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Abstract In this paper, we introduce two novel evolu-

tionary processes for hierarchical networks referred to as

dominance- and prestige-based evolution models, i.e.,

DBEM and PBEM, respectively. Our models are deter-

ministic in nature which allows for closed-form derivation

of equilibrium points for such type of networks, for the

special case of complete networks. After deriving these

equilibrium points, we are somewhat surprised in recov-

ering the exponential and power-law strength distribution

as the shared property of the resulting hierarchal networks.

Additionally, we compute the network properties, Geodesic

distance distribution and centrality closeness, for each

model in closed form. Interestingly, these results demon-

strate very different roles of hubs for each model, shedding

the light on the evolutionary advantages of hierarchies in

social networks: in short, hierarchies can lead to efficient

sharing of resources and robustness to random failures. For

the general case of any hierarchical network, we compare

the estimations of tie intensities and node strengths using

the proposed models to open-source real-world data. The

prediction results are statistically compared using the

Kolmogorov–Smirnov test with the original data.

Keywords Hierarchical social networks � Dominance

networks � Dynamic models � Skewed distribution

1 Introduction

To analyze the emergence of social networks, a variety

of mathematical models have been proposed. The earli-

est dates back to the 1900s, where Yule (1925) studied

the biological evolution of species based on age and

population data. Others, e.g., Lotka (1926) provided

rules required for describing and analyzing scientific

publications. Resulting from these studies, was the

identification of the power-law degree distribution Can-

cho and Fernández (2008) as a shared common charac-

teristic for a wide range of networks including the world

wide web, protein–protein interaction, airlines, and

social networks.

Given such a widely-shared characteristic, Barabási

and Albert suggested a preferential attachment model for

the generation of scale-free graphs exhibiting a power-

law degree distribution Barabási and Albert (1999). As

noted by Durrett (2006), the definition of their process

was rather informal. Since then, different precise forms

of the Barabási-Albert model have been studied in the

literature Bollobás and Riordan (2003). Though suc-

cessful at recovering the power-law degree distribution,

these studies impose several restricting assumptions on

the underlying graph generating process. For instance,

such techniques typically adopt a binary attachment

model, in which two nodes are either connected or not
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Barabási and Albert (1999), Watts and Strogatz (1998).

Apart from this modeling restriction, another problem

inherent to existing binary models lies in their

explanatory capabilities. For instance, they fail to man-

ifest connection strengths between individuals, a prop-

erty being at the core of behavioral emergence in real

networks Barrat et al. (2004), Granovetter (1973),

Newman (2001), Barrat et al. (2004), Garlaschelli et al.

(2005), Ranjbar-Sahraei et al. (2014).

On the other hand, the existence of hierarchical rela-

tionships is another shared common characteristic for a

wide range of networks Clauset et al. (2008), Mones et al.

(2012). Research has shown that human physique and body

hormones play a crucial role in enabling dominance in the

society. While most of the animal societies base their

hierarchies on dominance, human societies replace domi-

nance by ‘‘prestige’’ to construct reciprocal relationships

between leaders and followers Price and Van Vugt (2014).

Thus, evolutionary considerations of real-world networks

suggest the emergence of scale-free behavior (i.e., net-

works exhibiting a power-law degree distribution) in net-

works as a result of hierarchal attachment processes that

are not reflected through current preferential attachment

models.

To provide more realistic modeling outcomes, in this

paper, we contribute by proposing deterministic hierar-

chal evolution processes for dominance-based and

prestige-based societies. Contrary to preferential

attachment models, our approach only assumes hierar-

chal connections between individuals, thus bridging the

modeling gap to real-world evolutionary networks.

Among many advantages, our deterministic setting

enables the derivation of the strength distribution in

closed form. Performing this derivation recovers, sur-

prisingly, the exponential and power-law degree distri-

bution as the main property of the resultant hierarchal

networks, which explains the prevalence of such hier-

archies in societies.

In short, our contributions can be summarized as

(a) providing a deterministic modeling of linear hierarchal

networks.1 (b) validating the proposed model by four real-

world datasets, and (c) measuring the time complexity and

assortativity of the proposed models. Moreover, for the

specific case of hierarchical networks with all-to-all con-

nections among individuals we (d) derive, for the first time,

a closed form of the skewed distribution among individuals

in networks having hierarchical interactions; (e) explain the

prevalence of hierarchies in societies as a resultant of the

characteristics of derived skewed distribution (e.g., high

robustness and small average distance Albert and Barabási

2002), and (f) compute the Geodesic distance and closeness

centrality of the networks in closed form.

The remainder of this paper is organized as follows.

The notations and preliminary information on mathe-

matical series and degree distributions are provided in

Sect. 2. The dominance-based and prestige-based evo-

lution models are introduced in Sect. 3. Each of these

models are studied in detail in Sects. 4 and 5, and their

network properties are further studied in Sect. 6. Sec-

tion 7 provides real-world verification of the proposed

models, and Sect. 8 discusses the results. Section 9

concludes.

2 Preliminaries

In this section, we present the basic notations and defini-

tions that will be used throughout this paper.

2.1 Notation

2.1.1 General notation

We define a network as a weighted graph, G ¼ V;Wð Þ,
consisting of a set of N nodes (or vertices) V ¼
fv1; . . .; vNg and an N � N adjacency matrix A as:

½A�ij ¼
1 : if i 6¼ j

0 : otherwise:

�

Note that we handle the symmetric setting, where if node vi
exhibits a tie with vj, then ½A�ij ¼ aij ¼ aji ¼ 1. N � N

weight matrix W is used to depict the strength of a tie

between two vertices vi and vj, i.e., if aij ¼ 1, ½W�ij ¼
wij ¼ wji 6¼ 0 else wij ¼ wji ¼ 0.

Finally, the neighborhood of a node vi, NðviÞ, is defined
as the set containing its adjacent vertices, i.e.,

NðviÞ ¼ fvj j aij ¼ 1g. Consequently, the degree of a node

vi, degðviÞ, is given by the cardinality of NðviÞ.

2.1.2 Network hierarchy notation

Consider a hierarchical constitution for G such that each

individual i observes the tie strengths between every two

individuals j and k if k\i, j\i and akj ¼ 1. An individual j

is called superior to i if j\i and aij ¼ 1. Therefore, we

define H as the set of all tuples (j, i) such that j is superior

to i.

The strength of a node is of major importance in the

analysis of hierarchical networks. Next, we define three

concepts needed in the remainder of the paper being rela-

tive strength, strength observation, and absolute strength.

The relative node strength is defined relative to two

nodes i and j. Thus, the relative strength of jth node with

1 Linear in the sense that if node A is superior to node B and node B

is superior to node C, and then node A is also superior to node C.
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respect to ith node with j\i, denoted by WiðvjÞ, represents
the sum over all edge weights between jth node and every

kth node with k\i:

WiðvjÞ ¼
Xi�1

k¼1

wjk: ð1Þ

In words, when node i is observing node j with j\i, it just

observes these connections from the other nodes k to j

which satisfy k\i. The importance of this concept will be

shown in Sect. 4.

The strength observation of ith node is denoted by the

vector

Wi ¼ ½WiðvjÞjj\i; ði; jÞ 2 H�:

This vector contains the observations of ith node from every

other superior jth node (i.e., ði; jÞ 2 H). As we will show in

next section, the strength of each tie that ith individual estab-

lishes with superiors depends on the values of such an obser-

vation vector. Finally, the absolute strength (i.e., the strength

recorded by an external observer) of node i is defined as:

WðviÞ ¼
XN
j¼1

wij: ð2Þ

2.2 Mathematical series

The harmonic series and fraction product are two ingredi-

ents which are needed in our analysis for determining

closed forms of the strength distributions. Here, we provide

two lemmas presenting upper and lower bounds on the

values of such summations.

Lemma 1 (Harmonic Series) Consider the harmonic

series

LHði;NÞ ¼
XN�1

k¼i

1

k
;

then

ln
N

i

� �
\LHði;NÞ\ ln

N � 1

i� 1

� �
:

Proof The relatively simple proof of the above lemma is

based on the integration results of harmonic series, where

LHði;NÞ is lower bounded by
R N
x¼i�1

1
x
dx and upper boun-

ded by
R Nþ1

x¼i
1
x
dx. h

Lemma 2 (Fraction Product Series) Consider the fol-

lowing product of fractions

LFði;NÞ ¼
YNþ1

k¼iþ2

2k � 4

2k � 5
;

then

ci�
1
2\LFði;NÞ\cði� 1Þ�

1
2;

with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
:

Proof We use the comparison test to compute the lower

and upper bounds of LFði;NÞ. Firstly, consider

Qði;NÞ ¼
YNþ1

k¼iþ2

2k � 5

2k � 6
: ð3Þ

Clearly, LFði;NÞ\Qði;NÞ and LFði;NÞQði;NÞ ¼ 2N�2
2i�2

.

Therefore, LFði;NÞ\
ffiffiffiffiffiffiffiffiffi
2N�2
2i�2

q
� cði� 1Þ�

1
2 concluding the

upper-bound. To determine the lower bound, define

Q0ði;NÞ ¼
YNþ1

k¼iþ2

2k � 3

2k � 4
: ð4Þ

It can be shown that LFði;NÞ[Q0ði;NÞ and

LFði;NÞQ0ði;NÞ ¼ 2N�1
2i�1

. Therefore,

LFði;NÞ[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 1

2i� 1

r
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 2

2i

r
� ci�

1
2: ð5Þ

h

2.3 Power-law and exponential degree distributions

In the analysis of weighted networks, typically the Distri-

bution Function (DF) is introduced:

PðkÞ ¼
����
�
vij8i; k�WðviÞ\k þ 1

�����; ð6Þ

whereWðviÞ defined in (2) denotes the strength of node vi and
j � j being the cardinality of the corresponding set. To ease the
analysis, in this work, we make use of the Complementary

Cumulative Distribution Function (CCDF) defined as:

PcðkÞ ¼
����
�
vij8i;WðviÞ� k

�����: ð7Þ

The following two lemmas signify the relation between

DFs and CCDFs for networks with power-law and expo-

nential distributions:

Lemma 3 (Exponential Distribution) Consider an expo-

nential distribution of the form PðkÞ ¼ ce�ak. The CCDF

can be written as PcðkÞ ¼ c
a e

�ak.

Proof Can be easily seen by simple integration. h

Lemma 4 (Power-law Distribution) Consider a power-

law distribution in form of PðkÞ ¼ ck�a, where a is the

power-law exponent. The CCDF PcðkÞ also follows a

power-law but with an exponent a� 1.

Proof Can be easily seen by simple integration. h

Soc. Netw. Anal. Min. (2016) 6:58 Page 3 of 16 58

123



Having laid out our notation and providing the required

background knowledge, next, we present and analyze two

dynamical models that reflect networks constructed by

dominance- and prestige-based evolutionary models. Not

only we provide iterative constructing algorithms, but also

present a set of theorems studying their stationary points,

which interestingly relate to the exponential and power-law

distributions.

3 Network dynamics in hierarchical networks

We propose, for the first time, a dynamical process which

captures the edge dynamics of hierarchical networks. Let

w ¼ fwijj8ði; jÞ 2 Hg denote the state vector of the process.
Each state variable wij corresponds to the weight of the link

between jth and ith node. To determine the dynamics of the

change in the state variable, one typically considers the rate

of change in wij as a function of all state variables:

_wij ¼ f ðwÞ: ð8Þ

Due to the nature of hierarchal networks and to simplify the

analysis, however, we make use of the following assumption:

Assumption 1 The tie between i and j, where i is superior

to j, depends on all connections between i and k where k is

also superior to j.

This leads us to study the edge dynamics of a node i as a

function of its own weight state as well as its strength

observation:

_wij ¼ fWðwij;WiÞ; j\i: ð9Þ

In other words, we assume that the dynamics of the linking

strength between i and j are independent of any other node

l which is higher than i or j in the hierarchy.

Using fW from Eq. 9, sorting the state variables wij

increasingly (based on Niþ j), the overall dynamic process

can be written as

_w ¼ d

dt
w21; . . .;wNðN�1Þ
� 	T

¼ fWðw21;W2Þ; . . .; fWðwNðN�1Þ;WNÞ
� 	T

:

ð10Þ

To finalize the dynamical model, fWð�Þ has to be defined.

Considering real-world hierarchal networks, next, we

introduce two such models, f
ðDÞ
W ð�Þ and f

ðPÞ
W ð�Þ corre-

sponding to dominance and prestige-based dynamics.

4 Dominance-based evolution model (DBEM)

In the dominance-based evolution model (DBEM), the

strength of ties between ith and every other jth individual,

with ði; jÞ 2 H and i[ 1, follows a simple dynamical rule:

_wij ¼ f
ðDÞ
W wij;

��Wi

��
 �
; ð11Þ

where j � j denotes the cardinality of the vector and

f
ðDÞ
W ðwij;

��Wi

��Þ ¼ 1��Wi

��� wij:

In the above,
��Wi

�� is a fixed integer denoting the number of

superiors to ith individual. The difference between 1��Wi

�� and
wij determines the direction of changes of wij (i.e., _wij).

For computing the equilibrium point of the above sys-

tem, consider an energy function for wij of the form:

Vij ¼
1��Wi

��� wij

 !2

: ð12Þ

By taking derivative of Vij and using the update rule in

(12), we can write for a fixed i:

_Vij ¼� 2
1��Wi

��� wij

 !
_wij ¼ �2

1��Wi

��� wij

 !2

: ð13Þ

Using the invariant set theorem Slotine and Li (1991), we

can show that the overall dynamical process has a

stable equilibrium point, in which the link between ith and

jth node, j\i, converges to w
ðDÞ
iH :

w
ðDÞ
iH ¼ 1��Wi

�� : ð14Þ

The equilibrium point in (14) explains that the links of

node i to all nodes with lower order (i.e., j\i) depend on

i. Further, it clarifies that the higher the order is the lower

the strength of links are.

Example To illustrate, consider N agents in a complete

graph. Continuously each agent shares its available

resources to superior agents. The strength of the connection

between nodes i and j reflects the amount of resources

transmitted from i to j. According to (14), the second

individual shares all resources with 1st (i.e.,

w21 ¼ 1
2�1

¼ 1). The third, however, shares half of the

resources with the second, and the other half with the first

(i.e., w32 ¼ w31 ¼ 1
3�1

¼ 1
2
). Similarly, any agent i shares

1
i�1

units of the resources with each of the j individuals as

long as j\i. Therefore, one can see that this model directly

captures the dominance of individuals in a linear hierar-

chical network, where every individual is sharing resources

among dominated individuals.

Next, we study the amount of resources each individual

receives in such dominance-based network (captured by

node’s strengths) and compute the distribution of node

strengths.

In the following subsections, we focus on complete

networks (allowing us to derive numerous characteristics in
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closed form) where every jth individual is superior to ith

individual if j\i. Thus,
��Wi

�� ¼ i� 1 8i[ 1, and

w
ðDÞ
iH ¼ 1

i� 1
: ð15Þ

4.1 Analysis of node’s strength

Building on w
ðDÞ
iH ’s definition in Eq. 15, one can calculate

the absolute strength of ith node, WðviÞ as:

WðviÞ ¼
XN
j¼1

w
ðDÞ
ij ¼

Xi�1

j¼1

w
ðDÞ
ij þ

XN
j¼iþ1

w
ðDÞ
ij

¼ ði� 1ÞwðDÞ
iH þ

XN
j¼iþ1

w
ðDÞ
jH

¼ 1þ
XN
j¼iþ1

1

j� 1
¼ 1þ

XN�1

j¼i

1

j
:

ð16Þ

Using Lemma 1, it is straightforward to show that:

1þ ln
N

i

� �
\WðviÞ\1þ ln

N � 1

i� 1

� �
: ð17Þ

4.2 Analysis of node’s strength distribution

The distribution of strengths in the DBEM model can be

directly computed from the bounds provided in Eq. 17. The

following theorem shows how the CCDF, and consequently

the DF of strengths in this model follow an exponential

distribution:

Theorem 1 (Strength Distribution in DBEM Model) For

the complete weighted network G, generated using the

DBEM model, the DF of the global strength k follows an

exponential distribution of the form

PðkÞ / e�k:

Proof Using Eq. 17 we have:

WðviÞ� k; for i 2 1; 2; 3; . . .;
N

ek�1

� 
� �
:

Hence:

PcðkÞ ¼
����
�
1; 2; 3; . . .;

N

ek�1

� 
����� ’ Ne � e�k; ð18Þ

and consequently:

PcðkÞ / e�k: ð19Þ

Using Lemma 3, it is straightforward to see that the DF

corresponding to (19) is exponential, i.e., PðkÞ / e�k: h

5 Prestige-based evolution model (PBEM)

Having introduced the above model, next, we present a

prestige-based model, taking our framework a step closer

to the formation of hierarchies in real social networks.

Consider an arbitrary undirected network with A as its

adjacency matrix and H as its hierarchical structure. The

overall strength of node i in establishing connections with

every other jth node with ði; jÞ 2 H and i[ 1 is assumed to

be limited and sums to 1. Let

_wij ¼ f
ðPÞ
W ðwij;WiðvjÞ;

��Wi

��Þ; ð20Þ

and

f
ðPÞ
W ðwij;WiðvjÞ;

��Wi

��Þ ¼ WiðvjÞ��Wi

�� � wij; ði; jÞ 2 H: ð21Þ

By studying the dynamic process proposed in Eq. 21, it can

be easily seen that _wij; i[ j is a function of wkl for all

k; l\i. Without loss of generality, we assume w
ðPÞ
11 ¼ 1,

such that:

W2ðv1Þ ¼ 1: ð22Þ

We also assume that w
ðPÞ
ii ¼ 0 for every i[ 1. It is again

straightforward to compute the equilibrium point of such

system as:

w
ðPÞ
ij ¼ WiðvjÞ��Wi

�� : ð23Þ

It is clear that the equilibrium point in (23) explains that the

connection strength between node i and node j depends on

the strength of the ties between nodes i or j and every other

kth node with k\maxfi; jg.
Example To illustrate, imagine N agents in a complete

graph. Continuously the agents with higher-order share

their available resources with agents exhibiting lower order.

The strength of the link between i and j shows the amount of

resources which are transmitted. According to (23), the

second agent shares all resources with the first individual

(i.e., w21 ¼ 1
1
¼ 1). The third agent shares one-third of the

resources with the second and two-thirds with the first (i.e.,

w32 ¼ 1
1þ2

¼ 1
3
and w31 ¼ 2

1þ2
¼ 2

3
). Similarly, the ith agent

shares portions of the resources with each of the j agents

with j\i. Those with a lower order, however, receive

higher resources compared to the ones with a higher order.

This also explains our naming referring to the model as a

prestige-based one, where lower orders reflect a ‘‘prestige’’

in the group receiving more resources compared to others.

An immediate result of (23) is that:

Xi
j¼1

w
ðPÞ
ij ¼

Xi�1

j¼1

w
ðPÞ
ij ¼

Xi�1

j¼1

WiðvjÞ��Wi

�� ¼
��Wi

����Wi

�� ¼ 1: ð24Þ
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Next, we focus on complete networks where every jth

individual is superior to ith individual if j\i. For such

networks, we will compute the amount of resources each

individual receives and also the distribution of node

strengths.

5.1 Analysis of node’s strength

Given a complete network, here, we determine a closed-

form solution for the sum over the strength of every jth

node from the perspective of ith node, as long as j\i.

Lemma 5 In the prestige-based evolution model, the sum

of the relative node strengths of every jth node from per-

spective of ith node, with j\i is:

KðiÞ : jWij ¼ 2i� 3:

Proof The above lemma can be proved by using

induction:

Initial Step: According to Eq. (22), we have

jW2j ¼ W2ðv1Þ ¼ 1. Therefore, KðiÞ holds for i ¼ 2.

Inductive Step: Let

Kði� 1Þ : jWi�1j ¼ 2i� 5;

and also note that WiðvjÞ ¼ Wi�1ðvjÞ þ w
ðPÞ
ði�1Þj. Therefore

we can write:

jWij ¼
Xi�1

j¼1

WiðvjÞ

¼Wiðvi�1Þ þ
Xi�2

j¼1

�
Wi�1ðvjÞ þ w

ðPÞ
ði�1Þj

�

¼
Xi�1

j¼1

w
ðPÞ
ði�1Þj þ jWi�1j þ

Xi�2

j¼1

w
ðPÞ
ði�1Þj:

By using Kði� 1Þ and Eq. 24, we arrive at:

jWij ¼
Xi�1

j¼1

WiðvjÞ ¼ 1þ 2i� 5þ 1 ¼ 2i� 3: ð25Þ

Therefore, KðiÞ holds for every i, concluding the proof. h

5.2 Analysis of edge weights

We can compute the edge weight between ith and jth node

as follows:

Lemma 6 (Edge Weight) For the weighted graph G,

evolved with PBEM, the ith node is connected to the jth

node with an edge of weight:

KðiÞ : wðPÞ
ij ¼ 1

2i� 2

Yi�j

k¼1

2i� 2k

2i� 2k � 1
;8j\i: ð26Þ

Proof The validity of Eq. 26 can be proved for each i and

for every j\i using induction.

Initial Step: The second node is connected to the first

node with w
ðPÞ
21 ¼ 1, meaning that Kð2Þ holds.

Inductive Step: Now assume that

Kði� 1Þ : wðPÞ
ði�1Þj ¼

1

2i� 4

Yi�j�1

k¼1

2i� 2k � 2

2i� 2k � 3
;

holds for every j\i� 1. For computing the edge weight

between ithand jth node, recall that WiðvjÞ ¼ Wi�1ðvjÞþ
w
ðPÞ
ði�1Þj. By using (23) and Lemma 5, it can be seen that:

WiðvjÞ ¼Wi�1ðvjÞ þ w
ðPÞ
ði�1Þj

¼ð2i� 5Þwði�1Þj þ w
ðPÞ
ði�1Þj

¼ð2i� 4Þwði�1Þj:

ð27Þ

Using Eqs. 23, 27 and Lemma 5, the edge weight between

ith and jth node can be written as:

w
ðPÞ
ij ¼ WiðvjÞPi�1

k¼1 WiðvkÞ
¼ 1

2i� 2

Yi�j

k¼1

2i� 2k

2i� 2k � 1
:

for j\i� 1. Therefore, KðiÞ holds for every i, concluding

the proof. h

Before, computing the distribution of strengths for

PBEM, we present the following proposition providing the

relative strength of jth node from the perspective of ith for

every i[ j in closed form:

Proposition 1 (Relative Node Strength) For the weighted

graph G, evolved according to PBEM, the strength of the

jth node from perspective of the ith node is given by:

KðiÞ : WiðvjÞ ¼
Qi

k¼jþ2

2k � 4

2k � 5
for j\i� 1

WiðvjÞ ¼ 1 for j ¼ i� 1:

8<
:

ð28Þ

Proof Again, induction can be used to prove the validity

of Eq. 28. Starting with the initial step we get:

Initial Step: From Eq. 22, the strength of the first node

from the perspective of the second node is W2ðv1Þ ¼ 1.

Besides, using Lemma 6, we can deduce that:

W3ðv1Þ ¼
w
ðPÞ
11 þ w

ðPÞ
21

3
¼ 2

3
:

Therefore, Kð2Þ holds. For the inductive step, we proceed

as follows:

Inductive Step: Assume that following holds.

Kði� 1Þ : Wi�1ðvjÞ ¼
Qi�1

k¼jþ2

2k � 4

2k � 5
for j\i� 2

Wi�1ðvjÞ ¼ 1 for j ¼ i� 2:

8<
:
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For computing WiðvjÞ, consider WiðvjÞ ¼ Wi�1ðvjÞþ
w
ðPÞ
ði�1Þj. Using Eq. 23 and Lemma 5, we can show that for

every j\i� 1:

WiðvjÞ ¼Wi�1ðvjÞ þ w
ðPÞ
ði�1Þj ¼

Yi
k¼jþ2

2k � 4

2k � 5
:

Besides using Eq. (24), WiðvjÞ = 1 for j ¼ i� 1. Therefore,

KðiÞ holds for every i and the proof is concluded. h

Lemma 7 (Global Strength) For the weighted graph G,

evolved with PBEM, the global strength of the ith node is:

WðviÞ ¼
QNþ1

k¼iþ2

2k � 4

2k � 5
for i\N

WðviÞ ¼ 1 for i ¼ N:

8<
: ð29Þ

Proof We know that WðviÞ ¼ WNðviÞ þ w
ðPÞ
iN for every

i\N. Using Eq. 23 and Proposition 1, we have:

WðviÞ ¼WNðviÞ þ
WNðviÞ
2N � 3

¼ 2N � 2

2N � 3

YN
k¼iþ2

2k � 4

2k � 5

¼
YNþ1

k¼iþ2

2k � 4

2k � 5
;

for every i\N. Based on Eq. (24), we have:

WðvNÞ ¼
XN�1

i¼1

w
ðPÞ
Ni ¼ 1:

This concludes the proof. h

Finally, we can compute the strength distribution in a

closed form. The following theorem provides the strength

distribution of a PBEM model:

Theorem 2 (Strength Distribution) For the complete

weighted graph G evolved with PBEM, the distribution of

the global strength k follows a power law with exponent

�3:

PðkÞ / k�3:

For proving Theorem 2, we use Lemmas 2 and 4 to

analyze the results of Lemma 7.

Proof From Lemma 2, the following lower and upper

bounds can be computed for the strength of the ith node

ci�
1
2\WðviÞ\cði� 1Þ�

1
2; ð30Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. From Eq. (30), we have

WðviÞ� k; for i 2 1; 2; 3; . . .;
c2

k2

� 
� �
; ð31Þ

PcðkÞ ¼
����
�
1; 2; 3; . . .;

c2

k2

����� ’ c2k�2: ð32Þ

Therefore,

PcðkÞ / k�2 ð33Þ

Using Lemma 4, we have

PðkÞ / k�3; ð34Þ

thus proof is concluded. h

Simulation Validation Next, we provide a simulation to

validate the analytical results on the strength distribution of

both DBEM and PBEM models. We initiate a complete

graph with 104 nodes and random weight adjacency. This

network is then evolved under the dynamical processes of

both DBEM and PBEM models. The strengths of nodes in

the equilibrium point of the evolved networks are extrac-

ted, and their distribution is illustrated in Fig. 1. As can be

seen, the DBEM model is generating an exponential

strength distribution (i.e., a straight line in semilogarithmic

plot), while PBEM model produces a power-law strength

distribution (i.e., a straight line in log–log plot).

6 Network properties

In this section, we introduce and analyze two important

properties of weighted networks for each of the DBEM and

PBEM models. First, we introduce the distance between

individuals and study the distribution of Geodesic distance

in networks, and second, we analyze closeness centrality in

networks evolving according to the proposed models.

6.1 Geodesic distance

Geodesic distance is an important property in social net-

works Freeman (1978), Kretschmer (2004), Leskovec et al.

(2008). To measure the Geodesic distance, we first need to

introduce a measure of distance between two connected

individuals. This is defined as the inverse of link weights:

dij ¼
1

wij

;

if i 6¼ j, aij ¼ 1 and dii ¼ 0 for every i. To illustrate, let wij

denote the number of times individual i is co-observed with

individual j. Then, the more these two individuals are seen

together the closer they are in the network (i.e., dij is

smaller).

While, dij represents the distance between two individ-

uals that are directly connected in the network, we can also

define the Geodesic path between two individuals as the
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path with the minimum sum of distances. The length of a

Geodesic path is called the Geodesic distance. In large-

scale networks, the average Geodesic distance is expected

to be short compared to the number of nodes and the direct

distances between individuals. To better understand this

phenomenon, next, we calculate the Geodesic distance

between two arbitrary individuals in a complete hierar-

chical network that is evolved under either DBEM or

PBEM models.

6.1.1 Geodesic distance in DBEM

Let dGij be the Geodesic distance between individuals i and

j. The following theorem states that in a complete hierar-

chical network evolved based on DBEM, the Geodesic path

between individuals i and j is their direct connection and

the Geodesic distance dGij ¼ dij.

Theorem 3 In a complete hierarchical network evolved

based on DBEM, the geodesic distance dsij between the ith

and jth individuals is equal to the distance associated with

the connection between them:

dGij ¼ dij ¼
1

wij

:

Proof The proof of the above theorem can be attained by

contradiction. Without loss of generality, assume i[ j, and

thus dij ¼ i� 1 (see Eq. 15). Suppose that the Geodesic

path starts from ith individual and crosses a third individual

k with k 6¼ i; j. The distance dik can be determined as:

dik ¼
i� 1 i[ k

k � 1 k[ i

�
ð35Þ

We know that the Geodesic distance is equal to the sum of

distances on the Geodesic paths. Therefore, dGij [ dik.

Using Eq. 35, it can be easily seen that dGij [ i� 1[ j� 1.

Hence, the direct connection between two individuals has a

shorter distance that the Geodesic distance. Thus, the

supposition is false, and the shortest path can not pass any

third individual. This completes the proof of the above

theorem. h

6.1.2 Geodesic distance in PBEM

In contrast to DBEM, in which the Geodesic path between

two individuals is the direct link connecting them, the

following theorem shows that in PBEM, the Geodesic path

always passes through the first individual in a complete

hierarchical network:

Theorem 4 In a complete hierarchical network evolved

based on DBEM, the Geodesic distance dsij between the ith

and jth individuals, for i 6¼ j is
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Fig. 1 DF and CCDF of

strengths in DBEM model and

PBEM models. It is clear that

DBEM generates an exponential

strength distribution, while

PBEM produces a power-law

strength distribution.

a Exponential strength DF and

CCDF of DBEM Model in

Semi-Log Scale. b Power-law

strength DF and CCDF of

PBEM Model in Log-Log Scale
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dGij ¼ di1 þ dj1: ð36Þ

Before providing the proof of this theorem, we use

Eq. 26 to derive the distance between node i and j

dij ¼ ð2i� 2Þ
Yi�j

k¼1

2i� 2k � 1

2i� 2k
: ð37Þ

Proof The proof follows again by contradiction. Without

loss of generality, we assume that i[ j. Suppose there

exists individuals i and j for which dGij ¼ dij, then:

dGij ¼ dij ¼ ð2i� 2Þ
Yi�j

k¼1

2i� 2k � 1

2i� 2k
; ð38Þ

thus,

dGij ¼
Yi�1

k¼i�jþ1

2i� 2k

2i� 2k � 1
�
Yi�1

k¼1

2i� 2k � 1

2i� 2k

¼
Yi�1

k¼i�jþ1

2i� 2k

2i� 2k � 1
� di1

¼2
Yi�2

k¼i�jþ1

2i� 2k

2i� 2k � 1
� di1

� 2di1:

ð39Þ

Hence:

dGij [ di1 þ dj1: ð40Þ

Therefore, every direct link between two individuals can be

replaced via a path that passes through the first individual.

Hence, the supposition is false completing the proof. h

The distribution of Geodesic distances for individuals in

DBEM and PBEM for a network of 104 nodes (as studied

in Fig. 1) is illustrated in Subfig. 3a, b. Subfig. 3c illus-

trates the changes in average of weighted Geodesic dis-

tances in networks of different sizes.

6.2 Closeness centrality

In this subsection, we study the closeness centrality of

individuals in complete hierarchical networks. The

closeness centrality of ith individual, ci, is defined as the

inverse of the sum of its Geodesic distance to other

individuals:

ci ¼
XN
j¼1

dGij

" #�1

: ð41Þ

Thus, the lower the total Geodesic distance of one indi-

vidual from other nodes is, the more central the individual.

Given the different distribution of Geodesic distances

produced by DBEM and PBEM models, we also expect to

see different profiles in the centrality of nodes. Next, a

detailed study of this measure for each of these networks is

presented.

6.2.1 Closeness centrality in DBEM

Using Theorem 3, the closeness centrality for individual i

in a complete hierarchal network, evolved based on

DBEM, is given as below.

c
ðDÞ
i ¼

XN
j¼1

dGij

 !�1

¼
XN
j¼1

dij

 !�1

¼
Xi�1

j¼1

dij þ
XN
j¼iþ1

dij

 !�1

¼ 2

i2 � 3iþ ðN2 � N þ 2Þ :

ð42Þ

The above equation allows us to measure centrality of each

individual in a DBEM network, in closed form.

6.2.2 Closeness centrality in PBEM

In contrast to DBEM, in which the Geodesic path

between two individuals is the direct connection between

them, in Theorem 4, we saw that the Geodesic path in

PBEM-based networks always passes through the first

individual who is at the top of the hierarchy. Therefore,

the Geodesic distance dsij between two individuals is given

by Eq. 36. The closeness centrality for ith individual is

then:

c
ðPÞ
i ¼

XN
j ¼ 1

j 6¼ i

dGij

0
BBBBB@

1
CCCCCA

�1

¼
XN
j ¼ 1

j 6¼ i

�
di1 þ dj1

�
0
BBBBB@

1
CCCCCA

�1

¼ ðN � 1Þdi1 þ
XN
j ¼ 1

j 6¼ i

dj1

0
BBBBB@

1
CCCCCA

�1

:

ð43Þ

By replacing di1 and dj1 from Eq. 37 into Eq. 43, the

closeness centrality for PBEM can be attained in closed

form.

The closeness centrality of individuals in DBEM and

PBEM for a network of 104 nodes is illustrated in Fig. 3.

This centrality measure is normalized in a way such that

the maximum closeness becomes 1. As can be seen, in

DBEM, the individuals centrality decreases much slower

compared to that in PBEM.
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7 Real-world verification

In this section, we use real-world interaction networks to

validate the proposed DBEM and PBEM models for net-

works with arbitrary hierarchical structures. Next, we

introduce the data sets used for this study.

7.1 Data setup

For verification of the proposed DBEM and PBEM pro-

cesses, we use four real-world social network datasets: (1)

Howler Monkey Groups, (2) Kangaroos, (3) Wolf Domi-

nance, and the (4) US Airports networks.

Howler Monkey Groups (Howler Monkey Groups

2015)—This dataset represents the social network among

mantled howler monkeys, Alouatta palliata, which is col-

lected by Froehlich and Thorington (1981) and Sailer and

Gaulin (1981). The dataset represents the co-observations

in a group of 17 monkeys, where the co-observations of

every two monkeys are reported in form of a weighted

adjacency matrix.

Kangaroos (Kangaroo 2015; Grant 1973)—This dataset

represents the social network among free-ranging gray

kangaroos. A weighted adjacency matrix shows the number

of observed physical proximities among a group of 17

kangaroos. Observations were collected in the Nadgee

Nature Reserve in New South Wales.

Wolf Dominance (van Hooff and Wensing 1987; Wolf

Dominance 2015)—This dataset represents the social net-

work among a captive family of 16 wolves in Arnheim,

Germany. A weighted adjacency matrix shows the number

of occasions on which the row wolf was seen to exhibit a

‘‘low posture’’ display directed toward the column wolf,

which is a sign of fear and being subordination.

US Airports (Us airports network dataset 2015; Opsahl

2011)—This dataset presents the flights between 1574 US

airports in 2010. The elements of the weighted adjacency

matrix shows the number of flights from the row airport to

the column airport in 2010. In this paper, we consider the

first 200 airports with highest overall number of flights.

Besides, we set the number of flights between two airports

equal to the average of each flight from one to the other.

This way, the adjacency matrix becomes symmetric, thus

compatible with the experimental method introduced next.

In each of the aforementioned datasets, the adjacency

and weight matrices are denoted by Ad ¼ ½adij� and

Wd ¼ ½wd
ij�.

7.2 Experiment methodology

Although, in all four interaction networks Howler Monkey

Groups, Kangaroo, Wolf Dominance, and the US Airports,

the interactions between every two nodes are available,

except for the Wolf Dominance network, no hierarchy is

explicitly given for the other three networks. The

methodology used to compare the interaction networks

with PBEM and DBEM is given as:

Extraction of hierarchy— In many real-world networks,

the interactions frequency/strength between individuals are

reported, while the hierarchy (i.e., details of who initiates

or dominates in the interaction) is not revealed. However,

as shown in this paper, extraction of hierarchies in the

network plays a crucial role in understanding the under-

lying mechanism of interactions.

The linear hierarchies and dominance orders in social

networks are studied by many researchers e.g., in Appleby

(1983), Vries (1995), Vries (1998), Shizuka and McDonald

(2012), Sales-Pardo et al. (2007). In most of these studies,

authors assume existence of data in form of frequencies of

wins and loses of the same dyad member for each pair of

individuals. Unfortunately, this is not the case for the three

networks under study in this paper, Howler Monkey

Groups, Kangaroo and the US Airports, and many other

real-world networks.

Therefore, we rather use a simple yet efficient technique

to extract the hierarchy of the network. Namely, we assume

the nodes with more interactions are higher in the hierar-

chy. Therefore, we rank the nodes based on the sum of

interaction frequencies exhibited by each node. Then, for

every pair of nodes i and j that adij ¼ 1 and rank of i is

higher than j the tuple (j, i) is added to hierarchy set H.

Evolving the models based on hierarchy set—Once the

hierarchy set H is extracted from an interaction network,

both proposed models, DBEM and PBEM, can be easily

evolved using the dynamical system in (11) and (20),

respectively. Each model results in a set of interaction

weights and consequently node strengths.

Normalization of the interaction matrix— The dynami-

cal models of DBEM and PBEM generate normalized

weight matrices W where the sum of interaction weights

between i and all its superordinate j is equal to 1. There-

fore, we use the following rule to acquire a normalized

weight matrix WdðnÞ ¼ ½wdðnÞ
ij �:

8i; j : wdðnÞ
ij ¼

wd
ijP

j2fjjði;jÞ2Hg w
d
ij

: ð44Þ

Next subsection, presents the comparison of generated

models by DBEM and PBEM to normalized real-world

networks.

7.3 Results

To compare the estimations of DBEM and PBEM with data

from real-world networks, we first compute the absolute
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strengths in each real-world network by using the nor-

malized Weight matrix WdðnÞ. The absolute strength of

each node is then estimated using the DBEM and PBEM

models, based on the corresponding hierarchical structure

of each real-world network.

We use Kolmogorov–Smirnov to test the equality of the

distribution of the node strengths in real-world networks

and the estimations of these strengths computed by the

proposed models in this paper. Table 1 provides the p value

of the Kolmogorov–Smirnov test for the real-world data-

sets. As can be seen, for the Howler Monkey Groups

dataset, the p value of DBEM estimation has a larger value

compared to the PBEM estimations. For the other datasets,

the pvalues of PBEM estimations have larger values.

Therefore, we assume that the network interactions in the

first network are evolved based on only dominance of

individuals, while the other three networks follow a Pres-

tige-based evolution model. In all four datasets, the Kol-

mogorov–Smirnov test accepts the null hypothesis that

both sets are drawn from the same distribution at the 5%

significance level.

Figure 4 illustrates the CCDF of strengths in the real-

world datasets. Estimations by DBEM, for the Howler

Monkey Groups are shown in Fig. 4a, and estimations by

PBEM, for the other datasets are shown in Fig. 4b–d.

To measure the accuracy of estimations of DBEM and

PBEM models, illustrated in Fig. 2, we perform a statistical

analysis of the absolute difference between estimated

intensity of edges and their real intensity for each of the

four real-world networks. The average estimation errors are

0.081 for Howler Monkey Groups estimated by DBEM

(and 0.120 for its estimation with PBEM), 0.070 for Kan-

garoos estimated by PBEM (and 0.086 for its estimation

with DBEM), 0.080 for Wolf Dominance estimated by

PBEM (and 0.096 for its estimation with DBEM), and

0.027 for the US Airports estimated by PBEM (and 0.030

for its estimation with DBEM). The distribution of errors

based on their minimum, first quartile, median, third

Table 1 p value of the

Kolmogorov–Smirnov test for

predictions made by DBEM and

PBEM models

Howler monkey groups Kangaroos Wolf dominance US airports

DBEM 0.93 0.67 0.63 0.06

PBEM 0.67 0.73 0.99 0.23

A large value of p supports the hypothesis that the distribution of estimated values is similar to the

distribution of real-world values
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Fig. 2 Weighted Geodesic

Distance in DBEM- and PBEM-

based complete networks. a In a

DBEM-based evolved network,

the Geodesic distance between

individuals at the bottom of the

hierarchy quickly increases; b in

the PBEM-based evolved

network, the Geodesic distance

has a distribution close to

normal; c in the PBEM-based

evolved networks, the number

of hops in the Geodesic path

between individuals is always

equal to 1 or 2, but the length of

this path gradually increases by

the increase in size of network

a DBEM Model, b PBEM

Model, c PBEM Model
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quartile, and maximum are shown in Fig. 5. The pairwise

statistical comparisons between these four distributions

show significant differences (p value is less than 10�5 for

all four comparisons, using the Kolmogorov–Smirnov test).

Such significant difference can be explained by the dif-

ference in hierarchical structures of each real-world

network.

7.4 Time complexity

In this subsection, we study the time complexity of the

proposed evolutionary models. Firstly, it should be con-

sidered that for the complete hierarchical networks that

were studied in Sects. 4, 5, 6 the properties of each network

can be calculated in closed form. For instance, the expected

global strength or closeness centrality of an individual i in a

PBEM-based evolved network can be directly calculated

by Eqs. 29 and 43. Such closed form expressions can be

efficiently computed for any network with any size. For the

general case of incomplete networks, however, the equi-

librium of each model should be computed by evolving the

dynamical model, introduced in (10), based on the under-

lying rules of either Eq. (11), or Eq. (11).

To perform a study reflecting the running times of the

proposed models, we ran a variety of simulations. All

simulations were run on an iOS with a 2.9 GHz Intel Core

i7 processor and 8GB RAM, with MATLAB R2014b. The

time steps used for running the discretized version of (10)

were chosen to Dt ¼ 0:1. The dynamical model was con-

sidered to be at equilibrium when the error condition eðtÞ ¼
jjwjj2\0:01 was satisfied.
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Fig. 4 Estimation of the strength CCDF in real-world networks by

DBEM in a and PBEM in b–d. While the prestige does not play an

important role in the social network of monkeys (a), the co-

observation of Kangaroos (b), the mocking battle among Wolves

(c) and the traffic between top 200 US airports (d) is highly influenced
by the prestige of each member in the network
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In practice, it turns out that both DBEM and PBEM

models have very close convergence rates. Therefore, we

study the amount of time required for the PBEM model on

a set of randomly generated small-world and scale-free

networks. The size of networks vary from 20 nodes to

10,000 nodes, and every network has an average degree of

4. For each network size, we generate 50 networks, where

the scale-free networks follow the preferential attachment

model provided in Barabási and Albert (1999), and the

small-world networks follow the algorithm given in Watts

and Strogatz (1998) with rewiring probability 0.1. The

results are illustrated in Fig. 6.

According to the results provided in Fig. 6, the time

complexity of PBEM model for a small-world network can

be represented as TðnÞ ¼ Oðn2Þ. Although, the running

time of this model for very large networks (e.g., 1,000,000

nodes) can be relatively high, in contrast to the stochastic

models, this model requires just one run of the simulation

to get to the final equilibrium and computations of all

characteristics of the network. Also, the use of parallel

processing can be beneficial in decreasing the running time

for very large networks.

7.5 Network assortativity

The assortativity property of networks measures the pref-

erence of network nodes to attach to other nodes that are

similar in terms of degree or strength where the latter is

applicable for weighted networks Newman (2002), Leung

and Chau (2007), Xie et al. (2007). As the models pro-

posed in this work generate weighted networks, we use the

average nearest neighbor strength measure for this pur-

pose. Let WnnðviÞ be the average strength of nearest

neighbors of ith node as

WnnðviÞ ¼
1

WðviÞ
Xn
1

wijWðvjÞ:

This value can be averaged over classes of nodes with

strengthW and be represented asWnnðWÞ that can provide a
probe of correlation between strength of neighboring

nodes. IfWnnðWÞ is an increasing function ofW, then nodes

with similar strengths tend to establish ties with high

intensity and otherwise nodes with dissimilar strengths tend

to establish strong ties.

Subfigure 7a–d illustrates the average nearest neighbor

strength for four different networks all with 1000 nodes and

average degree 4. Subfigure 7a, b corresponds to two net-

works evolved via DBEMmodel over hierarchical networks

with small-world and scale-free structures, respectively. As

can be seen, in the small-world subfigure, DBEM shows an

assortative behavior in which the nodes with high intensity

have a higher average strength of nearest neighbor com-

pared to the nodes with lower strength. In the scale-free

network, Wnn is a decreasing function for low degree nodes

and an increasing function for high degree nodes. The

assortativity of networks evolved based on PBEM model

are shown in Subfig. 7a, b; the PBEM model shows assor-

tative behavior (i.e., increasing Wnn) in the small-world

network and shows disassortative behavior (i.e., decreasing

Wnn) in the scale-free network.
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size of network
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ru
nn

in
g 

tim
e 

[s
ec

on
ds

]

10-2

100

102

104

106

small-world network
scale free network

Fig. 6 Time complexity of the

PBEM model for networks of

size 20 to 10,000 nodes in
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simulation of a network with

1000 nodes converges to

equilibrium in 3.4 min for a

small-world network of average

degree 4 and in 7.6 min for a

scale-free network with average

degree of 4
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As can be seen in Subfig. 7a–d, the assortativity of the

networks evolved based on DBEM and PBEM models

highly depends on the underlying structure of these

networks.

8 Discussion

Distinguishing the role of dominance and prestige in evo-

lution of social networks is a difficult task. To illustrate,

consider the perspective of van Vugt and Tybur (2015)

who believe that dominance is very common among non-

human primates where members of the social group

achieve priority through threat and intimidation. In con-

trast, they believe prestige is more specific to humans and

is granted to individuals because they help other individ-

uals achieve their goals. In a different context, Ridley

(1994, Chapter 5), refers to the behavior of hens in Lek and

explains that ‘‘it hardly matters whether the male chosen is

the best male; what counts is that he is the most fashion-

able.’’ In other words, Ridely sees the high status (i.e.,

being fashionable) of some birds a more important criterion

than their dominance in reaching more popularity.

The proposed two analytical models in this paper allow

us to mathematically distinguish the behaviors of

dominance-based and prestige-based evolving networks.

Although the models are simple, they illustrate how a

minor change in evolution of the network can result in

fundamental differences in the network’s behavior. Theo-

rems 1 and 2 illustrate a major difference in distribution of

individuals’ interaction intensities. Additionally, Theo-

rems 3 and 4 analyze the Geodesic distance of individuals

and reveal how in prestige-based evolving networks a

central hub is formed where all shortest paths in the net-

work pass this hub. In contrast such hubs are not seen in

dominance-based evolving networks. By considering the

beneficial role of hubs in complex networks Newman

(2008), Guimera et al. (2005), Heuvel and Sporns

(2013), Theorems 3 and 4 can shed some light on evolu-

tionary foundations in adoption of prestige-based strategies

in some species.

Finally, the real-world validations not only verify the

correct estimation of DBEM and PBEM models, but also

introduce a new method to distinguish between dominance-

based and prestige-based evolving networks. As shown in

Sect. 7.3, the co-observation of monkeys in a group highly

depends on the dominance of each individual, while

interactions among a group of kangaroos and a group of

wolves and traffic between US airports follows the pres-

tige-based dynamic rules.
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Fig. 7 Assortativity in

networks evolved based on

DBEM and PBEM models. All

subfigures are plotted in log–log

scale for networks of 1000

nodes and average degree 4.

While both models generate

assortative behavior in an small-

world network, the PBEM

model generates disassortative

behavior in scale-free network,

and DBEM model generates a

mixed behavior (i.e., first

decreasing and then increasing

Wnn) in the scale-free network

a Small-world network

(DBEM), b scale-free network

(DBEM), c Small-world

network (PBEM), d scale-free

network (PBEM)

58 Page 14 of 16 Soc. Netw. Anal. Min. (2016) 6:58

123



9 Conclusion

In this paper, we proposed two dynamical models for

hierarchical networks which evolve based on dominance or

prestige of the individuals. Although the dynamical system

for each of these models was designed based on simple

hierarchical rules, for the special case of complete graphs,

the derived stationary points had been shown to recover the

exponential (Theorem 1) and power-law strength distri-

butions with exponent -3 (Theorem 2), respectively. Net-

works with such strength distributions, specifically the

latter distribution, were shown to be efficient in sharing of

resources and robust to random failures. Therefore, emer-

gence of such strength distributions despite the simple

hierarchical structure could explain how hierarchical social

structures have survived among social beings.

As another contribution, for the special case of complete

graphs, we defined and derived the Geodesic distance and

closeness centrality metric in closed form. This was used to

assess the importance of nodes in hierarchical networks.

Our distance measure reflected that in dominance-based

networks the shortest path between every two member was

their direct link (Theorem 3), while in prestige-based

hierarchies, every shortest path was passing through the

member with highest ‘‘prestige’’ (Theorem 4). Finally, for

the general case of any hierarchical network, we validated

the estimations generated by the models through data

gathered from real-world networks. This validation not

only verified the predictions of DBEM and PBEM, but also

introduced a way to distinguish between networks that

evolve based on either dominance or prestige. Our studies

on the proposed models, showed that they have sub-

quadratic time complexity with respect to the size of net-

work and were capable of generating either assortative or

disassortative network behavior depending on the under-

lying hierarchy of the network.
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