008.

[HNS99] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Archi-
tecture. Addison-Wesley Professional, November 1999.

[Hof05] Christine Hofmeister. Architecting session report. In WICSA ’05: Proceed-
ings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), pages 209–210, Washington, DC, USA, 2005. IEEE Computer
Society.

[HSSL02] B. Henderson-Sellers, F. Stallinger, and B. Lefever. Bridging the gap from pro-
cess modelling to process assessment: the OOSPICE process specification for
component-based software engineering. In Proceedings of the 28th Euromicro
Conference, pages 324–331. IEEE Computer Society, 2002.

[HT06] Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad,
and the ugly. IBM Systems Journal, 45(3):451–461, July 2006.

[Hum89] W. Humphrey. Managing the Software Process. AddisonWesley Reading
Mass., 1989.

[Hum95] W. Humphrey. A Discipline for Software Engineering. SEI Series in Software
engineering. AddisonWesley, 1995.

[IEE90] IEEE Std 610.12-1990: IEEE standard glossary of software engineering termi-
nology, 1990.

[IMP05] P. Inverardi, H. Muccini, and P. Pelliccione. Dually: Putting in synergy uml
2.0 and adls. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture, pages 251–252, Washington, DC, USA,
2005. IEEE Computer Society.

[Int08] International Organization for Standardization (ISO). Systems and software
engineering - architectural description working draft 3, 2008.

[ISO95] ISO/IEC 12207:1995, Information technology - Software life cycle processes,
1995. Amd.1:2002; Amd.2:2004.

[ISO98] ISO/IEC TR 15504-7:1998(e), Information technology - Software process as-
sessment - Part 7: Guide for use in process improvement, 1998.

[ISO01] ISO/IEC 9126-1:2001, Software engineering - Product quality - Part 1: Quality
model, 2001.

[ISO03] ISO/IEC 15504:2003, Information Technology - Process Assessment, 2003.
[ISO05] ISO/IEC 25000:2005, Software engineering - Software product Quality Re-

quirements and Evaluation (SQuaRE) - Guide to SQuaRE, 2005.
[ISO09] ISO/IEC PDTR 29110:2009, Software Engineering - Lifecycle Profiles for Very

Small Enterprises (VSE), January 2009.
[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. Tcs: a dsl for the specification

of textual concrete syntaxes in model engineering. In GPCE ’06: Proceedings of
the 5th international conference on Generative programming and component
engineering, pages 249–254, New York, NY, USA, 2006. ACM.

[JGJ97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley Professional, 1997.

[Joh99] Ralph E. Johnson. Building Application Frameworks: Object-Oriented Foun-
dations of Framework Design. John Wiley & Sons, 1 edition, September 1999.

230 Gerhard Weiss, Gustav Pomberger et al.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley Longman Publishing, 2002.

[KC04] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley,
September 2004.

[KFN99] Cem Kaner, Jack Falk, and Hung Q. Nguyen. Testing Computer Software.
Wiley, 2 edition, April 1999.

[Kin01] Atte Kinnula. Software Process Engineering Systems: Models and Industry
Cases. Oulu University Press, 2001. ISBN 951-42-6508-4.

[KL05] A.G. Koru and H. Liu. Building effective defect-prediction models in practice.
IEEE Software, 22(6):23–29, 2005.

[KOS06] P. Kruchten, H. Obbink, and J. Stafford. The past, present, and future for
software architecture. Software, IEEE, 23(2):22–30, 2006.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw.,
12(6):42–50, November 1995.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, 3rd edition, 2003. ISBN 0321197704, 9780321197702.

[KRV07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated definition of
abstract and concrete syntax for textual languages. pages 286–300. 2007.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, March 2008.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture–Practice and Promise. Addison-Wesley Professional,
April 2003.

[KWZ09] Thomas Kriechbaum, Rainer Weinreich, and Thomas Ziebermayr. Compatibil-
ity rules for the homogeneous evolution of enterprise services. In International
Symposium on Service Science (ISSS), pages 189–200. Logos Verlag Berlin,
March 2009.

[LBB+05] U. Löwen, R. Bertsch, B. Böhm, S. Prummer, and T. Tetzner. Systema-
tisierung des Engineerings von Industrieanlagen. atp - Automatisierungstech-
nische Praxis, Oldenbourg Industrieverlag, (4):54–61, 2005. in German.

[LH93] Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability.
J. Syst. Softw., 23(2):111–122, November 1993.

[LH09] Henrik Lochmann and Anders Hessellund. An integrated view on modeling
with multiple domain-specific languages. In Proceedings of the IASTED In-
ternational Conference Software Engineering (SE 2009), pages 1–10. ACTA
Press, February 2009.

[LJJ07] B. Langlois, C. E. Jitia, and E. Jouenne. Dsl classification. In Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling, 2007.

[LKT04] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. Defining domain-
specific modeling languages: Collected experiences. Proceedings of the 4th
OOPSLA Workshop on Domain-Specific Modeling, 2004.

[Lon93] J. Lonchamp. A structured conceptual and terminological framework for soft-
ware process engineering. In Software Process, 1993. Continuous Software
Process Improvement, Second International Conference on the, pages 41–53,
Feb 1993.

[LR07] Stefan Larndorfer and Rudolf Ramler. TestCockpit: business intelligence for
test management. In Work in Progress Session in conjunction with 33rd EU-
ROMICRO Conf. on Software Engineering and Advanced Applications, 2007.

[LRB09] Stefan Larndorfer, Rudolf Ramler, and Clemens Buchwiser. Experiences and
results from establishing a software cockpit. In upcoming, 2009.

[LRFL07] Stefan Larndorfer, Rudolf Ramler, Christian Federspiel, and Klaus Lehner.
Testing High-Reliability software for continuous casting steel plants - experi-
ences and lessons learned from siemens VAI. In Proceedings of the 33rd EU-
ROMICRO Conference on Software Engineering and Advanced Applications,
pages 255–262, Luebeck, Germany, 2007. IEEE Computer Society.

References 231

[McF96] Bob McFeeley. IDEAL: A user’s guide for software process improvement. Hand-
book CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, February 1996.

[MD08] Tom Mens and Serge Demeyer. Software Evolution. Springer Verlag, March
2008.

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving archi-
tectural description from under the technology lamppost. Information and
Software Technology, 49(1):12–31, January 2007.

[MFF+06] Pierre-Alain Muller, Franck Fleurey, Frédéric Fondement, Michel Hassenforder,
Rémi Schneckenburger, Sébastien Gérard, and Jean-Marc Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. 2006.

[MGF07] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–
13, 2007.

[MH04] Jürgen Münch and Jens Heidrich. Software project control centers: concepts
and approaches. Journal of Systems and Software, 70(1-2):3–19, February
2004.

[Mil02] Dave Miller. Fundamental Concepts for the Software Quality Engineer, chap-
ter Choice and Application of a Software Quality Model, pages 17–24. ASQ
Quality Press, 2002.

[MK08] Jennifer Mcginn and Nalini Kotamraju. Data-driven persona development. In
CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 1521–1524, New York, NY, USA, 2008.
ACM.

[MKB06] Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett. Invited research
overview: end-user programming. In CHI ’06: CHI ’06 extended abstracts on
Human factors in computing systems, pages 75–80, New York, NY, USA, 2006.
ACM.

[MKMG97] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural styles,
design patterns, and objects. Software, IEEE, 14(1):43–52, 1997.

[MMYA01] H. Mili, A. Mili, S. Yacoub, and E. Addy. Reuse-Based Software Engineering:
Techniques, Organizations, and Controls. Wiley-Interscience, 2001.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans. Softw.
Eng., 26(1):70–93, January 2000.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceedings of the 28th international conference
on Software engineering, pages 452–461, Shanghai, China, 2006. ACM.

[Obj07] Object Management Group. Uml superstructure specification v2.1.1.
OMG Document Number formal/07-02-05 http://www.omg.org/cgi-
bin/apps/doc?formal/07-02-05.pdf, 2007.

[Obj08] Object Management Group. Software & systems process engineering meta-
model specification, version 2.0. http://www.omg.org/spec/SPEM/2.0/PDF,
April 2008.

[Ope08] OpenUP - Open Unified Process, 2008. http://epf.eclipse.org/wikis/openup/.
[OSG07] Osgi service platform release 4, 2007.
[PCCW93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capa-

bility maturity model for software, version 1.1. Technical Report CMU/SEI-93-
TR-02, Software Engineering Institute, Carnegie Mellon University, February
1993.

[PGP08] F. Pino, F. Garcia, and M. Piattini. Software process improvement in small and
medium software enterprises: A systematic review. Software Quality Journal,
16(2):1573–1367, June 2008.

232 Gerhard Weiss, Gustav Pomberger et al.

[PHS+08a] Herbert Prähofer, Dominik Hurnaus, Roland Schatz, Christian Wirth, and
Hanspeter Mössenböck. Monaco: A dsl approach for programming automation
systems. In SE 2008 - Software-Engineering-Konferenz 2008, pages 242–256,
Munic, Germay, February 2008.

[PHS+08b] Herbert Prähofer, Dominik Hurnaus, Roland Schatz, Christian Wirth, and
Hanspeter Mössenböck. Software support for building end-user programming
environments in the automation domain. In WEUSE ’08: Proceedings of the
4th international workshop on End-user software engineering, pages 76–80,
New York, NY, USA, 2008. ACM.

[PP04] Gustav Pomberger and Wolfgang Pree. Software Engineering. Hanser Fach-
buchverlag, October 2004.

[PP08] Michael Pfeiffer and Josef Pichler. A comparison of tool support for textual
domain-specific languages. Proceedings of the 8th OOPSLA Workshop on
Domain-Specific Modeling, pages 1–7, October 2008.

[PP09] Michael Pfeiffer and Josef Pichler. A DSM approach for End-User Program-
ming in the Automation Domain. 2009. accepted for publication at 7th IEEE
International Conference on Industrial Informatics (INDIN 2009).

[PPRL07] Josef Pichler, Herbert Praehofer, Gernot Reisinger, and Gerhard Leonharts-
berger. Aragon: an industrial strength eclipse tool for MMI design for mobile
systems. In Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering, pages 156–163, Innsbruck, Austria,
2007. ACTA Press.

[PR08] Josef Pichler and Rudolf Ramler. How to test the intangible properties of
graphical user interfaces? In Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, ICST 08, pages 494–497.
IEEE Computer Society, 2008.

[PRS00] G. Pomberger, M. Rezagholi, and C. Stobbe. Handbuch für Evaluation und
Evaluierungsforschung in der Wirtschaftsinformatik, chapter Evaluation und

Verbesserung wiederverwendungsorientierter Software-Entwicklung. Olden-
bourg Verlag, München/Wien, 2000. in German.

[PRZ09] Guenter Pirklbauer, Rudolf Ramler, and Rene Zeilinger. An integration-
oriented model for application lifecycle management. 2009. accepted for ICEIS
2009, 11th International Conference on Enterprise Information Systems.

[PSN08] R. Plösch, F. Stallinger, and R. Neumann. SISB - systematic improvement of
the solution business: Engineering strategies for the industrial solutions busi-
ness, version 1.0. Technical report, Software Competence Center Hagengerg,
August 2008. (non-public project deliverable).

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-
ware architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, October 1992.

[Ram04] Rudolf Ramler. Decision support for test management in iterative and evolu-
tionary development. In Proceedings of the 19th IEEE international conference
on Automated software engineering, pages 406–409, Linz, Austria, 2004. IEEE
Computer Society.

[Ram08] Rudolf Ramler. The impact of product development on the lifecycle of defects.
In Proceedings of the DEFECTS 2008 Workshop on Defects in Large Software
Systems, pages 21–25, Seattle, Washington, 2008. ACM.

[RBG05] Rudolf Ramler, Stefan Biffl, and Paul Grünbacher. Value-Based Software Engi-
neering, chapter Value-Based Management of Software Testing, pages 225–244.
Springer Verlag, 2005.

[RCS03] Rudolf Ramler, Gerald Czech, and Dietmar Schlosser. Unit testing beyond
a bar in green and red. In Proceedings of the 4th International Conference
on Extreme Programming and Agile Processes in Software Engineering, XP
2003, pages 10–12, Genova, Italy, 2003. LNCS.

[Roy70] W. W. Royce. Managing the development of large software systems:: Concepts
and techniques. In Proc. IEEE WESCON, pages 1–9. IEEE, August 1970.

References 233

[RR99] Arthur A. Reyes and Debra J. Richardson. Siddhartha: a method for devel-
oping domain-specific test driver generators. In In Proc. 14th Int. Conf. on
Automated Software Engineering, pages 12–15, 1999.

[RvW07] Ita Richardson and Christiane Gresse von Wangenheim. Why are small soft-
ware organizations different? IEEE Software, 24(1):18–22, January/February
2007.

[RW05] Nick Rozanski and Eóin Woods. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Pro-
fessional, April 2005.

[RW06] Rudolf Ramler and Klaus Wolfmaier. Economic perspectives in test automa-
tion: balancing automated and manual testing with opportunity cost. In Pro-

ceedings of the 2006 international workshop on Automation of software test,
pages 85–91, Shanghai, China, 2006. ACM.

[RW08] Rudolf Ramler and Klaus Wolfmaier. Issues and effort in integrating data
from heterogeneous software repositories and corporate databases. In Proceed-
ings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 330–332, Kaiserslautern, Germany, 2008.
ACM.

[RWS+09] Rudolf Ramler, Klaus Wolfmaier, Erwin Stauder, Felix Kossak, and Thomas
Natschläger. Key questions in building defect prediction models in practice.
In 10th International Conference on Product Focused Software Development
and Process Improvement, PROFES 2009, Oulu, Finnland, 2009.

[RWW+02] Rudolf Ramler, Edgar Weippl, Mario Winterer, Wieland Schwinger, and Josef
Altmann. A quality-driven approach to web testing. In Ibero-american Con-
ference on Web Engineering, ICWE 2002, pages 81–95, Argentina, 2002.

[Sad08] Daniel A. Sadilek. Prototyping domain-specific language semantics. In OOP-
SLA Companion ’08: Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 895–
896, New York, NY, USA, 2008. ACM.

[Sam01] J. Sametinger. Software Engineering with Reusable Components. Springer,
2001.

[SB03] Douglas C. Schmidt and Frank Buschmann. Patterns, frameworks, and mid-
dleware: their synergistic relationships. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 694–704, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition) (Eclipse). Addison-Wesley Long-
man, Amsterdam, 2nd revised edition (rev). edition, January 2009.

[SCA07] Service component architecture specifications, 2007.
[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-

puter, 39(2):25–31, 2006.
[SDR+02] F. Stallinger, A. Dorling, T. Rout, B. Henderson-Sellers, and B. Lefever. Soft-

ware process improvement for component-based software engineering: an in-
troduction to the OOSPICE project. In Proceedings of the 28th Euromicro
Conference, pages 318–323. IEEE Computer Society, 2002.

[Sha90] M. Shaw. Prospects for an engineering discipline of software. Software, IEEE,
7(6):15–24, Nov 1990.

[She31] Walter A. Shewhart. Economic control of quality of manufactured product. D.
Van Nostrand Company, New York, 1931.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using depen-
dency models to manage complex software architecture. SIGPLAN Not.,
40(10):167–176, October 2005.

[Sof07] Software Tomography GmbH. Sotoarc. http://www.software-
tomography.de/index.html, 2007.

234 Gerhard Weiss, Gustav Pomberger et al.

[Som04] Ian Sommerville. Software Engineering. Addison Wesley, seventh edition, May
2004.

[SPP+06] F. Stallinger, R. Plösch, H. Prähofer, S. Prummer, and J. Vollmar. A process
reference model for reuse in industrial engineering: Enhancing the ISO/IEC
15504 framework to cope with organizational reuse maturity. In Proc. SPICE
2006, Luxembourg, May 4-5, 2006, pages 49–56, May 2006.

[SPPV09] Fritz Stallinger, Reinhold Plösch, Gustav Pomberger, and Jan Vollmar. Bridg-
ing the gap between ISO/IEC 15504 conformant process assessment and or-
ganizational reuse enhancement. 2009. (accepted for SPICE Conference 2009,
Software Process Improvement and Capability Determination, 2-4 June 2009,
Turku, Finland).

[Spr08a] Spring dynamic modules for osgi(tm) service platforms, 2008.
[Spr08b] The spring framework - reference documentation, 2008.
[SPV07] F. Stallinger, R. Plösch, and J. Vollmar. A process assessment based approach

for improving organizational reuse maturity in multidisciplinary industrial en-
gineering contexts. In Proceedings of ESEPG 2007, Amsterdam, 14th June
2007, June 2007.

[SRA06] Christoph Steindl, Rudolf Ramler, and Josef Altmann. Web Engineering: The
Discipline of Systematic Development of Web Applications, chapter Testing
Web Applications, pages 133–153. Wiley, 2006.

[SSM03] A. Sinha, C. S. Smidts, and A. Moran. Enhanced testing of domain specific
applications by automatic extraction of axioms from functional specifications.
In Software Reliability Engineering, 2003. ISSRE 2003. 14th International
Symposium on, pages 181–190, 2003.

[Ste00] David B. Stewart. Designing software components for real-time applications.
In in Proceedings of Embedded System Conference, page 428, 2000.

[Tas02] Gregory Tassy. The economic impacts of inadequate infrastructure for software
testing, NIST planning report 02-3, May 2002.

[Tia05] Jeff Tian. Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. Wiley & Sons, 1., auflage edition, February 2005.

[TK05] Juha-Pekka Tolvanen and Steven Kelly. Defining domain-specific modeling
languages to automate product derivation: Collected experiences. pages 198–
209. 2005.

[TMD09] R. N. Taylor, Nenad Medvidovi, and Irvine E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, January 2009.

[TvdH07] Richard N. Taylor and Andre van der Hoek. Software design and architecture
the once and future focus of software engineering. In FOSE ’07: 2007 Future
of Software Engineering, pages 226–243, Washington, DC, USA, 2007. IEEE
Computer Society.

[V-M06] V-Modell XT, part1: Fundamentals of the V-Modell XT, version 1.2.1. Tech-
nical report, 2006. http://www.v-modell-xt.de/.

[vDKV00] Arie v. van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[vGB02] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes. Journal
of Systems and Software, 61(2):105–119, March 2002.

[Voa08] Jeffrey Voas. Software quality unpeeled. STSC CrossTalk, (Jun 2008):27–30,
2008.

[VRM03] M. Venzin, C. Rasner, and V. Mahnke. Der Strategieprozess - Praxishandbuch
zur Umsetzung im Unternehmen. 2003. in German.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development :
Technology, Engineering, Management. John Wiley & Sons, June 2006.

[Was96] A.I. Wasserman. Toward a discipline of software engineering. Software, IEEE,
13(6):23–31, Nov 1996.

References 235

[Was06] Hironori Washizaki. Product-Focused Software Process Improvement, volume
4034 of Lecture Notes in Computer Science, chapter Building Software Pro-
cess Line Architectures from Bottom Up, pages 415–421. Springer Berlin /
Heidelberg, 2006.

[WH05] Eoin Woods and Rich Hilliard. Architecture description languages in practice
session report. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pages 243–246, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[WV02] James A. Whittaker and Jeffrey M. Voas. 50 years of software: Key principles
for quality. IT Professional, 4(6):28–35, 2002.

[WWZ07] Rainer Weinreich, Andeas Wiesauer, and Thomas Ziebermayr. A component

model for integrating remote applications and services via web portals. Journal
of Object Technology (JOT), 6(8), September 2007.

[WZ05] Rainer Weinreich and Thomas Ziebermayr. Enhancing presentation level in-
tegration of remote applications and services in web portals. In 2005 IEEE
International Conference on Services Computing (SCC’05), volume 2, pages
224–236, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[WZD07] Rainer Weinreich, Thomas Ziebermayr, and Dirk Draheim. A versioning model
for enterprise services. In 21st International Conference on Advanced Informa-
tion Networking and Applications Workshops (AINAW’07), volume 2, pages
570–575, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

