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Abstract Reinforcement learning applications are ham-

pered by the tabula rasa approach taken by existing tech-

niques. Transfer for reinforcement learning tackles this

problem by enabling the reuse of previously learned

behaviours. To be fully autonomous a transfer agent has to:

(1) automatically choose a relevant source task(s) for a

given target, (2) learn about the relation between the tasks,

and (3) effectively and efficiently transfer between tasks.

Currently, most transfer frameworks require substantial

human intervention in at least one of the previous three

steps. This discussion paper aims at: (1) positioning various

knowledge re-use algorithms as forms of transfer, and (2)

arguing the validity and possibility of autonomous transfer

by detailing potential solutions to the above three steps.

Keywords Transfer learning � Reinforcement learning �
Markov decision processes � Inter-task mappings

1 Introduction

In reinforcement learning (RL), an agent lives in an envi-

ronment which it can perceive through sensory signals and

affect by taking actions. To asses the behaviour of a certain

action performed by an agent, a reward signal is used. This

reward will punish the agent in case it has performed a

‘‘bad’’ action, and reward it for a ‘‘good’’ one. The agent

then learns to maximise its total positive signal.

RL is typically formalised using Markov Decision Pro-

cesses (MDPs). An MDP is a tuple of a state space, S; an

action space, A; a reward function, R; a transition proba-

bility function, T s;a; and a discount factor c. S represents

all the possible states of an environment, while A is the set

of all possible actions the agent is allowed to execute. The

reward function, R : S � A� S ! R; quantifies the use-

fulness of the taken action on transitioning to a new state s0:
This transition is dictated by the transition probability

function T s;a: More specifically, given a current state s 2 S
and applying an action a 2 A; the transition probability,

T s;a determines the successor state s0 � T s;a: The goal is

then to maximise the total discounted rewards attained

from the environment.

RL has become a popular framework for autonomous

behaviour generation from limited feedback [4], but RL

methods learn tabula rasa. In other words, agents when

faced with a new task, start learning from scratch without

assuming any prior knowledge. Due to such assumptions,

RL agents learn slowly in large or complex environments.

Knowledge reuse algorithms, including but not limited

to, reward shaping [10], apprenticeship learning [1], human

trainer feedback [8], learning from demonstration [3], and

inter-task transfer learning [2, 13] have been proposed to

remedy these computational problems. Such techniques try
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to improve learning in new tasks by incorporating addi-

tional knowledge from an external source. These vary

depending on the assumptions imposed on the source and

target tasks. In human trainer feedback, for instance, the

human, assumed to be the expert, provides additional

knowledge for the agent in terms of either action selection

suggestions, or online feedback. These techniques, as dis-

cussed in Sect. 2, can be considered under suitable assump-

tions as special cases of the more general transfer framework.

Namely, each of the above methods can be regarded as inter-

task mapping transfers with varying degrees of autonomy.

Inter-task mapping transfer can be regarded as the most

general transfer scenario since all MDPs’ constituents are

allowed to vary, mamely:

1. Domain differences: The state and action spaces of the

two tasks not only can vary in size but also in

dimensionality, and

2. Task differences: The transition probabilities, and the

reward functions are also allowed to vary.

Different intertask mapping transfer techniques with

varying degrees of autonomy have been proposed.

Although successful, non of these are fully autonomous.

Human intervention is needed to guide the target agent in

either: (1) selecting the most relevant source task, (2)

learning about the relation between the source and the

target, and/or (3) transferring the source knowledge

effectively to the target task.

Therefore, if transfer is to be fully automated an agent

should be capable of performing each of the three previous

steps autonomously [12]. More specifically, given a target

task and a set of source tasks, a transfer agent should be

able to automatically: (1) choose the most relevant source

task, (2) infer about the relation between the two tasks, and

(3) effectively transfer the source knowledge.

This paper, firstly, introduces a framework that allows

the positioning of knowledge reuse algorithms under the

context of transfer learning and secondly, discusses the

possibility of creating fully autonomous transfer agents.

2 Reinforcement and Transfer Framework

This section introduces a framework that can be used to

describe various knowledge reuse algorithms. Reinforce-

ment learners are framed as mappings from knowledge to

hypothesis sets. This constitutes the basis for the transfer

framework that is then detailed.

2.1 Reinforcement Learners as Mappings

Reinforcement learning agents can be thought of as black-

box mappings from a knowledge set, K; to hypotheses set

H: The knowledge set, K; can be either given beforehand

(e.g., offline reinforcement learning) or acquired through

environmental interactions (e.g., online reinforcement

learning). An agent/learner, L; maps the available knowl-

edge to the hypothesis space (i.e., L K! H). The defi-

nition of the hypothesis space, H; is mostly application

oriented and depends on the reinforcement learning algo-

rithm used1. For instance, in fitted-Q iteration (FQI), such a

space is defined as a linear combination of basis functions

used to approximate the Q-function. Therefore, the

hypothesis space, is spanned by B ¼ f/ðiÞgki¼; where

/ðiÞ : S �A ! R: In words, /(i) is a function mapping

states and actions to real numbers2. A hypothesis

hð�; �Þ 2 H; is then a linear combination of the basis func-

tions constituting B: Namely hð�; �Þ ¼
Pk

i¼1 cðiÞ/ðiÞð�; �Þ:
Given m samples, the goal of an FQI learner is to map the

available knowledge K ¼
n
ðS � A � S �RÞm;B

o
to the

hypothesis space under certain criteria3.

Various modifications of these definitions are definitely

possible. For example, in some cases the basis functions

can be defined over successor states too, or the hypothesis

might be a nonlinear (or even nonparametric) approxima-

tion of states and actions. These can be included into the

framework and thus RL agents can be seen as nothing but

knowledge to hypothesis mappings.

2.2 Transfer and Knowledge Reuse Learners

Opposed to traditional reinforcement learning, in transfer,

additional knowledge is available to the agent to facilitate

learning. On a high level, two types of knowledge can be

differentiated. The first is the so-called source knowledge,

while the second is knowledge in the target. For instance,

to learn the relation between source and target tasks, some

level of knowledge about the target has to be available

(e.g., target transitions might be required as explained in

Sect. 4.1).

The source knowledge potentially resides in different

realms to that of the target. This is, for example, the case in

human trainer feedback, where the external knowledge is

acquired from humans which are considered to be the

experts. Such knowledge has to be correctly mapped before

1 In policy iteration algorithms, for example, the policy space can be

defined as the space of all possible policies that can be learnt. In other

words, this space can be defined by a combination of basis functions

and parameterisations spanning different policies.
2 Such a setting is typical in continuous reinforcement learning. The

reasons relate to: (1) Q-function, and (2) state and action space

representations.
3 A typical criterion used is to maximise the expected value of the

total discounted pay-off signal.
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being used in a target. Such form of mappings are typically

referred to as inter-task mappings, Xtransfer:

Figure 1 shows the overall transfer framework that

applies to various knowledge reuse algorithms. Firstly,

source knowledge is available from other agents (in dif-

ferent source tasks) or from humans. If this knowledge is

available in different formats it needs to be mapped using

Xsource to an acceptable form before being used by the

learning framework. For instance, if human advice was

adopted, human knowledge has to be converted to action

advices for example. Ksource is then passed through an in-

tertask mapping4 , Xtransfer Ksource � Ktarget ! Ktarget; with

the goal of producing a part of the target knowledge Ktarget:

Additional target knowledge plus that of transfer, together

constitute Ktarget: This is then used by

Ltarget Ktarget ! Htarget to generate the optimal target

mapping (i.e., ptarget).

Using this framework, knowledge reuse algorithms can

be framed in the context of transfer with varying

assumptions. In learning from demonstration, for

instance, the source knowledge is available within the

same target domain (i.e., state and action spaces) in the

form of trajectories, near-optimal policies, and/or

parameters, etc. For reward shaping, such a source

knowledge can either be attained from humans or learned

from other tasks to design a modification to the target’s

reward function.

Having introduced the transfer framework, next auton-

omous inter-task mapping transfer is pursued. The deriva-

tions and discussions presented next correspond to the most

general case.

3 Problem Formulation

The problem of creating autonomous transfer agents for RL

can be split into three sub-questions. The first is how to

relate and infer about two given tasks (i.e., a source and a

target). Having this relation, the second question is how to

exploit this learnt relation in order to successfully and

effectively conduct transfer. The final challenge to be

tackled is how to construct a framework in which an agent

is automatically capable of choosing (a) relevant source

task(s) to a given target. According to [12] automated

transfer is thus achieved.

Rather than focusing on discrete reinforcement learning,

the aim in this paper is to tackle a more generic RL

framework. Namely, continuous states discrete actions RL

is in focus. This setting covers a broader scope of appli-

cations compared to discrete RL.

To tackle each of the above subproblems, we assume two

MDPs, MS ¼ hSS;AS;RS; T S; cSi; and MT ¼ hST ;AT ;

RT ; T T ; cTi: Furthermore, the following is also available:

1. Source knowledge: In the source task, a set of

m random samples, and k basis functions, Bsource; are

available. Namely:

Ksource ¼
n
ðSS �AS � SS �RSÞm;Bsource

o

2. Target knowledge: In the target, a set of n \ \
m random samples, and l basis function, Btarget are

available:

Ktarget ¼
n
ðST �AT � ST �RTÞn;Btarget

o

Please note that not only the transition probabilities and

reward functions may vary between the tasks, but also the

dimensionality and the size of each of the state and action

spaces. Using the above notation the three subproblems

leading to autonomous transfer are:

1. Inter-task mapping: Given Ksource and Ktarget; learn

Xtransfer Ksource ! Ktarget: The reasons behind adding

successor states to the definition of the intertask

mapping, is that if an algorithm is to be able to

analyse and reason about the relation between two

tasks, it has to be able to have some information about

the relation between the transition models of the two

tasks. Learning such a mapping is a challenge as it is

almost impossible for a human to relate source and

target triplets (i.e., state-action-successor state) manu-

ally, especially if the tasks had different state and/or

action space dimensionality.

2. Effective transfer: Given an inter-task mapping

Xtransfer; source knowledge Ksource; and additional

target knowledge learn an optimal policy pH

target:

4 Xtransfer can either be: (1) hand-coded (see [13]), or (2) learned

through source and target samples [2].

Fig. 1 The overall transfer learning framework. The source knowl-

edge, Ksource, is passed through the intertask mapping Xtarget to

produce a part of the target knowledge Ktarget. This target knowledge

is then passed to the target learner Ltarget to produce an optimal target

policy ptarget
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3. Source task choice: For automatic source task selec-

tion, a measure quantifying the similarity as well as

transfer performance between different tasks is

required. Precisely, given the source and target task

knowledge, Ksource and Ktarget; respectively, learn a

measure d
�
Ksource;Ktarget

�
:

4 Possible Solutions

In this section, details of possible solutions for each of the

above questions are presented. Firstly, details on auto-

matically learning an intertask mapping (i.e., the relation

between the source and target tasks) are described. Sec-

ondly, two potential solutions for how to exploit this

knowledge to effectively transfer is explained. Thirdly, a

potential future research direction to solve the last chal-

lenge is introduced.

4.1 Automated Intertask Mapping Transfer

The goal of the inter-task mapping Xtransfer is to relate

source and target knowledge Ksource and Ktarget; respec-

tively. Depending on the available knowledge, an inter-task

mapping relates source and target state-action spaces,

reward functions and/or transition probabilities.

Learning an intertask mapping between two tasks is one of

the challenging problems for the general transfer learning

case. Different inter-task mapping based transfer algorithms

with varying degrees of autonomy have been proposed [13].

Most either assume that the mapping is given by a designer, or

require an exponential complexity to find a relevant one.

In [2] a fully automated technique to learn the intertask

mapping is proposed. This method does not impose any

restrictive assumptions on the variation between the source and

target task MDPs. The state, and action spaces, transition prob-

abilities, reward functions, and the discount factors can vary. The

problem definition targeted in [2] can be stated as follows:

S1 × U1 × S1 S2 × U2 × S2

Source Task
Target Task

*
*
* **

*
*

* *
**

*
*

Sparse Coding Phase One

Sparse Coding Phase Two Sparse 
Projection

P
h

as
e 

O
n

e

P
h

as
e 

Tw
o

Phase Three

Sparse Gaussian Processes

Similarity Measure 

Fig. 2 A high level schematic

of the overall approach in [2]. It

consists of three major phases.

In the first, high level features

are detected in the source task

MDP. In the second, samples

from the target task are

projected to that space. Finally,

in the last phase (i.e., Phase

Three), sparse Gaussian

processes are used in order to

learn the intertask mapping
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The overall procedure is shown in Fig. 2. The easiest

way to approach the problem of learning the intertask

mapping is using supervised learning. However, accord-

ing to the previous definitions, Xtarget maps state-action-

successor state triplets in the source to these in the target.

Therefore, any supervised learning algorithm will require

a data set that has source transitions as inputs and target

transitions as outputs. Unfortunately, it is nearly impos-

sible for a human to manually determine which transi-

tions in the source correspond to which in the target.

Thus, this problem has also to be approached automati-

cally. The simplest way to determine correspondence is

to use a distance measure and search for the transition in

the target that is closest to that in the source. However,

these transitions might potentially belong to different

dimensions. Consequently, before seeking any corre-

spondence, the dimensions of these transitions should be

unified.

To unify the dimensions, sparse coding (SC) [9] is used.

SC is an unsupervised feature extraction algorithm that

tries to discover succinct representations unanticipated

in the original set. Given two data sets DS ¼
fhsðiÞS ; a

ðiÞ
S ; s

ðiÞ0
S ig

m
i¼1 and DT ¼ fhsðjÞT ; u

ðjÞ
T ; s

ðjÞ0
T ig

n
j¼1; where

m and n represent the number of transitions in the source

and the target5, the first step makes use of sparse coding

to unify the dimensions of the source to the target. This

is, denoted by ‘‘Sparse Coding Phase One’’ in Fig. 2, is

followed. Namely, the transitions of the source are

sparse coded to attain the same number of dimensions as

these of the target. Mainly, the idea is to discover new

features in the state-action spaces not anticipated by

original variables. However, the number of these new

dimensions is limited to be the same as these of the

target task.

Essentially, at this stage any transfer learning algorithm

can be adopted. However, this new dimensional space

might not be informative enough to conduct transfer. To

ensure that transfer is performed in a highly informative

space, another step of sparse coding is performed to dis-

cover ‘‘richer’’ features in the source (‘‘Sparse Coding

Phase Two’’ in Fig. 2). Here the number of new

dimensions can be set to a high value. Interestingly, due to

the sparsity condition ‘‘unneeded’’ bases will end up

attaining close to zero activations and therefore will not

contribute in the transfer procedure.

This new space represents informative features in the

source. However, it does not relate yet to the target state

and action spaces. Therefore, to use the similarity measure

to determine the data set needed to approximate the in-

tertask mapping, target triplets need to be projected to this

new space. Projection means finding activations in the new

bases that represent the original target transitions. This is

performed using sparse projection as shown by ‘‘Phase

Two’’ of Fig. 2.

Now, the similarity measure to correspond the source

and target triplets can be used. A minimum distance

search between the source and the projected target trip-

lets is conducted to attain the data set needed by the

regressor to learn the intertask mapping. Any supervised

learning algorithm can be used. However, the intertask

mapping might be a highly complex relation and there-

fore, the nonparametric sparse Gaussian processes

framework [11] (denoted by Phase Three in Fig. 2) is

adopted.

This intertask mapping can now be used to transfer

samples from the source to the target task. More specifi-

cally, starting from different initial states and using the

source task’s optimal policy pH

1 ; samples in form of state-

action-successor states can be attained. These can be pas-

sed through the inter-task mapping to have an initial batch

of samples in the target. Starting from these batches, a

sample-based RL algorithm can be used to attain the tar-

get’s optimal behavior.

4.2 Effective and Efficient Transfer

Having learned such an intertask mapping, the next

stage is to make use of this mapping in order to aid the

target agent when learning in a new task. Various

methods and techniques have been proposed to deal

with this problem as described in [12]. Indeed the

algorithm will depend on the type of knowledge to be

used. Transferring low level samples however, can also

be considered most general as no abstraction assump-

tions are required. The problem definition can be stated

as follows:

5 Typically, n2 \\n1 where only few transitions are available from

the target task.
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It is worth noting, that for optimal behaviour additional

target knowledge is required. The transferred knowledge

can aid the target agent by providing a good starting point.

Further note, that no restrictive assumptions on the target

basis Btarget are additionally imposed. In [2], two new and

efficient algorithms for transferring samples were pro-

posed. The two algorithms are based on sample efficient

RL algorithms, namely Fitted-Q Iteration (FQI) and Least

Squares Policy Iteration (LSPI).

Given the above, it is now possible to perform two steps

autonomously. The first, is learning intertask mapping

between source and target RL tasks without imposing any

restrictive assumptions, while in the second knowledge is

efficiently exploited to improve learning in the target task.

Aiming at a fully automated framework, one more

question needs to be answered.

4.3 Choosing the Relevant Source Task

The question at this stage is given a target task and a bag of

source tasks, how should an agent decide on what task to use?

Automatically choosing the relevant source task might

be one of the toughest challenges in transfer learning. For

an agent to choose a source task, a notion of distance

between MDPs should be introduced.

The problem definition can be stated as follows:

To the best of our knowledge, there has been little

progress on this goal in the literature thus far. Most rele-

vant are works that use bisimulation metrics [5–7]. How-

ever, non of the aforementioned techniques can operate in:

(1) continuous state spaces, and/or (2) between MDPs with

different state and/or action spaces.

To remedy these problems, an extension of the algo-

rithm proposed in [2] can be developed. Two additional

steps are required. These are detailed next.

4.3.1 Density Estimation

After having source and target samples projected to the

common space (i.e., Phase One and Phase Two in Fig. 2), a

sparse density estimator can be used on the projected

samples. The result of this estimation will be two proba-

bility density functions describing each of the source and

target transitions in a unified space. This high level

encoding can now be used to determine a distance between

two MDPs even if the original state and/or action spaces

differed.

4.3.2 Measure Between Densities

The problem of finding a distance between MDPs is now

reduced to finding the distance between two probability

density functions. Any symmetric measure between den-

sities can now be used.

5 Overall Autonomous Framework

The overall framework is better explained using the fol-

lowing example, shown in Fig. 3. The target task is the so-

called cart-pole problem. In this problem, there is a pole

attached to a cart that can translate on a flat surface. The

goal of the agent is to execute the correct linear actions so

to control the pole in an upright position.

Furthermore, the target agent has access to a collection

of source tasks. In Fig. 3, four different tasks are shown.

The first is the inverted pendulum, where the goal is to

choose the correct rotational actions such that the pole is

controlled in an upright position. The difficulty in the task

is that the actions are can not upswing the pole in one shot,

rather it has to oscillate around its equilibrium position

gaining enough momentum to swing upwards. The second

task, is the mountain car. Starting at the bottom of the

valley, the goal of the agent is to drive the car up the hill.

However, the thrust of the engine is not enough for the car

to reach the top of the hill in one shot. It rather has to

oscillate to gain enough momentum to achieve the goal.

The third task is the simple mass system. In this task the

goal is to position the mass at a certain pre-specified value.

Finally, in the fourth (i.e., the double mass system) the goal

12 Künstl Intell (2014) 28:7–14
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is to control the first mass at a certain position while only

being able to apply actions that affect the second mass.

To automatically transfer between one of these source

tasks and the cart pole, the previous three steps need to be

successfully executed. Firstly, the transfer agent has to

decide on the source task to transfer from. This can be done

using the approach described in Sect. 4.3

The agent has then to reason about the relation between

the source and target task in order to successfully conduct

transfer. This can be achieved using what is explained in

Sect. 4.1 It is worth noting, that this transfer will not

provide the optimal behavior in the target task, the agent

has still to improve using normal reinforcement tech-

niques to attain the optimal behavior. However, the hope

is that the transferred knowledge can provide a ‘‘good’’

starting prior that can be used to improve the learning

performance.

6 Conclusion and Future Work

In this discussion paper a unifying framework for various

knowledge reuse algorithms has been introduced. Further-

more, the possibility of autonomous transfer was detailed.

For autonomous transfer a set of three problems need to be

solved. Learning an inter-task mapping and effective

transfer can be achieved as discussed in the paper. To

choose a relevant source task, however, a similarity

Fig. 3 Transfer Learning

Example. The upper panel

shows a bag of different source

tasks, while the lowers shows a

specific target task. To

autonomously transfer, the

agent has to: (1) choose a

relevant source task(s), (2)

reason about the relations

between the tasks, and (3)

effectively use the source task

knowledge

Künstl Intell (2014) 28:7–14 13
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measure needs to be introduced. This can be achieved via

density estimators in the unified knowledge space.

In the future work, we plan on studying such a measure

in more details to enable full autonomy.
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