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Abstract—Negotiations among autonomous agents have
gained a mass of attention from a variety of communities
in the past decade. This paper deals with a prominent type
of automated negotiations, namely, multilateral multi-issue
negotiation that runs under real-time constraints and in which
the negotiating agents have no prior knowledge about their
opponents’ preferences over the space of negotiation outcomes.
We propose a novel negotiation approach which enables an
agent to reach an efficient agreement with multiple opponents.
The proposed approach achieves that goal by, 1) employing
sparse pseudo-input Gaussian processes to model the behavior
of opponents, 2) learning fuzzy opponent preferences to in-
crease the satisfaction of other parties, and 3) adopting an
adaptive decision-making mechanism to handle uncertainty
in negotiation. The experimental results show, both from
the standard mean-score perspective and the perspective of
empirical game theory, that the agent applying the proposed
approach outperforms the state-of-the-art negotiation agents
from the recent Automated Negotiating Agents Competition
(ANAC) in a variety of negotiation domains.

Keywords-Distributed Artificial Intelligence; Multi-agent sys-
tems; Automated Negotiation; Empirical game theory

I. INTRODUCTION

Negotiation is ubiquitous in our daily life and serves as
an important approach to facilitate conflict-resolving and
reaching agreements between different parties. Development
of automated negotiation techniques enables software agents
to perform negotiations on behalf of human negotiators. This
can not only significantly alleviate the efforts of human
negotiators, but also aid human in reaching better negotiation
outcomes by compensating for the limited computational a-
bilities of humans when they deal with complex negotiations.

During negotiations, a negotiating agent usually keeps its
negotiation strategy and its preference as its private infor-
mation to avoid being exploited. Thus one major research
challenge is to effectively estimate the negotiation partner’s
preference profile [1], [2] and predicate its decision function
[3]. On one hand, through getting a better understanding
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of the negotiation partners’ preferences, it would increase
the chances of reaching mutually beneficial negotiation
outcomes. On the other hand, effective strategy prediction
techniques enable the negotiating agents to maximally ex-
ploit their negotiating partners and thus receive as much
benefit as possible from negotiation.

Until now, a lot of research efforts have been devoted to
developing automated negotiation strategies and mechanisms
in different negotiation scenarios [1], [3], [4], [5], [6], [7].
Especially recent years have witnessed the emergence of a
number of advanced negotiation strategies participated in the
last few years’ automated negotiating agents competition
(ANAC) [8]. The ANAC competition provides a general
and uniform negotiation platform which enables different
negotiation agents to be evaluated against a wide range
of opponents within various realistic negotiation environ-
ments. However, most research efforts have been devoted
to bilateral negotiation scenarios, which only models the
strategic negotiation among two parties. However, in real life
the more common and general way of negotiations usually
involve multiple parties. It is in common agreement from
the automated negotiation research community that more
attention should be given to multilateral negotiations and
investigate effective negotiation techniques for multilateral
negotiation scenarios.

In this paper, we propose a novel negotiation approach
for automated agents to negotiate in multilateral multi-issue
real-time negotiation environments. During negotiation, the
agents’ negotiation strategies and preference profiles are
their private information, and the available information about
the negotiating partner is its past negotiation moves. Due
to the huge strategy space that a negotiating partner can
consider, it is usually very difficult (or impossible) to
predict which specific strategy the negotiating partner is
using based on this limited amount of information. To this
end, instead of predicting the exact negotiation strategies



of the opponents, we adaptively adjust the non-exploitation
point A to determine the perfect timing that we should
stop further exploits the opponents, and then determine the
aspiration level (or the target utility) for proposing offers
to opponents before and after the non-exploitation point
following different rules. The value of A is determined as
the timing when the estimated expected future utility we
can obtain over all opponents is maximized. The future
utility that each opponent offers can be efficiently predicted
using the Sparse Pesudo-inputs Gaussian Process (SPGP)
technique by dividing the negotiation history into a number
of atomic intervals.

Given the aspiration level for offering proposals, another
important question is how should we select an optimal
proposal to reach efficient agreements with other parties,
which can also improve the possibility of accepting this offer
by the negotiating partners. In this work, we measure the
efficient degree of an outcome from a practical perspective
— the social welfare of participants. We propose modeling
the preferences of each opponent using the least square error
regression technique based on the negotiation history. After
that, the offer with the highest social welfare is selected as
the offer to be proposed with certain exploration. We evalu-
ate the performance of our strategy from two different per-
spectives: efficiency in terms of the average payoff obtained
under a particular negotiation tournament and robustness in
terms of how likely the agents have the incentive to adopt our
strategy rather than other strategies. First, simulation results
show that our strategy is more efficient against a variety of
state-of-the-art negotiation strategies in both discounting and
non-discounting domains with various domain sizes. Second,
we evaluate the robustness of our strategy using empirical
game-theoretic analysis. Experimental results show that our
strategy is the most robust one compared with the existing
state-of-the-art strategies. Moreover, a light-weight imple-
mentation of the proposed negotiation approach finished
second in the category of Nash product in the ANAC 2015.

The remainder of the paper is organized as follows.
Section II introduces the multilateral negotiation model we
adopt. In Section III, our negotiation approach is introduced
in details. Section IV shows the detailed evaluation of the
proposed agent compared with the state-of-the-art negotiat-
ing agents under different negotiation contexts in terms of
the negotiation efficiency and robustness. Lastly conclusion
and future work are given in Section V.

II. MULTILATERAL NEGOTIATION MODEL

To govern the complex process of a multilateral negotia-
tion, we adopt an extension of a basic bilateral negotiation
protocol [9] which is widely used in the agents field [5],
[6], [8], [10], [11]. The participating agents try to estab-
lish a contract for a product (service) or reach consensus
on certain matter on behalf of their parties. Precisely, let
A ={a1,as,...,ai,....,a, } be the set of negotiating agents,
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Figure 1: Multilateral negotiation protocol.

J be the set of issues under negotiation with j a particular
issue (j € {1,...,n} where m is the number of issues).
Following the alternating bargaining model of [9], each
agent, in turn, has a chance to express its opinion about
the ongoing negotiation. The opinion can be communicated
in a form of a contract proposal (e.g., a new offer), or
an acceptance of the latest offer on the table (note that
previous offers would not be accepted once there exists a
new proposal), or terminating the negotiation according to its
interpretation of the current negotiation situation. A simple
illustration of the multilateral negotiation process is shown
in Figure 1. Due to space constraints we refer the interested
reader to the website of ANAC for more details about the
protocol.

An offer is a vector of values, with one value for each
issue. The utility of an offer for agent ¢ is calculated by the
utility function defined as follows:

n
U(0) =Y (wj - Vi (0;)) (D

Jj=1

where wj» and O are as defined above and Vy is the evalua-
tion function of agent ¢ for issue j, mapping every possible
value of issue j (i.e., O; ) to a real number. The weight
vector w denotes the weighting preference of an agent, in
which w; represents its preference for issue j. The issue
weights of an agent are normalized (i.e., Z;‘L=1 w; =1 for
each agent 7). In addition an agent has a lowest expectation
for the outcome of a negotiation — the reservation value .

In this work we consider negotiation being conducted in a
real-time way instead of being restricted by a fixed number
of exchanged offers; specifically, each negotiator has a hard
deadline by when it must have completed or withdraw the
negotiation. The negotiation deadline of agents is denoted by
tmax- In negotiations under real-time constraints, the number
of remaining rounds are not fixed and the outcome of a
negotiation depends crucially on the time sensitivity of the



Algorithm 1 The overview of the proposed negotiation approach.
Let t. be the current time point, ¢ the time discounting factor, and
tma the deadline of negotiation. O,,, is the latest opponent offer,
Q; the previous offers of opponent i and O,y, a new offer to be
proposed by our agent. x is the time series including the average
utilities over intervals. F/ denotes the expected utility of incoming
counter-offers. \ is the non-exploitation time point and u’ the target
utility. W denotes the set of learnt opponent weight vectors.

1: Require: 9,6, tyax

2: while ¢, <= t,,,, do

3 Ogpp <= receiveMessage;

4:  Q; < recordOfferSet(te, Oopp, 1);
5. if myTurn(t.) then

6 if updateModel(t.) then

7 X < preprocessDataf(t..)

8 E < Predict(x,2);

9 (A, Umin) < updateParas(t.);

10: W = updatePrefreenceModels();
11: end if
12:  end if

13: o' = getTargetUtility(t., E, \);
14: Oyywn < constructOffer(v/, W) ;
15 if isAcceptable(ul,, Ogpp,tc,0) then

16: accept(Oopp);

17:  else

18: checkTermination();
19: proposeNewBid(O,,,);
20:  end if

21: end while

agents’ negotiation strategies. For domains where the value
of agreements is discounted over time, the discounting factor
d (0 € [0,1]) is defined to calculate the discounted utility as
follows:

DU,t)=U-§" 2)

where U is the (original) utility and ¢ is the standardized
time. As an effect, the longer it takes for agents to come to
an agreement the lower is the utility they can obtain.

III. NEGOTIATION APPROACH

Our proposed approach consists of three core compo-
nents: deciding aspiration level, generating new offers and
responding mechanism, all of which are described in detail
in this section. We first give an overview of our approach
shown in Algorithm 1. Following that, the individual steps
of Algorithm 1 are explained in details.

A. Deciding Aspiration Level

Aspiration level indicates the target utility of an agent in
the negotiation process. In order to respond to uncertainty
in a negotiation where opponents’ private information is
unknown, the aspiration level is updated due to the environ-
ment (e.g., available negotiation time and discounting effect)
and opponent behaviors. The agent can therefore predict

opponent future moves to assist its decision by analyzing
past moves of the opponent. The prediction technique we
use here is a computationally efficient variant of standard
Gaussian Processes (GPs) — Sparse Pseudo-inputs Gaussian
Processes (SPGPs), which proves effective in negotiation
context [11]. Another advantage of SPGPs over other type
of regression techniques is that it not only provides accu-
rate prediction but also the measure of confidence in the
prediction.

Following the notation of GPs in [12], given a data set
D = {x",y®}m  where x € R? is the input vector,
y € R the output vector and m is the number of available
data points when a function is sampled according to a
GP, we write, f(x) ~ GP(m(x),k(x,x’)), where m(x)
is the mean function and k(x,x’) the covariance function,
fully specifying a GP. Learning in a GP setting involves
maximizing the marginal likelihood of Equation 3.

log p(y/X) = 53" (K-+021) "y~ log [Kto21 -5 log 27,
where y € R™*! is the vector of all collected outputs, X(36)
R™%4 g the matrix of the data set inputs, and K € R™*"™ is
the covariance matrix with |.| representing the determinant.

To fit the hyperparameters that best suit the available data
set we need to maximize the marginal likelihood function of
Equation 3 with respect to ®, the vector of all hyperparam-
eters. The problem with GPs is that maximizing Equation 3
is computationally expensive due to the inversion of the
covariance matrix K € R™*" where n is the number of data
points. We for this specific reason employ a fast and more
efficient learning technique — SPGPs. The most interesting
feature of SPGPs is that these approximators are capable of
attaining very close accuracy in both learning and prediction
to normal GPs with only a fraction of the computation
cost. This property makes them extremely suitable to the
multilateral negotiation domain where a complex and low
cost function approximation framework is highly demanded.

Using only a small amount of pseudo-inputs, SPGPs
are capable of attaining very similar fitting and prediction
results to normal GPs. To clarify, the idea is to parametrize
the model by M << n pseudo-input points, while still
preserving the full Bayesian framework. This leads to the
parametrization of the covariance function by the location of
M <<< n pseudo-inputs. These are then fitted in addition
to the hyperparameters in order to maximize the following
new marginal likelihood:

p(y/X, X, ©) = / p(y|X. X, Dp(FIX)df
= N(y|0, Kn Ky Ky + A+ 031), ()

where X is the matrix formed by the pseudo-inputs with
X = {x}M_,. Ky is the covariance matrix formed by
the pseudo and the real inputs as Ky y = k(X,,X,) with



k(.,.) being the covariance kernel. K;j is the inverse of
the covariance matrix formed among the pseudo inputs
with Kyy = k(Xm,Xm). A is a diagonal matrix having
the diagonal entries of A\, = k., — sz]_wlkn. The noise
variance and the identity matrix are represented by ¢ and I,
respectively.

When a counter-proposal from agent i arrives at time ¢,
our agent records the time stamp t. and the utility U(O?)
that is evaluated in our agent’s utility space. To reduce mis-
interpretation of the opponent’s behavior as much as possible
that is caused by the setting of multi-issue negotiations, the
whole negotiation is divided into a fixed number (denoted as
¢) of equal intervals. The average utilities at each interval
with the corresponding time stamps, are then provided as
inputs to the SPGPs. Results in [13] show a complexity
reduction in the training cost (i.e., the cost of finding the
parameters of the covariance matrix) to O(M?N) and in
the prediction cost (i.e., prediction on a new set of inputs)
to O(M?). The results further demonstrate that SPGPs can
fully match normal GPs with small M (i.e., few pseudo-
inputs), successfully producing very sparse solutions.

After learning a suitable model, SPGPs makes forecast
about the future concession of the opponent as shown in
line 7 of Algorithm 1. Our agent keeps track of the expected
discounted utility based on the predictive distribution at a
new input ¢,, which is given by:

p(u*lt*7D7X) = /p(u*|t*ax7f)p(ﬂp7x)df: N(U*W*Jz)a

5
where
e = kLQy (A + 0T
0? =K., Kl (K;/) — Qi )k, + 07
Qu =Ky +Kyun(A+ 02D 'Ky

With the given probability distribution over future re-
ceived utilities and the effect of the discounting factor, the
expected utility E;, is then formulated by

1 1
E, = 6/ D(u - p(u; pg, 0¢), t)du 6)
0

where p, and o, are the mean and standard deviation at time
t,, and the normalizing constant C is introduced to preserve
a valid probability distribution.

Our agent employs the target utility function as given
in Equation 7 to determine the aspiration level over time.
The function adopts a tough manner (i.e., slowly conced-
ing) before the non-exploitation time point () for seeking
higher expected profits, then it quickly goes to the expected
minimal utility such that negotiation failure/disagreement
could be avoided in the end. The non-exploitation time point
is adjusted according to the behavior of other negotiation
participants. More precisely, the higher the average opponent

concession (measured in the our own utility space), the later
our agent begins to compromise.

Umax - A(%)I—HS
(Unax — A)(1 — g==5) 1+

c
max —

when t. <\,

otherwise

(7

where Up,y is the maximal utility, Uy, is the minimal utility
(Umin = max(¥,v) and v the received lowest opponent
concession), constant A is the maximal concession amount
(i.e., Unax — Unin), With

1 Lot
A = argmax —

1Al —1 Ds (u-p(u; t)d
ter Al -1 s(up(u; pe, 1), t)du

®)

i€A\o v 70

with o representing our agent and T € [t., tmax]-

B. Generating Offers

Given an aspiration utility level to achieve, our agent next
needs to consider what offer to send such that the likelihood
of an offer being accepted could be maximized. Performing
this task would require certain knowledge about opponents’
preferences. However, negotiation opponents unfortunately
have no motivation to reveal their true likings over proposals
(or their utility functions) to avoid exploitation. In order to
address this problem, we model the opponent concession tac-
tics as time-dependent tactics (originated in [10]) shown in
Equation 9, which are classic tactic in the current literature.

(Umax - 19) (tc/tmax)a (9)

where « is the concession factor controlling the style of con-
cessive behavior (e.g., boulware (o < 1), conceder (o > 1)
or linear (o« = 1)). Time-dependent tactics are widely used
in automated negotiation community to decide concession
toward opponents since an negotiator needs to make more
or less compromise over time so as to resolve conflicts of the
parties. In more detail, boulware tactic maintains the target
utility level until the late stage of a negotiation process,
whereupon it concedes to the reservation utility. By contrast,
conceder tactic makes quick compromise to other parties
once a negotiation session starts. For linear tactic, it simply
reduces the target utility from the maximal utility to the
reservation utility in a linear way.

Learning opponent preferences, while useful, is indeed
challenging because information about opponent preferences
over different issues (e.g., the weight vector w) is severely
lacking. To tackle this issue, researchers typically assume
that opponent concession tactic is fully known or pref-
erences follow a certain distribution. In many real-world
applications, it is however difficult or costly to acquire the
exact information about opponent concession.! Therefore
we make a mild assumption that we could enquire of

U= Umax -

Note that the opponent concession is the amount of concession measured
in the utility space of the opponent instead of ours.
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Figure 2: A toy example of opponent concession ranges
given by the pairs of concession factors (0.5,2) at time 0.3,
(0.5,4) at 0.5 and (2,0.25) 0.7, respectively.

domain experts about the approximate concession range of
an opponent. This fuzzy knowledge is provided in form
of a pair of concession factors that indicate the upper and
lower concession an opponent makes at each time point. This
idea is illustrated in Figure 2. Thus, the agent can estimate
opponent preferences with the aid of the fuzzy information
about opponent concession. Specifically, the preferences
are learnt through minimizing the loss function L, which
gives the expected loss associated with estimating opponent
concession based on a weight vector. The loss function is
constructed as in Equation 11. The loss is calculated by
the difference between the mean of concession and the
utility of an offer based on a weight vector w; moreover an
additional penalty is imposed by ¢ when an expected utility
for w excesses the upper and lower bounds of opponent
concession. When calculating the utility of an offer for
opponent %, yet the valuation of each issue choice is needed.
We here simply assume that the importance order of issue
choices is known, and approximate the valuation like [1] as
follow,

i
27"j7k

Vi (O5k) = KE+1) (10)

where K is the number of possible choices for issue j, while
7"; . denotes the ranking of the issue choice Oj .

Let the opponent utility of an offer for a weight vector
w be .. With the opponent concession tactic given in
Equation 9 and the two concession factors (which denote
the approximate concession range suggested by experts), our
agent can estimate the weight vector of opponent ¢ by means
of linear least squares. This can be achieved by minimizing
the following loss function,

(Wapper T Uiower) i - - i
| 2 - uW| + @(u[nwerﬂ U’W)7 Uy S Upyer
Li(w) = |(u2,,,,gr+u}mr) i

2 - /&’W| + @(/CI’W? uftpper)’ Uypper < Uy

upper T Wiower ;

| (uupper > Ujorver) otherwise
(1)

with u,,,,, and u;,, ., being the upper and lower bound of
concession made by opponent ¢ at time t, and ¢ the penalty

function as below,

_’&’W|7

o(z,y) = Blz —y|* (12)

where 3 denotes the confidence of the expert, and the lower
the value, the more confidence the expert has about the
perdition (to limit further complexness, we let 3 be 1).

After the estimation of weight vectors of other parties
has been done, our agent chooses an offer being capable of
maximizing the social welfare (e.g., the sum of the utility of
all participants in the negotiation) given a aspiration level,
shown as below:

argmax Al Z (a4, (0) —0)?

6] -1

. i€A\o (13)
subject to
U°0) >

Although opponent preferences could be learnt on the
basis of the provided concession tactics, it sometimes may
be ineffective due to the fuzzy nature of the information;
therefore our agent needs an alternative approach to choos-
ing new offers. Fortunately, a real-time negotiation typically
allows agents to exchange a large number of offers, thereby
giving them many opportunities to explore the outcome
space. Therefore, the proposed approach generates a new
offer for next round following an e-greedy strategy. The
strategy selects either a greedy action (i.e., exploit) with
l1-e probability (¢ € [0,1]) or a random action with a
probability of e. It is worth noting that random action means
choosing one offer from the set whose utility is above
the given aspiration level by chance. The greedy action
aims at choosing an offer that are expected to satisfy other
sides’ preferences most in order to improve their utilities
over the negotiation outcome and the chance of the offer
being accepted through fuzzy preference learning. With a
probability 1 — ¢, the approach randomly picks one of those
offer whose utility is equal or larger than the given aspiration
level. In the latter case, the agent constructs a new offer
which has an utility within some range around «’. The reason
is twofold: 1) it is possible, in multi-issue negotiations, to
generate a number of offers whose utilities are the same
or very similar to the offering agent, with granting the
opposing negotiators different utilities, and moreover 2) it
is sometimes not possible to make an offer whose utility is
exactly equivalent to u'. Thus it is reasonable that an agent



selects an offer whose utility is in the narrow range [(1-
0.005)v,(14+0.005)w]. If no such solution can be found, our
agent repeats the latest bid again in the next round.

C. Responding mechanism

This responding mechanism of the proposed approach
corresponds to lines 15—20 of Algorithm 1. After receiving a
counter-proposal, the agent should decide whether to accept
the proposal by checking two conditions. First the agent
has to validate whether the utility of the latest counter-
offer is better than u’, while in the second the agent has to
determine whether it had already proposed this offer (i.e., the
opponent’s counter-offer) earlier in the negotiation process.
If either one of these two conditions is satisfied, the agent
then accepts the offer as shown in line 16 and the negotiation
will be completed if the proposal is also supported by the
remaining agents.

Moreover, when the negotiation situation becomes hard
and might offer our agent a utility even lower than the
reservation utility, the agent should consider whether to
terminate/leave the negotiation to receive the corresponding
reservation utility or not. Here we treat the reservation
value as an alternative offer from a negotiating partner with
a constant utility. Thus the agent needs to check if the
aspiration utility is smaller than the reservation utility. If
positive, our agent is going to leave the negotiation table
in the next round. If our agent decides neither to accept
the latest counter-proposal nor to leave the negotiation, it
proposes a new offer following the steps of lines 19 of
Algorithm 1.

IV. EMPIRICAL EVALUATION

The performance evaluation of the proposed approach
is done with GENIUS [14] — the well-known negotia-
tion simulation environment. GENIUS implements an open
architecture for negotiating agents (representing different
negotiation strategies), allowing to compare agents across
application domains with varying environmental settings.
This simulation environment is also used by Automated
Negotiating Agent Competition (ANAC) as the official com-
petition platform, thereby providing a library of state-of-the-
art negotiation strategies. We compare the performance of
our agent from the traditional scoring perspective as well
as from the empirical game theoretic one. The first part
of evaluation is detailed in Section IV-A. The other part
is used to study the robustness of the proposed approach as
the opponents vary. The details of game-theoretic analysis
are described as needed in Section IV-B.

In order to test the negotiating ability, we introduce
several top agents of recent ANAC editions as benchmarks
— Fawkes, MetaAgent, CUHKAgent, OMACAgent and I-
AMhaggler2012 — to cover a range of classes of negotiation
strategies. Furthermore, the negotiation simulation is carried
out on four domains for multi-party negotiation provided
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Figure 3: Performance of all agents in the test domains. The
vertical axis represents utility and horizontal axis represents
domain. Agent order in each domain corresponds to the
ordering on the right side.

by GENIUS - Car-purchase, Tram, University and Party,
which are chosen to be the respective representative of small,
medium, large outcome space domains.

A. Simulation results

We show the experimental results in Figure 3, where
3(a) and 3(b) give the average individual (own) utility and
opponent utility (scores of opponents playing against an
agent) of each agent, respectively. As depicted in the figures
above, our agent demonstrates excellent performance against
a variety of existing approaches over a number of scenarios,
which is on average the best performing approach from the
perspective of the own utility. In more detail, our agent takes
the first place in three domains and only finishes second in
Car-purchase domain; the average performance of the five
opponents reaches 85% of ours, while our agent surprisingly
advances others also by a margin of 22% in terms of average
opponent utility. We speculate this leading performance both
in individual and opponent utility is due to the effective
opponent behavior and preference learning mechanism.

Further, for convenience to compare agents’ performance



Table I: Overall Performance over domains.

Agent . Normalized Score ]
Own Uti. Std. Dev.  Social welfare

Our agent 0.821 0.005 0.838
MetaAgent 0.637 0.010 0.551
OMACagent 0.636 0.006 0.609
Fakwes 0.619 0.008 0.683
CUHKAgent 0.615 0.006 0.489
TAMhaggler2012 0.529 0.012 0.687

across domains, we normalize each agent’s utility, and nor-
malization is done in the standard way using the maximum
and minimum score obtained by all agents as in [15].
According to the overall performance shown in Table I, the
proposed approach retains the top place with an average
normalized score of 0.82; it has an advantage of more than
35% over the mean score of other agents across all domains.
More notably, our agent also leads to an impressive social
welfare (e.g., the sum of normalized utility of agents of a
negotiation), which is the highest among the candidates, or
precisely there is a margin of 39% above the average level
in social welfare achieved by other agents. This is desired,
because, as a measure of the benefit of a negotiation to all
participants, rather than the profit of an individual, higher
social welfare results in better overall value of a negotiation
and also a more efficient outcome. In addition, our agent
experiences the smallest standard deviation among all agents
considered in the experiments. In contrast, MetaAgent, being
the second place among all participants, only obtains an
utility of approximate 80% of ours. The difference becomes
even larger for IAMhaggler2012; this agent merely achieves
50% of ours and is the worst performing one observed in
the our simulation. To summarize, these results show that
our agent is effective (i.e., in terms of individual profit) and
efficient (i.e., in terms of social welfare), and it significantly
outperforms the state-of-the-art automated negotiators in a
variety of application scenarios.

An interesting observation of the experimental results is
the performance difference between our agent and IAMhag-
gler2012 is the largest (e.g., this agent on average achieves
less than half the performance of ours) though both agents
employ similar regression techniques as a tool to model
opponent. The reason behind it is that our agent advances
[AMhaggler2012 in three ways, 1) our agent employs a more
powerful method — SPGPs, which in the setting of agent-
based negotiation prove more successful and effective than
GPs, 2) IAMhaggler2012 sets its aspiration level fully on the
basis of the whole preceding negotiation process and tends to
magnify opponent concession, which seems to be vulnerable
to “irrational concession making” induced by pessimistic
predictions [11], while our agent adopts its aspiration level
in a more adaptive manner, and lastly 3) IAMhaggler2012
does not consider the use of preference learning to aid its
offer generating.
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Figure 4: Deviation analysis for three-player negotiation.
Each node shows a strategy profile. The arrow indicates uni-
lateral strategy change, and thus the statistically significant
deviation between strategy profiles. Nodes with bold border
denote empirical equilibria.

B. Empirical game theoretical analysis

In the previous subsection, the strategy is evaluated in
terms of efficiency from the mean-score perspective. How-
ever, this analysis is limited as it cannot reveal information
about the robustness of these strategies, or to put it dif-
ferently — would any of the agents in those competition,
for pursuing better outcome, have an incentive to deviate
from one strategy to a different one if allowed. To address
robustness issue appropriately, empirical game theory (EGT)
analysis [16], which was initially developed to analyze the
Trading Agent Competition, is applied to the simulation
results. In the analysis we consider the best single-agent
deviations as in [11], in which there is an incentive for
one agent to unilaterally change the strategy in order to
statistically improve its own benefit. The goal of using EGT
is to search for pure Nash equilibria where no agent has
an incentive to deviate, or to find a best cycle. Such a
cycle consists of a set of profiles (e.g., the combination of
strategies chosen by players) for which a path of statistically
significant single-agent deviations (whose definition is given
next) exists that connect them, with no deviation leading to
a profile outside of the set [15]. These two types are both
referred to as empirical equilibria in this work.

In the analysis we apply the EGT technique to the
three-player scenarios based on Tram domain’ where each

ZPlease note that the similar results can be observed also in other
domains, which are omitted due to space limitation.



player has freedom to use one from the strategy set S
that includes the six strategies considered in our experi-
ments shown in Section IV-A. For brevity, let the initial
letter of each strategy be the identifier (e.g., O means our
agent), except A represents OMAC to avoid repetition; and
S ={0,M, A, F,C,I}. The score achieved by a strategy in
a profile is averaged by all encounters of any three strategies
in a domain.

The results are depicted in Figure 4, where each node
represents a single strategy profile being a mix of three
different strategies from S. The strategy that achieves the
highest score among others in a profile is highlighted with
a specific color background. Under this EGT analysis, there
exists a best cycle of statistically significant single-agent
deviations, including five strategy profiles given by OIM,
OMA, OFA, OCA and OIC. This observation shows that for
any non-Nash equilibrium strategy profile there exist a path
of statistically significant deviations which leads to one of
the profiles involved in the best cycle. When compared with
the other strategies in the cycle, our agent (O) is included
in all empirical equilibria, which in other words attracts
a player to deviate for 100% of state transitions in this
particular figure. Thus it indicates that our proposed strategy
is the most robust one among all strategies.

V. CONCLUSION

This work introduced a novel approach for multilateral
agent-based negotiation in complex environments (multi-
issue, time-constrained, and unknown opponents). Our pro-
posed strategy, based on the adaptive decision-making
scheme and the effective preference learning method, outper-
formed the top agents of the recent International Automated
Negotiation Agents Competitions. Experiments show that
our agent ont only generates a higher mean individual utility
but also leads to better social welfare compared to the
state-of-the-art negotiation agents. Further game-theoretic
analysis clearly manifests the robustness of the proposed
approach. We think the exceptional results justify to invest
further research efforts into this approach. In the future
work, we plan on comparing the opponent modeling scheme
with the other available approachers and further, extend
this framework to other negotiation settings like concurrent
negotiation negotiation.
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