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Abstract. A complex and challenging bilateral negotiation environment
for rational autonomous agents is where agents negotiate multi-issue con-
tracts in unknown application domains against unknown opponents un-
der real-time constraints. In this paper we present a novel negotiation
strategy called EMAR for this kind of environment which is based on a
combination of Empirical Mode Decomposition (EMD) and Autoregres-
sive Moving Average (ARMA). EMAR enables a negotiating agent to
adjust its target utility and concession rate adaptively in real-time ac-
cording to the behavior of its opponent. The experimental results show
that this new strategy outperforms the best agents from the latest Au-
tomated Negotiation Agents (ANAC) Competition in a wide range of
application domains.

1 Introduction

Automated negotiation has a broad spectrum of potential applications in do-
mains and fields such as task and service allocation, web and grid, electronic
commerce and electronic markets, online information markets, and automated
procurement. This potential has led to rapidly increasing research efforts on au-
tomated negotiation in recent years. The work described in this paper focuses
on automated bilateral multi-issue negotiation (e.g., [16]). A key feature of this
negotiation form is that two agents negotiate with the intention to agree on a
profitable contract for a product or service, where the contract consists of mul-
tiple issues which are of conflictive importance for the negotiators. Examples
of such issues are price and quality. More specifically, the paper concentrates
on realistic scenarios for bilateral multi-issue negotiations which are particularly
complex for the following four reasons. First, the negotiating agents do not know
each other (i.e., they have not encountered before) and thus have no informa-
tion about the preferences or strategies of their respective opponents. Second,
the negotiators have no prior knowledge about the negotiation domain (e.g.,
about resource limitations) and thus have to cope with uncertainty about the
domain. Third, we concentrate on negotiation with deadline and discount, that
is, negotiation happens are under real-time constraints (the agents thus should
take into consideration at each time point the remaining negotiation time) and
the final utility decreases over time according to some discounting factor. And



fourth, computational efficiency is important because agents may have very lim-
ited computing resources. Negotiation scenarios showing these characteristics are
particularly challenging but common in reality.

This paper introduces a novel negotiation strategy called EMAR for those
scenarios. EMAR integrates two key aspects of successful negotiation: efficient
opponent modeling and adaptive concession making. Opponent modeling real-
ized by EMAR aims at predicting the utilities of the opponent’s future counter-
offers through two standard mathematical techniques, namely, Empirical Mode
Decomposition (EMD, e.g. [7]) and Autoregressive Moving Average (ARMA,
e.g. [2]).1 Adaptive concession making is achieved by dynamically adapting the
concession rate (i.e., the degree at which an agent is willing to make concessions
in its offers) on the basis of the utilities of future counter-offers which can be
expected according to the acquired opponent model.

The remainder of this paper is structured as follows. Section 2 overviews im-
portant related work. Section 3 describes the standard negotiation environment
used in the our research. Section 4 presents EMAR in detail. Section 5 offers
a careful experimental analysis of EMAR. Section 6 identifies some important
research lines induced by the described work and concludes the paper.

2 Related Work

An early influential work in the field of automated negotiation is [8]. This work
raised awareness of issues related to concession making and tactical negotiation
which are also relevant to the approach described here. Based on this early work
and subsequent works it triggered, it had been realized that successful negoti-
ation needs to be based in one way or another on opponent modeling. Various
approaches today are available that aim at generating and utilizing opponent
models in order to optimize an agent’s negotiation behavior (see [11] for a useful
overview). Available approaches can be classified into two groups. First, ap-
proaches that aim at learning the opponent’s preference profile, including e.g.
the opponent’s reservation value (i.e., the minimum utility an agent wants to
obtain) and issue/value ordering. An example of such an approach is [17], where
Lin et al. use Bayesian learning to approximate the opponent preference profile;
another example is [6] where kernel density estimation is used as an approxi-
mation technique. A critical drawback of preference modeling is that it tends to
quickly become computationally intractable for domains having a large outcome
space (especially if real-time constraints apply). Second, approaches that aim
at learning the opponent’s negotiation strategy. For instance, Saha et al. [20]
make use of Chebychev polynomials to estimate the chance that the negotia-
tion partner accepts an offer in repeated single-issue negotiations. Brzostowski
et al. [3] investigate the prediction of future counter-offers online on the basis
of the previous negotiation history by using differentials, thereby assuming that
the opponent strategy is based on a mix of time- and behavior-dependent one.

1 As the underlining shall indicate, the acronym EMAR is composed of “EM” and
“AR”.



Hou [13] employs non-linear regression to predict the opponent’s tactic (though
in single-issue negotiation), thereby supposing that the opponent uses a pure
tactic as introduced in [8] and that the types of tactics are fixed. In [4] artificial
neural networks (ANNs) are applied and explored in offline competition against
human negotiators. Another interesting work in this area is [21]. There Williams
et al. apply Gaussian processes to predict the future opponent concession be-
fore the deadline of negotiation is reached and to set the agent’s “optimum”
concession rate accordingly. This approach performed better than the best ne-
gotiating agents of ANAC 2010 and made the 3rd place in ANAC 2011 (ANAC is
the International Automated Negotiation Agents Competition). (Our approach,
EMAR, is experimentally evaluated against this and other agents, details are
given in Section 5.) A disadvantage of available approaches exploiting learning
of an opponent’s negotiation strategy are the strong and often unrealistic as-
sumptions on which they are based (as described above). In contrast, EMAR –
which belongs to the “negotiation strategy learning” class – is designed to avoid
such assumptions; in particular, it does not require any prior knowledge about
the opponents and the negotiation domain.

3 Negotiation Environment

We adopt a basic bilateral multi-issue negotiation setting which is widely used
in the agents field (e.g., [6, 8, 9]) and the negotiation protocol we use is based on
a variant of the alternating offers protocol proposed in [18].2 Let I = {a, b} be
a pair of negotiating agents, i represent a specific agent (i ∈ I), J be the set of
issues under negotiation, and j be a particular issue (j ∈ {1, ..., n} where n is the
number of issues). The goal of a and b is to establish a contract for a product or
service. Thereby a contract consists of a package of issues such as price, quality
and quantity. Each agent has a lowest expectation for the outcome of a negotia-
tion; this expectation is called reserved utility ures. w

i
j (j ∈ {1, . . . , n}) denotes

the weighting preference which agent i assigns to issue j, where the weights of an
agent are normalized (i.e.,

∑n
j=1(w

i
j) = 1 for each agent i). During negotiation

agents a and b act in conflictive roles which are specified by their preference
profiles. In order to reach an agreement they exchange offers O in each round to
express their demands. Thereby an offer is a vector of values, with one value for
each issue. The utility of an offer for agent i is obtained by the utility function
defined as:

U i(O) =
n∑

j=1

(wi
j · V i

j (Oj)) (1)

where wi
j and O are as defined above and V i

j is the evaluation function for i,
mapping every possible value of issue j (i.e., Oj) to a real number.

Following Rubinstein’s alternating bargaining model [19], each agent makes,
in turn, an offer in form of a contract proposal. Negotiation is time-limited

2 The description of the environment in this section is taken from our previous publi-
cation on automated negotiation, see [5].



instead of being restricted by a fixed number of exchanged offers; specifically,
negotiators have a shared hard deadline by when they must have completed or
withdraw the negotiation. The negotiation deadline of agents is denoted by tmax.
In this form of real-time constraints, the number of remaining rounds are not
known and the outcome of a negotiation depends crucially on the time sensitiv-
ity of the agents’ negotiation strategies. This holds, in particular, for discounting
domains, that is, domains in which the utility is discounted with time. As usual
for discounting domains, we define a so-called discounting factor δ (δ ∈ [0, 1])
and use this factor to calculate the discounted utility as follows:

D(U, t) = U · δt (2)

where U is the (original) utility and t is the standardized time. As an effect, the
longer it takes for agents to come to an agreement the lower is the utility they
can achieve.

After receiving an offer from the opponent, Oopp, an agent decides on ac-
ceptance and rejection according to its interpretation I(t, Oopp) of the current
negotiation situation. For instance, this decision can be made in dependence on
a certain threshold Thresi: agent i accepts if U i(Oopp) ≥ Thresi, and rejects
otherwise. As another example, the decision can be based on utility differences.
Negotiation continues until one of the negotiating agents accepts or withdraws
due to timeout.3

4 EMAR

EMAR includes two core stages – opponent modeling and adaptive concession
making – as described in detail in 4.1 and 4.2, respectively. A third important
stage of our strategy, its response mechanism to counter-offers, is described in
4.3. An overview of EMAR is given in Algorithm 1 (the individual steps are
explained in the text).

4.1 Opponent modeling

Opponent modeling realized by EMAR aims at predicting the future behavior
of the negotiating opponents. It is mainly based on the combination of Empiri-
cal Mode Decomposition (EMD, [7, 10, 14]) and Autoregressive Moving Average
(ARMA, [2]), which applies the “divide-and-conquer” principle to construct a
reasonable forecasting methodology. More specifically, first EMD is employed
to decompose the time series given by the utilities of past counter-offers into a
finite number of components and then ARMA is applied to predict future values
of these sub-components. EMD, which is based on the Hilbert-Huang transform
(HHT), is a decomposition technique which relies on time-local characteristics

3 If the agents know each other’s utility functions, they can compute the Pareto-
optimal contract [18]. However, in most applications a negotiator will not make this
information available to its opponent.



Algorithm 1 The EMAR approach. Let tc be the current time, δ the time dis-
counting factor, and tmax the deadline of negotiation. Oopp is the latest offer of the
opponent and Oown is a new offer to be proposed by EMAR. χ is the time series com-
prised of the maximum utilities over intervals. ξ is the lead time for prediction and ω
is the estimated central tendency of χ. E is predicted received utility series. ures is the
reservation utility, specifying the lowest expectation to negotiation benefit, and emin

is the conservative estimation of opponent concession. R is the dynamic conservative
expectation function. u′ is the expected utility at time tc.

1: Require: R, δ, ξ, tmax

2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: recordBids(tc, Oopp);
5: if TimeToUpdate(tc) then
6: χ ⇐ preprocessData(tc)
7: (ω,E) ⇐ getForecast(χ, ξ);
8: (ures, emin) ⇐ updateParas(ω, χ, tc);
9: R ⇐ (ures, emin);
10: end if
11: u′ = getExpUtility(tc, E, δ,R);
12: if isAcceptable(u′, Oopp, tc, δ) then
13: accept(Oopp);
14: else
15: Oown ⇐ constructOffer(u’) ;
16: proposeNewBid(Oown);
17: end if
18: end while

of data and can deal with nonlinear and non-stationary time series in a adaptive
manner. EMD has been widely applied as a powerful data analysis tool in a
broad scope of fields such as finance, image processing, ocean engineering and
solar studies.

A main advantage of EMD as the decomposition method is that it is very
suitable for analyzing complicated data and is fully data driven (thus requiring
no additional decomposition information) – this makes EMD adaptive and very
efficient. Compared to traditional Fourier and wavelet decompositions, EMD has
several distinct advantages [15, 22]. First of all, fluctuations within a time series
are automatically selected from the time series. Second, EMD can adaptively
decompose a time series into several independent components called Intrinsic
Mode Functions (IMFs). With the help of the IMFs a residue can be calculated
which easily captures the main trend of the time series. Lastly, unlike wavelet
decomposition, no filter base function (e.g. scaling and wavelet functions) need
to be determined beforehand – which is particularly helpful when there is no
prior knowledge about which filters work properly.

The IMFs satisfy the following conditions:

1. In the whole data set (time series), the number of extrema and the number
of zero crossings must either equal or differ at most by one.



2. At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

Any data series can be decomposed into IMFs according to the following sifting
procedure (let k ≥ 1, k indicates the iterative decomposition level):

1. Take signal rk−1 as input, with r0 representing the original signal χ(t).
(a) Identify all local extrema of the signal rk−1.
(b) Construct the upper envelop Upp(rk−1) and the lower envelop Low(rk−1)

by interpolating via cubic spline the maximum and minimum values,
respectively.

(c) Approximate the local average based upon the envelop mean asMean(rk−1)

= Upp(rk−1)+Low(rk−1)
2

(d) Compute the candidate implicit mode hkn = rk−1 −Mean(rk−1).
(e) If hkn is an IMF, then calculate rk as rk = rk−1−hkn. Otherwise replace

rk−1 with hkn and repeat sifting.
2. If rk has an implicit oscillation mode, set rk as input signal and repeat step

1.

This sifting process serves two purposes: to eliminate riding waves and to make
the wave profiles symmetric.

The decomposition procedure can be repeated on all subsequent components
rj , and the result is

r0 − c1 = r1, r1 − c2 = r2, . . . , rn−1 − cn = rn. (3)

This procedure terminates when (1) the latest residue rk becomes a monotonic
function (from which no more IMFs can be extracted) or (2) the IMF compo-
nent ck or the residue becomes less than the predetermined value of substantial
consequence. Overall, c1 contains the signal at a fine-grained time scale and
subsequent IMFs include information at increasingly longer time periods. Even-
tually, the data series χ(t) can be expressed by

χ(t) =
n∑

i=1

ci + rn (4)

where n is the total decomposition layer (i.e., the number of IMFs), ci is the i-th
IMF component and rn is the final residue (which represents the main trend of
the data series). With that, we are able to achieve a decomposition of the data
into n empirical modes and one residue. The IMFs contained in each frequency
band are independent and nearly orthogonal to each other (with all having zero
means) and they change with variation of the data series χ(t), whilst the residue
part captures the central tendency.

The process of opponent modeling corresponds to the lines 2 to 10 in Algo-
rithm 1. When receiving a new bid from the negotiation opponent at the time
tc, the agent records the time stamp tc and the utility U(Oopp) this bid offers to
it according to its utility function. The maximum utilities in consecutive equal
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Fig. 1: Illustrating the prediction power of our model. The original time series
χ, represented by the thick solid line, is received from negotiation with agent
Agent K2 in domain Camera. The prediction is depicted by the thin solid line,
and the two dash lines show the estimated upper and lower bounds of χ. The
vertical thick dash-dot line indicates the time point at which EMAR calculated
the prediction, and the circles right to this line are the utilities actually received
in the subsequent negotiation phase.

time intervals and the corresponding time stamps are used periodically as input
for predicting the opponent’s behavior (line 5 and 6). The reasons for periodical
updating are similar to those mentioned in [21]. First, this reduces the compu-
tation complexity of EMAR so that the response speed is improved. Assume
all observed counter-offers were taken as input, then it would be necessary deal
with perhaps many thousands of data points at once. This computational load
would have a clear negative impact on the quality of negotiation in a real-time
setting. Second, the effect of noise can be reduced.This is important because in
multi-issue negotiations a small change in utility of the opponent can result in
a large utility change for the other agent – and this can easily result in a fatal
misinterpretation of the opponent’s behavior.

In the next stage, ARMA is used to extend all resulting components, and
then ensemble them to predict opponent behaviors (shown in line 7). ARMA is
a common analysis regression model which is widely used in many fields, with
the formal expression as follows:

(1 +

p∑
i=1

ϕiL
i)Xt = (1 +

q∑
i=1

θiL
i)ϵi (5)

where L is the lag operator, the ϕi are parameters for the p-order autoregressive
term, the θ are parameters for the moving average term with q order, and ϵ is a
parameter capturing white noise.

Equation 5 is applied with appropriate parameters for each component ex-
tracted by EMD (i.e. ci and the residue) for the purpose of making accurate fore-
casting, and then EMAR ensembles them to predict the future counter-offers
of the opponent. Fig. 1 exemplifies this methodology, depicting the prediction



power of our model with a lead time of 6 intervals. Further details of usage are
given in section 4.2.

4.2 Adaptive Concession Making

EMAR adjusts the concession on the basis of the generated opponent model.
Thereby a dynamic conservative expectation R(t) is used to avoid “irrational
concession” caused by inaccurate or over-pessimistic predictions. This makes
sense in the case of negotiation opponents that are “sophisticated and tough”
and always avoid making any concession in bargaining: in this case the prediction
results could lead to a misleading, very low expectation about the utility offered
by the opponent and this, in turn, could result in an adverse concession behavior.
Furthermore, using global prediction could make this situation even worse. (This
phenomenon is also considered in 5.2.)

R(t) guarantees the desired minimum utility at each step, yielding values
which are a lower bound of the agent’s expected utilities. For the purpose of
adaptation to complex negotiation sessions, R(t) requires two parameters emin

and ures. They are both periodically updated depending on the forecast of the
opponent concession (line 8). emin is defined as the minimum expectation of
the compromise suggested by the opponent. Specifically, emin is set it to the
maximum value from ψlow(t), which is the estimated lower bound of the extended
χ given by the central trend. Formally:

ψlow(t) = ω(t) · (1− Stdev(r[0,tl])) (6)

where ω is the extended main tendency of χ, r[0,tl] is the ratio between ω over

χ within [0,tl] and Stdev is the standard deviation. Having obtained ψlow, emin

can be defined as follows:

emin =

{
ϑ if ϑ > Max(ψlow)

Max(ψlow) otherwise
(7)

whereMax(x) gives the maximum value of input vector x. Because counter-offers
with utilities indicated by ψlow have already been received or can be expected
during the lead time with high probability, using the maximum value assures an
increase of the agent’s potential profit even without significant concession.

The variable ures is the reservation utility specifying the lowest expectation
about the eventual benefit from a specific negotiation session. Formally this is
captured by:

ures =

{
ϑ if ϑ > Max(ψlow

0,tl
)

1
2 (Max(ψlow

0,tl
) + ϑ) otherwise

(8)

Because the final negotiation outcome (failure or agreement) is more sensitive
to ures than emin, EMAR adopts a cautious and conservative way to specify it,
where only ψlow

0,tl
is considered.



Based on the above specifications, R(t) is defined as follows:

R(t) = emin+
emin − ures

2
(1−t5δ)+cos(

1− δ

1.1
tλ)(1−t1/β)(getMaxU(P )·δη−ures)

(9)
where β and λ are concession factors affecting the concession rate, getMaxU(P )
is the function specifying the maximum utility dependent on a given preference
P , δ is the discounting factor, and η is the risk factor which reflects the agent’s
optimal expectation about the maximum utility it can achieve. R(t) can be
characterized as a “dynamic conservative expectation function which carefully
suggests utilities”.

The subsequent process is then to decide the target utility EMAR expects
to achieve, represented by line 11. The ensemble of all predicted components
provide useful information about the opponent behavior in the lead time. This
is essential because the observation of ω (and its estimated bound ψ) only gives
the ambiguous area where opponent would make a compromise (rather than how
the compromise might look like). Let the predicted utility series be E(t), given
as follows:

E(t) =

n∑
i=1

fi(ci(t), ξ) + fn+1(rn(t), ξ) (10)

where fi(x) is the corresponding prediction model for components ci (the IMFs)
and rn (the residue). Assume that the future expectation we have obtained from
E(t) is optimistic (i.e., there exists an interval {T |T ̸= ∅, T ⊆ [tc, ts]}), that is,

E(t) ≥ R(t)), t ∈ T (11)

where ts is the end point of the predicated series and ts ≤ tmax. In this case the
time t̂ at which the maximal expectation û is reached is set as follows:

t̂ = argmaxt∈TE(t) . (12)

Moreover, in this case û is defined as

û = E(t̂) . (13)

On the other hand, now assume that the estimated opponent concession is
below the agent’s expectations (according to R(t)), that is, there exists no such
time interval T as in the “optimistic case”. In this case it is necessary to define
the probability of accepting the best possible utility that can be achieved under
this pessimistic expectation. This probability is given by

φ = 1− D(R, tν)−D(E, tν)

ρ ·
√
1− δD(getMaxU(P )δη, tν)

, tν ∈ [tc, ts] (14)

where ρ indicates the acceptance tolerance for the pessimistic forecast and tν is
given by

tν = argmint∈[tc,ts](|D(E, t)−D(R, t)|) (15)



φ is compared to a random variable x with uniform distribution from the inter-
val [0, 1], and the best possible outcome in the “pessimistic” scenario is chosen
as the target utility if δ ≥ x. The rationale behind it is that if the agent rejects
the “locally optimal” counter-offer (which is not too negative according to ρ),
it probably loses the opportunity to reach a fairly good agreement. In the ac-
ceptance case, û and t̂ are defined as E(tν) and tν , respectively. Otherwise, û is
defined as -1, meaning it does not have an effect, and R(tc) is used to set the
expected utility u′. When the agent expects to achieve a better outcome (see
Equation 11), it chooses the optimal estimated utility û as its target utility (see
Equations 12 and 13).

It is apparently not rational and smart to concede immediately to û when
ul ≥ û, and it is not appropriate for an agent to concede û without delay if
ul < û (especially because the predication may be not very accurate). To deal
with this, EMAR simply concedes linearly. More precisely, the concession rate
is dynamically adjusted in order to be able to “grasp” every chance to maximize
profit. Overall, u′ is calculated as follows:

u′ =

{
R(tc) if û = −1

û+ (ul − û) tc−t̂
tl−t̂

otherwise
(16)

where ul is the utility of last bid before EMAR performs prediction process at
time tl.

4.3 Response to counter-offers

This stage corresponds to lines 12 to 17 in Algorithm 1. When the expected
utility u′ has been determined, the agent needs to examine whether the utility
of the counter-offer U(Oopp) is better than u

′ or whether it has already proposed
this offer earlier in the negotiation process. If either of these two conditions is
satisfied, the agent accepts this counter-offer and finishes the current negotiation
session. Otherwise, the agent constructs a new offer which has an utility within
some range around u′. There are two main reasons for this kind of construction.
First, in multi-issue negotiations it is possible to generate a number of offers
whose utilities are the same or very similar for the offering agent, but have very
different utilities the opposing negotiator. (Note that in real-time constraints
environment there are no limits for the number of negotiation rounds, which
means that an agent in principle can construct a large amount of offers having
a utility close to u′ and, thus, has the opportunity to explore the utility space
with the purpose of improving the acceptance chance of its offers.) Second, it
is sometimes not possible to make an offer whose utility is exactly equivalent
to u′. It is thus reasonable that an agent selects any offer whose utility is in
the range [(1 − 0.005)u′, (1 + 0.005)u′]. If no such solution can be constructed,
the agent makes its latest bid again in the next round. Moreover, with respect
to negotiation efficiency, if u′ drops below the value of the best counter offer in
terms of its utility based on our own utility function, the agent chooses that best
counter offer as its next offer. This makes much sense because this counter offer



can well satisfy the expected utility of the opponent who then will be inclined
to accept it.

5 Experimental Analysis

In order to evaluate the performance of EMAR, the General Environment for
Negotiation with Intelligent multipurpose Usage Simulation (GENIUS) [12] is
used as the testing platform. GENIUS is the standard platform for the annual
International Automated Negotiating Agents Competition (ANAC) [1]. In this
environment an agent can negotiate with other agents in a variety of domains,
where every is defined by the utility function of each negotiating party. The per-
formance of an agent (its negotiation strategy) can be evaluated via its utility
achievements in negotiation tournaments which include a possibly large num-
ber of negotiation sessions for a variety of negotiation domains. Subsection 5.1
describes the overall experimental and Subsection 5.2 then presents the experi-
mental results.

5.1 Environmental setting

EMAR is compared against the best winners (i.e., the top five agents) of ANAC2011;
these are HardHeaded, Gabhoninho, IAMhaggler2011, BRAMAgent and Agent K2
(descending order in ANAC2011). Moreover, we use five standard domains cre-
ated for ANAC. All but one of them – the “Camera” domain – were originally
used in ANAC as non-discounting domains. Three of these domains were used
in ANAC2010 and two were used in ANAC2011. This choice of domains from
ANAC2010+2011 makes the overall setting balanced and fair and avoids any
advantageous bias for EMAR (note that the creators of the 2011 winners knew
the ANAC2010 domains and could optimize their agents accordingly). Agent K2,
for instance, would like to accept an offer early in the domain Energy designed
for ANAC2011, which is completely meaningless for the agent as this proposal
grants the maximum profit to the opponent while no benefit is given to itself.
For convenience, we refer to the non-discounting domain “Travel” as U1, “Itex
vs Cypress” as U2, “England vs Zimbabwe” as U3, “Amsterdam party” as
U4, and “Camera” as U5. The corresponding versions with time-dependent dis-
counting are referred to asD1, D2, . . . , D5, respectively. The application domains
we choose cover a wide range of domain characteristics with respect to four key
aspects, as overviewed in Table 1.

Domain features U1(D1) U2(D2) U3(D3) U4(D4) U5(D5)

Domain issues 7 4 5 6 6

Domain size 188,160 180 576 3024 3600

Opposition weak strong medium medium weak

Discounting factor 1(0.4) 1(0.5) 1(0.6) 1(0.7) 1(0.89)

Table 1: Overview of application domains



We, for each domain, ran a tournament consisting of 6 agents (i.e., the five
2011 winners and our EMAR agent) 10 times to get results with high statisti-
cal confidence, where each agent negotiates against all other agents in different
roles. (These roles are predefined in ANAC and correspond to conflictive “buyer”
and “seller” roles.) The agents do not have any information about their oppo-
nents’ strategies and they are prohibited to take advantage of knowledge they
might have acquired in previous negotiation sessions about the behavior of their
opponents. The duration of a negotiation session is 180 seconds.

The EMAR agent divides the overall duration of a session into 100 consecu-
tive intervals of 1.8 seconds each. The lead time ξ is 6, the threshold θ is 0.6, the
pair concession coefficients of (β, λ) is (0.04,3) and the risk factor η is 0.2, the
tolerance coefficient ρ is 0.05. These values work well in practice, but we have
not intended to tweak them to stay away the issues of over-fitting and unfair
competition.

5.2 Experimental results

We show the experimental results achieved by each agent in terms of raw score
based on non-discounting domains in Fig. 2(a), and discounting domains in Fig.
2(b). As shown in figures, the agent using EMAR demonstrates excellent bar-
gaining skills. More precisely, EMAR wins in eight domains with 17.4% above
the mean score achieved in these domains by the five competing agents. More-
over, EMAR made the second place for the other two domains (i.e., U5 and D2),
where the performance of EMAR for these domains is only marginally (namely,
0.82% and 2.34%) below the score achieved by the best performer. Most notably
and impressive, EMAR outperforms the other agents in the most competitive
domain, U2, by 35.2% (compared to the mean score achieved by the other agents)
and in the domain with the largest outcome space, U1, by 15.8% (compared to
mean score).

Table 2 shows the overall score of all agents in terms of raw and normal-
ized results averaged over the ten domains. Normalization is done in the stan-
dard way, using the maximum and minimum utility obtained by all agents.
According to the overall performance depicted in this table, EMAR is the best
agent, with an average normalized score of 0.772. This is 14% above the second
best agent – Hardheaded –, and 30.1% above the mean score of all five oppo-
nents. Moreover, the performance of EMAR is very stable – compared to the
other agents it shows the smallest variance values. EMAR is followed by Hard-
Headed and Gahboninho; these two agents made the first and the second place
in ANAC2011. Agent K2, which is a refined version of the champion (named
Agent K) in ANAC2010, made the fourth place. To summarize, these results
show that EMAR is pretty efficient and significantly outperforms in a variety
of negotiation scenarios the state-of-the-art automated negotiators (resp. nego-
tiation strategies) currently available.

An interesting observation is that there is the noticeable gap between EMAR

and IAMhaggler2011. More specifically, this agent only reaches 68.5% of the per-
formance of EMAR in terms of normalized utility. As described in [21], similar



0.45

0.55

0.65

0.75

0.85

0.95

U1 U2 U3 U4 U5

EMAR

Gahboninho

BRAMAgent

HardHeaded

IAMhaggler2011

Agent_K2

(a) Average raw scores of all agents in non-discounting domains

0.3

0.4

0.5

0.6

0.7

0.8

D1 D2 D3 D4 D5

EMAR

Gahboninho

BRAMAgent

HardHeaded

IAMhaggler2011

Agent_K2

(b) Average raw scores of all agents in discounting domains

Fig. 2: Average raw scores of all agents in the ten domains. The vertical axis
represents utility and horizontal axis represents domain.

to EMAR IAMhaggler2011 aims at predicting an opponent’s future in order to
be able to adjust its own behavior appropriately. Unlike EMAR, IAMhaggler
(i) applies Gaussian process as prediction tool and (ii) adapts its concession rate
on the basis of a global prediction view (i.e., on the basis of the whole preceding
negotiation process). Our experimental studies suggest that a main reason for
this performance gap lies in the global prediction view: this view seems to be
vulnerable to “irrational concession making” induced by pessimistic predictions
(see also 4.2). The phenomenon of irrational concession becomes increasingly
apparent when IAMhaggler2011 bargains with “sophisticated and tough” oppo-
nents like HardHeaded, Gahboninho, and EMAR. For instance, when compet-
ing against these opponents in the most conflictive domain (U2) then IAMhag-
gler2011 achieves only a mean utility of 0.313 while the three opponents achieve
0.903 on average. The situation furthermore is similar for other domains in our
experiments.



Agent
Raw Score Normalized Score

mean variance mean variance

EMAR 0.768 0.0011 0.772 0.0035

HardHeaded 0.712 0.0012 0.677 0.0031

Gahboninho 0.711 0.0021 0.675 0.0058

Agent K2 0.637 0.0022 0.559 0.0057

IAMhaggler2011 0.614 0.0026 0.528 0.0070

BRAMAgent 0.612 0.0091 0.526 0.0219

Table 2: Overall performance of every agent, represented by mean and variance.

6 Conclusion

This work introduced an effective strategy for automated bilateral negotiation in
complex scenarios (multi-issue, time-constrained, unknown opponents, no prior
domain knowledge, computationally feasible, etc.). The strategy, EMAR, out-
performs the five best agents of the International Automated Negotiation Agents
Competition (ANAC) 2011. We think the exceptional results justify to invest
further research efforts into this approach.

Research described in this paper opens several interesting research avenues.
First, is the EMAR strategy robust and flexible enough if the opponent has an
incentive to deviate? (Independent of EMAR, this question has not yet been
treated sufficiently in the field of automated negotiation.) An idea we pursue at
the moment is to address this question with the help of empirical game analysis.
Second, are there opponent modeling techniques which are even more efficient
than the one used by EMAR? Techniques that could be considered here are
e.g. GMDH networks or artificial neural networks. And, last but not least, is it
possible to extend opponent modeling of EMAR, which focuses on modeling the
opponents’ negotiation strategies, toward modeling the opponents’ preferences
as well? We believe such an extension could lead to a significant increase in
negotiation power (not only for EMAR but in general), though at the cost of
assuming the availability of certain domain knowledge.
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