
Swarm-based Evaluation of Nonparametric SysML
Mechatronics System Design

Mohammad Chami∗, Haitham Bou Ammar†, Holger Voos∗, Karl Tuyls† and Gerhard Weiss†
∗Research Unit in Engineering Science, University of Luxembourg, Luxembourg
†Department of Knowledge Engineering, Maastricht University, The Netherlands

Abstract—The design of a mechatronics system is considered
one of the hardest challenges in industry. This is mainly due to the
multidisciplinary nature of the design process that requires the
knowledge integration of the participating disciplines. Previously,
we have proposed SysDICE a framework that is capable of:
(1) modeling the multidisciplinary information of mechatron-
ics systems using SysML and (2) adopting a nonparametric
technique for evaluating such a SysML model. In SysDICE
the optimization that led to the determination of the best
alternative combinations for satisfying the requirements was
time-costly and discarded prohibited combinations. This paper
contributes by: (1) proposing an effective method for restricting
the set of possible alternative combinations and (2) employing a
swarm intelligence based optimization scheme which significantly
reduces the computational cost of SysDICE.

I. INTRODUCTION

Mechatronics system design exhibits a multidisciplinary
nature by aggregating various engineering disciplines (i.e., me-
chanical, electrical, software and control), project and business
management fields. This nature imposes a substantial chal-
lenge that deals with integrating the involved human factors
with their methodologies, modeling languages and software
tools for the aim of attaining an efficient system design.

In theory, the course of system design from idea creation to
product disposal has been successfully proposed (e.g. [1], [2]).
However, the industrial development techniques are still mono-
disciplinary [3]. Particularly, the integration phase is handled
at later stages, which makes the procedure expensive, cost
and time in-efficient. Therefore, an early integrated evaluation
approach of the whole system design is still required.

So far, little attention has been given to the collabora-
tive work for evaluating designs in a sequel of making the
procedure adaptable, efficient, and intelligent. Recently, Sys-
DICE [4], a framework that makes use of the System Modeling
Language (SysML) [5] to model a mechatronics system in or-
der to evaluate its conceptual design, was proposed. SysDICE
further contributed by adopting Gaussian Processes (GPs)
for a non-parametric execution of the SysML model. These
were later used with the help of a mathematically formalized
optimization problem to attain a combination of components
that best satisfy a set of prioritized requirements. Though
SysDICE has shown to be successful, it suffered from two
problems. First, it does not take into account the filtering of
prohibited alternative combinations. Second, the optimization
method, namely, Conjugate Gradient Descent (CGD), suffers
from complexity problems especially once it comes to dealing

with complex systems, i.e. large number of requirements,
alternatives and components.

The work presented in this paper contributes by solving
the above problems. Namely, the actual SysML model is
extended by modeling the components interfaces using the
internal block definition diagram (ibd) in order to restrict the
number of alternative combinations to the possible ones only.
Moreover, a gradient-free approach is developed to deal with
the evaluation of the SysML model. Particularly, biologically
inspired algorithms from artificial intelligence are used to aid
in the evaluation and execution of the SysML model. These
algorithms rely on Particle Swarm Optimization (PSO) and
are used to reduce the computational complexity of SysDICE.
We further, show the applicability and the advantage of using
such algorithms by conducting design experiments to model a
differential drive robot.

II. BACKGROUND

A. SysML for Mechatronics System Design

From a mechatronics engineering perspective, the methodol-
ogy for designing and developing mechatronic products differs
mainly due to the nature of the system under consideration and
to the variety between its disciplines. Although a wide range
of similar design approaches have been proposed, in literature,
it is agreed that there is no one accepted methodology for
mechatronics [6] and in practice companies are individually
developing their own techniques. Hereby, SysDICE is based
on one of the popular mechatronics design frameworks, the
VDI2206 guideline [2].

Following the Object Management Group [5], the Systems
Modeling Language (SysML) is defined as “a general-purpose
graphical modeling language for specifying, analyzing, de-
signing, and verifying complex systems that may include
hardware, software, information, personnel, procedures, and
facilities”. SysML is constructed to be a software engineering
extension of a customized subset of the Unified Modeling
Language (UML) for system engineering applications.

A generalized common language for modeling the multidis-
ciplinary information in mechatronics design is still missing.
SysML with its diagrams deals with this problem, while
offering a general-purpose approach, and has been already
adopted successfully during the last few years for modeling
mechatronics systems as in [7], [8], [9].



B. Swarm Intelligence and Particle Swarm Optimization

In this paper, a widely adopted and mostly understood
population based optimization algorithm, the Particle Swarm
Optimizer (PSO), is applied. PSO was first proposed by [10]
as a technique to simulate the social behavior of bird flocking.
The idea behind PSO is having a population of candidate
solutions, referred to as particles, where they are moved
around in the search space according to simple formulae over
the particle’s positions and velocities. PSO is a gradient-free
approach where on the contrary to gradient algorithms and
quasi-newton methods it does not assume the optimization
problem to be differentiable. Algorithm 1 represents a general
description of the main steps in PSO. The procedure starts
by initializing the particles randomly in each of the problem
dimensions. The goodness of the fit solutions is then evaluated
as seen in lines 3− 9 of the algorithm. Later, in lines 11− 15
a neighborhood search for the best performing particle is
conducted and the goal state is updated accordingly. Finally,
the particles are moved around in the search space according
to the velocity and position update functions.

Algorithm 1 Particle Swarm Optimization
Require: Number of particle swarms N , optimization problem (e.g., Cost

function J), number of dimensions D, index of neighbors to be consid-
ered k, minimum and maximum velocity ranges (Vmin, Vmax)

1: Initialize each swarm in each dimension randomly
2: repeat
3: for i = 1 to N do
4: if J(x(i)) > J(p(i)) then
5: for d = 1 to D do
6: p

(i)
d = x

(i)
d

7: end for
8: end if
9: end for

10: Set the index of the best performing neighbor arbitrary (e.g., g = i)
11: for j = 1 to k do
12: if J(p(j)) > J(p(g)) then
13: g = j
14: end if
15: end for
16: for d = 1 to D do
17: Update the velocity and position according to,

v
(i)
d (t) = f(x

(i)
d (t− 1), v

(i)
d (t− 1), p

(i)
d , p

(g)
d )

v
(i)
d ∈ (Vmin, Vmax)

x
(i)
d (t) = g(v

(i)
d (t), x

(i)
d (t))

18: end for
19: until goal solution is fixed

After it was proposed [10], different PSO algorithms were
developed in literature. The difference between these algo-
rithms are the update functions of the particle’s velocities and
positions (lines 16 − 18 of Algorithm 1). In this paper four
different types of PSO algorithms are applied. Namely, we
use: (1) Common PSO with inertia [10], (2) Trelea model one
PSO [11], (3) Trelea model two PSO [11], and (4) Clerc model
PSO with constriction coefficent [12]. The technicalities of the
update functions for the velocities and positions are explained
in Section V as needed.

III. RELATED WORK

AI methods have been proposed to aid the mechatronic
design process. For instance, in [13] the design activity opti-
mization was solved using a heuristic-based hybrid search al-
gorithm and in [14] a maximum likelihood estimation method
for determining the unknown design parameters based on
given information was conducted. The application of ACO
for combinational optimization and PSO for continuous opti-
mization is described in [15]. An efficient SI based algorithm
for multi-objective optimization is presented in [16] where the
corporation of a Pareto dominance relation into PSO was pro-
posed. The main problem in these existing approaches relates
to the high effort in capturing the interdisciplinary information
to be used in AI. Although others, as [17], contribute by
proposing an integrated design evaluation, with graph based
models, and using PSO for encoding such models, these are
considered non-generalizable. Several other approaches have
solved the integration issues in mechatronics, as with a central
high-level model framework among the different tools [18]
or a constraint classification of mechanical and electrical
domains [19]. These exhibit similar problems to the former
as such proposed methods are also non-generalizable, where
previously unconsidered disciplines can hardly be integrated
later. One of the solutions to solve the generalization problem
used in recent reasearch work is SysML. For instance in [7],
SysML was used to specify the central view-model of the
mechatronics system. In [8], the system-level modeling with
SysML was adopted to support mechatronic design. Although
SysML supports in modeling mechatronics systems, its exe-
cution and evaluation is still an open topic and an intelligent,
adaptable and efficient execution is still demanded.

Formalization of SysML has been recently considered.
For instance, Petri nets and temporal logic LTL are used
in [20] to formalize the system behavior and requirements,
and [21] encoded some SysML diagrams with description
logic for formal semantics. Compared to these approaches our
framework take a step further in incorporating noisy models
and uncertainties that are typically not available once adopting
logical descriptions.

IV. SYSDICE PRELIMINARIES AND CONTRIBUTIONS

A. SysML Model Generation

SysDICE [4] uses a three layer hierarchical architecture to
model the design of a mechatronics system. Namely, SysDICE
starts with modeling the requirements of a mechatronics sys-
tem using the �requirement� block within the req diagram
of SysML. In this paper we focus on numerical requirements
where each is specified by a desired value v(i)d and a priority
w(i) with i = {1, 2, . . . , k} where k describes the number
of requirements. Following a similar trend to industry, the
system is then decomposed into its constituent subsystems and
their corresponding components. This is achieved through the
SysML �block� element and the �composition� associa-
tion within the bdd diagram. Each component of the system
has various alternatives that are modeled with a stereotyped



�block� in order to represent their uniqueness in a possi-
ble conceptual design solution. These are specified by their
corresponding properties such as the weight, the price, the
power consumption and so forth. The relations among the
latter properties are modeled using the�constraintProperty�
within the par diagram.

B. Mathematical Formalization and Evaluation

Given a set of k requirements with their desired values and
priorities, w, we define, vd = [v

(1)
d , . . . , v

(k)
d ] ∈ Rk×1 and

Wk,k = diag(w) to represent the vector of desired values and
the diagonal matrix of priorities respectively. We further define
v = [v(1), . . . , v(k)], to represent the output of the constraint
equations. We assume these values to be uncertain with a
Gaussian noise and that the priorities weight the requirements
in each of the k dimensions. Therefore, the likelihood for a
desired value to occur is defined by:

p(v
(i)
d |v

(i);σ2, w(i)) =

k∏
i=1

1
√

2πσ2
exp

(
−

1

2σ2
wi,i(v

(i)
d − v

(i))2
)
(1)

The maximization of the logarithm of Equation 1 can be
written in a matrix form as the minimization of the following:

min
v

1

2
[v− vd]T W[v− vd] (2)

Equation 2 represents the weighted requirement satisfaction
problem. In other words, the solution of the minimization
problem is seeking the optimal value v? that minimizes
the error with respect to the prioritized requirements (i.e.,
v? = arg minv

1
2 [v− vd]TW[v− vd]).

The solution at this point represents the optimal values
that need to be related to the properties level. Therefore, to
approximate the values of the corresponding combinations
of the properties we resorted to GPs. In other words, we
approximate the relations between the attained values v and
their corresponding inputs (i.e., properties P) using GPs. These
are then substituted in Equation 2 to generate the following
new optimization problem defined by the cost function J(P)
as follows:

min
P
J(P) =

m∑
l=1

(
1

2

k∑
i=1

wi,i

(
GPi(P(l))− v(k)d

)2)
, (3)

where P(l) = p
(l)
1 ⊗ p

(l)
2 · · · ⊗ p

(l)
c , with c being the number of

components and l = {1, 2, . . . ,m} representing the number
of available alternatives.

C. Filtering of Not Allowed Component Combinations

In SysDICE [4], the number of possible alternative com-
binations has been obtained from the number of all possible
combinations of the properties. However, this was discovered
to be unsuitable when two different alternatives cannot be
interfaced together in a given system. This issue is solved
by extracting the components interfaces information modeled
within the internal block definition diagram (ibd) of SysML
(i.e., which alternative component is connected with the other)

and is used to filter and discard the impossible combinations
on the properties levels.

Aiming at formalizing this scheme we define, C = {cij}
to be a finite set of all components where i is the number
of components forming a system and j is the number of
alternatives for each component ci (e.g., c11, c12, c13 are 3
alternatives of c1). Furthermore, R is defined as a relation
on the set C which relates the elements of C to it self and
simultaneously is a subset of the Cartesian product C×C. For
example, we write “c12 R c31” that means c12 “is interfaced
to” c31. Therefore, a relation R is generated (from the ibd’s)
each time a SysML model is parsed to hold the information
of the possible interfaced components’s alternatives. Later this
R is used to filter out the not allowed combinations.

V. PARTICLE SWARM OPTIMIZATION FOR SYSDICE

Minimizing Equation 3 is computationally expensive due
to the complexity of the problem. In the previous work [4],
Conjugate Gradient Descent (CGD) was proposed to perform
the optimization. CGD is a gradient-based approach that
required the derivative of Equation 3. Since the latter included
the derivative of a GP which was hard to attain symbolically,
a first order Taylor approximation of the derivative was used.
Seeking the improvement of the computational complexity we
employ PSO.

A. Particle Swarm Optimization Models

We have conducted experiments with four different PSO
algorithms. In the following, each of these algorithms is
described.

Common Particle Swarm Optimization with Inertia: Shi
and Eberhart [10] proposed PSO with inertia coefficient. This
value is multiplied by the velocity and is linearly decreased
through the run. This decrease specifies whether the algorithm
is exploring the search space (i.e., in the global search mode)
or exploiting the current solution (i.e., local search). The
update equations for the velocity and position in this algorithm
is given by:

v
(i)
d (t) = Ξ(t)(v

(i)
d (t− 1) + c1φ1(p

(i)
d (t− 1)− x(i)d (t− 1))

+ c2φ2(p
(g)
d (t− 1)− x(i)d (t− 1))

x
(i)
d (t) = x

(i)
d (t− 1) + v

(i)
d (t)) (4)

where c1 represents the first social parameter, c2 is the second
social parameter, φ1 ∈ [0, 1] is a uniform random number,
φ2 ∈ [0, 1] is the second random number and Ξ(t) is the
weight inertia. The value of Ξ is reduced linearly through
time from Ξ(0) to Ξ(T ) where T is the maximum allowed
time for a run. This linear reduction is performed according
to the following equation,

Ξ(t) =
(T − t)(Ξ(0)− Ξ(T ))

T
+ Ξ(T )

Terelea PSO models: The next variant of PSO algorithms
that we have used are Terelea models one and two. These
models are based on a dynamical analysis of the original PSO



algorithm. Here the update functions of the particles’ velocities
and positions are expressed as follows:

v
(i)
d (t) = av

(i)
d (t− 1) + b(p

(i)
d (t− 1))

− x(i)d (t− 1)) + b(pgd(t− 1)− x(g)d (t− 1))

x
(i)
d (t) = cx

(i)
d (t− 1) + dv

(i)
d (t) (5)

After conducting a dynamical and experimental analysis of
the algorithm, Trelea concluded two main parametric settings.
The first, which was called Trela PSO model 1 for a = 0.6
and b = 1.7 and the second was Trelea PSO model 2 where
a = 0.729 and b = 1.494. The values of c and d in both cases
were set to 1.

Particle Swarm Optimization with Constriction Coeffi-
cient: To guarantee convergence of PSO, Clerc [12] suggested
the usage of a constriction coefficient that bounds the dy-
namics of PSO. Using this method the particle’s oscillations
decreased as PSO in this case focuses more on the locality and
the neighborhood of the past best solutions. In other words,
the addition of this new constriction coefficient balances the
problem of global and local search. The update equations in
PSO with the a constriction coefficient are:

v
(i)
d (t) = χ(v

(i)
d (t− 1) + c1φ1(p

(i)
d (t− 1)− x(i)d (t− 1))

+ c2φ2(p
(g)
d (t− 1)− x(i)d (t− 1)))

x
(i)
d (t) = x

(i)
d (t− 1) + v

(i)
d (t), (6)

where χ = 2k

|2−φ−
√
φ2−4φ|

with φ = c1 + c2, φ > 4 being the

constriction coefficient. After a deep analysis of the algorithm
Clerc suggested the usage of k = 1 and c1 = c2 = 2.

B. Swarm SysDICE

Given a set of prioritized requirements start by modeling
the mechatronics system using SysML as described in Sec-
tion IV-A. Having all the alternatives for the different compo-
nents as well as the requirements, the model is transformed
into MATLAB where it is to be executed. The execution
is the determination of the best alternative combination that
solves the problem described in Equation 3. The solution of
this problem is conducted using one of the SI algorithms.
In Algorithm 2 the main contributions of this paper are
summarized. Namely, after modeling the system using SysML
and transforming it to MATLAB, the new framework filters out
non allowed combinations as described in Section IV-C and
then makes use of PSO to avoid the computational problems
encountered once using CGD or any other gradient based
approach. Lines 5− 6 of Algorithm 2 reflect that the attained
optimal combination by solving Equation 3 might not be
present within the allowed properties data set. Therefore, a
k-means search for the closest alternative combination in the
components space is conducted.

VI. EXPERIMENTS AND RESULTS

To test the efficacy of the proposed approach, four different
experiments are conducted on the design of a differential drive
robot.The e-puck, top-right of Figure 1, is an example of such

Algorithm 2 Swarm SysDICE
Require: Set of numerical requirements vd ∈ Rk×1, set of priorities w ∈

Rk×1, set of components with their properties P = {p(l)1 , . . . , p
(l)
c },

possible component alternatives m, tolerance error ε
1: Use SysML to model the mechatronics system
2: Transform the obtained SysML model to MATLAB
3: Filter the not allowed alternatives combinations
4: Determine P? by solving Equation 3 using either:

• Conjugate Gradient Descent
• PSO with Inertia:

– Use Algorithm 1 with Equation 4
• PSO with Terlea models (one and two)

– Use Algorithm 1 with Equation 5
• PSO with Constriction Coefficients

– Use Algorithm 1 with Equation 6
5: Attain the closest possible combination of components to P? by solving,

min
P

m∑
l=1

(
||P(l) − P?||22

)
6: return arg minP

∑m
l=1

(
||P(l) − P?||22

)

a robot. The application of the proposed approach is detailed
in: (1) modeling the robot using SysML, (2) using the mathe-
matical formulation and GPs to find the optimal combination
of component alternatives to satisfy different requirements’
configurations, and (3) adopting the four PSO algorithms to
compare the computational efficiency of SysDICE.

A. SysML Model Generation

During the early stages system engineers transform stake-
holders’ objectives to its engineering requirements’ represen-
tation in order to start analyzing the most suitable conceptual
solution. Here, SysML is used to model the requirements,
components structure and interfaces, and constraint interrela-
tionships between properties. SysML modeling was done using
the open source tool TOPCASED-SysML. Figure 1 shows the
four types of SysML diagrams: req, bdd, ibd and par diagrams
used to model the mobile robot. Figure 1(2) shows a part of the
main design requirements: the TotalWeight, the TotalPrice, the
MaximumTranslationalVelocity, and the OperationTime. Each
is stereotyped as “REQ” to allow for the addition of the
requirements’ properties (i.e., vd and w). Similarly all other
requirements were modeled. Each REQ must be satisfied by
a value of a design entity (i.e. component, property or even a
system) and this is done using the �satisfy� association.

The robot components are modeled in the bdds with blocks
and components hierarchy, using the SysML�composition�
association. In Figure 1(4) the details of modeling these
components are presented. Each component is described using
its own block that holds certain properties typically needed
in the design phase. In this example the robot consisted
of 7 components, each having its own alternatives. These
alternatives are modeled with blocks that are stereotyped as
“ALT” so to indicate the multi-alternatives for each component
during the transformation (e.g., Motor1Type1, Motor1Type2).
Furthermore, the interfaces between these components are
modeled with the ibd’s, see Figure 1(5).



2 

4 

3 

5 

6 

1 

Fig. 1. SysML diagrams of a two-wheeled differential drive robot: (1) e.g. the e-puck, (2)
req diagram with (3) the properties of the TotalWeight requirement (i.e., vd and w), (4) bdd
for components’ structure and alternatives, (5) ibd for interfaces and (6) par diagram for the
TotalWeight constraint property.

mass
price

wheelRaduis
powerConsumption

chassiswheel1wheel2motor1motor2batteryelectronics
1st

2nd

3rd

4th

5th

6th

A
lt
e

rn
a

ti
v
e

s

Optimal Alternative vs Input Vd and w

SysML Components Component Properties

Vd=[2, 70, 0.5, 0.5]
w=[20, 90, 40, 20]

Vd=[2, 90, 1.5, 1]
w=[40, 70, 10, 40]

Vd=[3, 120, 2, 1]
w=[20, 20, 90, 90]

Fig. 2. The attained results of three different design config-
urations. Planes represent the best alternatives combination
that satisfy the prioritized requirements. The values for these
alternatives are determined by solving Equation 3.

Various par diagrams were used to model the mathematical
equations between the component properties. Each equation
is represented with a �constraintProperty� with its own
input and output properties. For instance, the constraint “To-
talWeight” is used in the par, as shown in Figure 1(6), to
relate all the components’ weight properties (component.w)
thus indicating the value of the actual total weight of the robot
Wt. Here the TotalWeight REQ is satisfied by this property Wt

that indicates the actual value v. The kinematical, dynamical
as well as other related equations, have been also modeled
similarly with other par diagrams. At this stage a SysML
model incorporating all the disciplines is generated. Therefore,
the necessary information for system engineers is ready for
evaluation and the communication burden is solved.

B. SysML Model Evaluation: An Application Example

1) Determining the Optimal Alternative Combination: We
have conducted various experiments with different priorities
and desired values of the requirements. The system was
provided with different alternatives having different properties,
such as, the mass, the price and so forth as described above.
The algorithm was provided with different vd’s and w’s. After
the GPs were approximated, conjugate gradient descent and
the PSO algorithms as described in Algorithm 2 were applied
to find the optimal alternative suiting the requirements.

Figure 2 shows the results obtained, where the three axis
of the graph represent the components, properties and the
alternatives respectively. The different planes are the opti-
mal alternatives resulting from different requirement values
and priority configurations. For instance, in the first plane
(1st alternative) the focus was more towards having a high

velocity robot (i.e., 2 m/s) with high operational time (i.e.,
1 hour), where both requirements were given a priority of
90%. The second plane (4th alternative) represents a moderate
robot while the third (6th alternative) correspond to having
a cheap price robot of 70 with a high priority (i.e., 90%).
It becomes obvious from Figure 2 that the platform captures
different optimal alternatives suiting different design focuses
and requirements and thus being adaptable and generalizable
to different requirement and or priority values.

2) PSO Results and Computational Time: We have con-
ducted different sets of experiments to determine the com-
putational gain attained by using the PSO models. Namely,
we have first considered the time for convergence using only
the platform proposed in [4]. The convergence results are
shown in Figure 3. More specifically, we have fixed the
values of the requirements and priorities while varying the
allowed alternative combinations. It is clear from Figure 3 that
the attained time for convergence increases with the number
of alternatives. For instance, it varies from 15 ticks on 20
alternatives to about 43 ticks once working with 100.

These results clearly reflect that CGD doesn’t scale well
once increasing the number of alternatives and/or components.
To reduce these computational problems, we have conducted
the same experiments using the proposed PSO models. Fig-
ure 4 summarizes the achieved results while varying the
number of alternatives and using the different PSO algorithms.
Firstly, it is clear that PSO and due to its gradient -free advan-
tages requires less time to converge to the optimal solution. For
instance, the “worst-performing” algorithm was the common
PSO with inertia where it attains about 2.5 ticks for conver-
gence at 100 alternatives. The performance of the different



10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

Number of Alternatives

C
o

n
v
e
rg

e
n

c
e

 T
ic

k
s

CGD Convergence Times

Fig. 3. Convergence results using conjugate gradient descent. The x-axis
represents the variation in the possible alternatives while the y-axis represents
the amount of time required for the algorithm to converge to the optimal
alternative combination.

10 20 30 40 50 60 70 80 90 100

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Alternatives

C
o
n
v
e
rg

e
n
c
e
 T

ic
k
s

PSO Convergence Times

 

 

PSO common

PSO Terlea One

PSO Terlea Two

PSO Clerc Model

Fig. 4. Convergence results using the different proposed PSO models. The
x-axis represents the variation in the possible alternatives while the y-axis
represents the amount of time required for the algorithms to converge to the
optimal alternative combination.

algorithms is relatively similar while the best performing one
was that of Clerc with the constriction coefficient. Therefore,
the presented results clearly manifest the improvements gained
by adopting a population-based optimization scheme such as
PSO.

VII. CONCLUSIONS AND FUTURE WORK

SysDICE is a SysML-based nonparametric framework for
the conceptual design evaluation of mechatronic systems. It
was capable of attaining the optimal component alternative
combination that best suits a set of prioritized requirements.
This framework suffered from two problems. First it was not
capable of filtering out non allowed combinations. Second, it
adopted a gradient-based approach to solve the optimization
problem. This paper targeted these two problems and proposed
the usage of a gradient-free approach that was capable of
reducing the computational time needed to attain the op-
timal behavior. Results clearly indicated the scalability of
the approach and showed the improvements gained by such
population based optimization algorithms.

There are a lot of interesting directions for future work. Here
we mention two such directions. We plan on using transfer

learning in order to transfer between different design models
of various mechatronics systems as well as deal with non-
numerical requirements.

REFERENCES

[1] G. Pahl, W. Beitz, J. Fledhusen, and K.-H. Grote, Engineering Design
A Systematic Approach, third edition ed., K. Wallace and L. Blessing,
Eds. Springer, 2007.

[2] VDI 2206 Design methodology for mechatronic systems. Beuth Verlag
GmbH, June 2004.

[3] F. P. Stappers, L. J. Somers, and M. A. Reniers, “Multidisciplinary
Modeling - Current status and expectations in the Dutch TWINS
consortium,” in ICSSEA, 2008.

[4] M. Chami, H. B. Ammar, H. Voss, K. Tuyls, and G. Weiss, “A Nonpara-
metric Evaluation of SysML-based Mechatronic Conceptual Design,”
in Proceedings of the Benelux Conference on Artificial Intelligence
(BNAIC), Maastricht, The Netherlands, 2012.

[5] “Object Management Group (OMG) Systems Modeling Language
(OMG SysMLTM), available at http://www.omgsysml.org .” Nov 2008.

[6] T. Tomiyama, P. Gu, Y. Jin, D. Lutters, C. Kind,
and F. Kimura, “Design methodologies: Industrial and
educational applications,” pp. 543–565, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000785060900170X

[7] K. Thramboulidis, “The 3+1 SysML View-Model in Model Inte-
grated Mechatronics,” Journal of Software Engineering and Applications
(JSEA), vol. 3, no. 2, pp. 109–118, 2010.

[8] A. Qamar, J. Wikander, and C. During, “Designing Mechatronic Sys-
tems: A Model-Integration Approach,” in Proceedings of the 18th
International Conference on Engineering Design (ICED11), 2011.

[9] M. Chami, H. Seemller, and H. Voos, “A SysML-based Integration
Framework for the Engineering of Mechatronic Systems,” IEEE/ASME
International Conference on Mechatronic and Embedded Systems and
Applications. IEEE, 2010.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on,
vol. 4. IEEE, Nov. 1995, pp. 1942–1948 vol.4. [Online]. Available:
http://dx.doi.org/10.1109/ICNN.1995.488968

[11] G. K. Jha, P. Thulasiraman, and R. K. Thulasiram, “Pso based neural
network for time series forecasting,” in Proceedings of the 2009 interna-
tional joint conference on Neural Networks, ser. IJCNN’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 893–898.

[12] M. Clerc, “The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization,” in Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3, 1999.
[Online]. Available: http://dx.doi.org/10.1109/CEC.1999.785513

[13] O. Mouelhi, P. Couturier, and T. Redarce, “An Artificial Intelligence
Approach for the Multicriteria Optimization in Mechatronic Products
Design,” in Proceedings of the 2009 IEEE International Conference on
Mechatronics and Automation, 2009, pp. 1731–1736.

[14] X. Xu, L. Fu, and S. Fang, “Research on Product Variant Design with
Uncertainty Information,” in Proceedings of the 7th World Congress on
Intelligent Control and Automation, Chongqing, China, 2008.

[15] C. Blum and X. Li, Swarm Intelligence in Optimization. Springer,
Natural Computing Series, Swarm Intelligence, Part I, 2008.

[16] M. J. Reddy and D. N. Kumar, “An efficient multi-objective optimization
algorithm based on swarm intelligence for engineering design,” 2007.

[17] F.-Y. Huang and Y.-J. Tseng, “An integrated design evaluation and
assembly sequence planning model using a particle swarm optimization
approach,” 2011.

[18] A. A. A. Cabrera, M. S. Erden, M. J. Foeken, and T. Tomiyama,
“High Level Model Integration for Design of Mechatronic Systems.”
IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications, October 2008.

[19] K. Chen, J. Bankston, J. H. Panchal, and D. Schaefer, A Framework for
Integrated Design of Mechatronic Systems. Springer, 2009, ch. 2, pp.
37–70.

[20] M. V. Linhares, R. S. de Oliveira, J.-M. Farines, and F. Vernadat,
“Introducing the modeling and verification process in sysml,” in IEEE
International Conference. on. Emerging Technologies and Factory Au-
tomation (ETFA), 2007.

[21] H. Graves and Y. Bijan, “Modeling structure in description logic,”
DL2011, 2011.


