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Abstract. Automated negotiation techniques play an important role in
facilitating human in reaching better negotiation outcomes, and until
now lots of research efforts have been devoted to designing effective ne-
gotiation strategies. To evaluate the performance of different strategies,
one important evaluation criterion is robustness, which is to investigate
which negotiating strategies the agents are going to adopt finally if they
are given the opportunity to repeatedly negotiate and allowed to change
their choices. However the current way of evaluating the robustness suf-
fers from several drawbacks. First, it is assumed that all agents can
have access to the global payoff information, which may not be avail-
able beforehand in practice. Second, it is based on the single-agent best
deviation principle, however, in practice, each agent may change their
strategies simultaneously and in any possible rational way. To this end,
we firstly propose the repeated negotiation game learning framework to
evaluate the robustness of different negotiation strategies, in which each
agent can adopt any rational learning approach to make decisions with-
out knowing the global payoff information beforehand. In this way, we are
able to provide more realistic and fine-grained robustness analysis and
more insights in terms of the relative robustness of different negotiating
strategies can be revealed from our analytical results.

1 Introduction

Automated negotiation techniques can, to a large extent, alleviate the efforts
of human, and also facilitate human in reaching better negotiation outcomes in
complex negotiations. To this end, until now lots of state-of-the-art negotiation
strategies [8, 6, 15, 7, 5, 12] have been proposed to maximize agents’ individual
benefits from negotiation by exploiting their opponents as much as possible. In
recent years, the international competition - automated negotiating agents com-
petition (ANAC) [2, 1] held by researchers from automated negotiation area has
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emerged accordingly. This competition provides a general negotiation platform
and benchmarks, which enables different negotiation strategies to be evaluated
within realistic negotiation environments.

In the current setting of ANAC, the performance of different negotiation
strategies are evaluated based on the criterion of efficiency, i.e., each strategy’s
average payoff obtained against the rest of participants over different domains.
Efficiency is indeed an important evaluation criterion to consider. However it only
reflects the static aspect of negotiation, which assumes that each participant’s
strategy is fixed beforehand. In real life, it is common to encounter repeated
negotiations between multiple parties in many scenarios such as e-commerce ne-
gotiation between different sellers and buyers [10]. This thus gives the agents
(or people) the opportunity to choose different negotiation strategies against
different opponents at different negotiation stages based on the past negotiation
performance. Therefore in practice the current efficiency criterion may not be
quite useful, since the most efficient strategy in one static negotiation setting
may become the most inefficient one in another setting. The efficiency of a nego-
tiation strategy makes sense only when the current negotiation setting is stable,
however, it is unclear which strategy will be eventually adopted by each agent
and which strategy profile will be the stable one eventually. To this end, an
alternative evaluation criterion, robustness, was firstly proposed by Baarslag et
al. [1] to evaluate the performance of different negotiation strategies from a new
perspective based on empirical game-theoretic analysis. In general, the robust-
ness analysis focuses on investigating whether an agent would have the incentive
to switch to other negotiation strategies, and which strategy (combination of
strategies) would be finally adopted by agents if strategy switching is allowed.

The current way [1] of analyzing the robustness of negotiation strategies suf-
fers from several drawbacks. First, the analysis requires the global information
(i.e., average payoff between all pairs of negotiating strategies) to be available
beforehand. However, from an individual negotiator’s perspective, this kind of
information is usually not available beforehand until they have actually par-
ticipated in the negotiations. Second, the robustness analysis is based on the
principle of the single-agent best deviation, i.e., only one agent is allowed to
change its negotiating strategy in each round. However, in practice, it is highly
likely that in each round each agent may change its negotiating strategy simul-
taneously and in any possible rational way which may not necessarily follow
the principle of best deviation. We believe that enabling all agents to choose
their negotiating strategies simultaneously and autonomously without knowing
the global information can provide more realistic analysis and predictions of the
dynamic changes of the agents’ negotiating strategies and their relative robust-
ness. It is not clear a priori if the agents are able to converge to a stable strategy
profile or which strategy will be mostly likely to be adopted by each agent in
such a situation. Third, based on the current robustness analysis approach, it
reveals nothing about the relative robustness of each negotiating strategy within
the best reply cycle if such a cycle exists.
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To tackle the above issues, we first introduce the concept of repeated nego-
tiation game to model the n-agent repeated negotiation problem (based on the
empirical game-theoretic approach) in which each agent is allowed to choose its
negotiating strategy independently in each round. To obtain the set of nego-
tiating strategies, we perform comprehensive simulations among all the state-
of-the-art strategies entered into the final rounds of ANAC from 2010 to 2012,
and choose the top six strategies as our candidate strategies. It is reasonable to
assume that any rational agent would employ certain rational learning approach
to decide which negotiating strategy to choose through repeated interactions
[11]. In this work, we focus on three representative rational learning approaches
from multiagent learning literature: Ficitious Play [4], Q-learning[14], and Win
or Learn Fast - policy hill climbing (WoLF-PHC) learning [3]. From our analysis,
we are able to gain more insights in terms of the relative robustness of different
negotiating strategies compared with the previous robustness analysis based on
single-agent best deviation [1].

The remainder of the paper is organized as follows. In Section 2, we review
some backgrounds of evaluating the robustness of negotiating strategies and the
limitation of previous approach. In Section 3, we describe the repeated nego-
tiation game framework we propose to evaluate the robustness of negotiation
strategies. In Section 4, we present the robustness evaluation results of different
negotiation strategies under our framework and compare with previous approach.
An overview of related work in automated negotiation area is given in Section
5. Lastly we conclude and point out some future work in Section 6.

2 Background and Problem Description

Recently some attention has been given to investigate the dynamic aspect of ne-
gotiating strategies by evaluating the robustness [1] of the current state-of-the-art
negotiating strategies, based on the game-theoretic approach. Since there exist
an infinite number of possible negotiation strategies that the agents may take, we
cannot apply the standard game-theoretic approach to perform such an analysis
by explicitly considering all possible strategies. Therefore, the tool of empirical
game theoretic (EGT) analysis is adopted to achieve this goal instead, which is
originally developed to analyze the Trading Agent Competition. EGT analysis is
a game-theoretic analysis approach based on a set of empirical results. It handles
the problem of the existence of infinite possible strategies by assuming that each
agent only selects its strategy from a fixed set of strategies and the outcomes
for each strategy profile can be determined through empirical simulations. This
technique has been successfully applied in addressing questions about robustness
of different strategies from various domains including continuous double auction
[13], trading strategies in previous years’ TAC competitions [9] and different
negotiation strategies [1, 15, 5].

Given a set of negotiation strategies, different from the setting of ANAC,
each agent is free to select any strategy from this set as its negotiation strat-
egy. For each bilateral negotiation, the corresponding payoff received for each



4 Jianye Hao, Siqi Chen, Weiss Gerhard, Ho-fung Leung, and Karl Tuyls

participating agent is determined as its average payoff against its opponent over
all domains, which can be obtained through empirical simulations. Based on
the bilateral negotiation outcomes, the average payoff of an agent in any given
tournament can be determined by averaging its payoff obtained in all bilateral
negotiations against all other agents in the tournament. Specifically, for a given
tournament involving a set P of agents, the payoff Up(P) obtained by agent p
can be calculated as follows,

Up(P) =

∑
p′∈P,p′ 6=p up(p, p′)

|P| − 1
(1)

where up(p, p′) represents the corresponding average payoff of agent p negotiating
against another agent p′ which is obtained from simulation results. Note that
agent p and p′ can use either the same or different strategies.

An agent has the incentive to deviate its current strategy to another one if
and only if its payoff after deviation can be statistically improved, provided that
all the other agents keep their strategies unchanged. There may exist multiple
candidate strategies that an agent has the incentive to deviate to, usually we only
consider the best deviation available to that agent in terms of maximizing its
deviation benefit [1, 15]. Given a strategy profile, if no agent has the incentive to
unilaterally deviate from its current strategy, then this strategy profile is called
an empirical pure strategy Nash equilibrium. In general, a game may have no
empirical pure strategy Nash equilibrium. Another useful concept for analyzing
the stability of the strategy profiles is best reply cycle, which is a subset of
strategy profiles in which, for any strategy profile within this subset, there is no
single-agent best deviation path leading to any profile outside the cycle. In other
words, in a best reply cycle, all single-agent best deviation paths starting from
any strategy profile within itself must lead to another strategy profile inside the
same cycle.

Both empirical pure strategy Nash equilibrium and best reply cycle can be
considered as two different interpretations of empirical stable sets to evaluate the
stability of different strategy profiles. Based on these two concepts, the robustness
of a strategy is evaluated using the concept of basin of attraction of a stable
set [13]. The basin of attraction of a stable set is defined as the percentage of
strategy profiles which can lead to this stable set through a series of single-agent
best deviations. Accordingly, a negotiation strategy s is considered to be robust
if it belongs to a stable set with a large basin of attraction [13, 1]. However, as
we previously mentioned, the current robustness analysis relies on a number of
assumptions such that the analysis results may not be able to accurately reflect
the relative robustness of different negotiation strategies in practical negotiation
scenarios. Moreover, the current robustness analysis cannot provide a more fine-
grained analysis in terms of the relative robustness of strategies within the same
stable set when the stable set involves multiple negotiation strategies.
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3 Robustness Analysis Framework

3.1 Repeated Negotiation Game

We propose analyzing the robustness of negotiation strategies within the frame-
work of repeated negotiation games. We first define the single-shot negotiation
game as follows. Given a set N of agents and a set S of negotiation strategies,
the negotiation problem among n agents can be modeled as a single-shot normal-
form game. Formally it can be represented as a tuple 〈N, (Si), (Ui)〉 where

– N = {a1, a2, . . . , an} is the set of agents.
– Si is the set of negotiating strategies available to agent ai.
– Ui is the utility function of agent i as defined in Equation 1, and Ui(P)

corresponds to the average payoff agent ai receives under the current nego-
tiation tournament, where P is the strategy profile in the current round of
negotiation.

Similar to the previous robustness analysis [1], in the negotiation game defi-
nition, we assume that each agent i may only select negotiating strategies from
a set Si of candidate strategies based on empirical game-theoretic analysis. In
this way, we are able to handle the problem of the existence of infinite possible
negotiating strategies, which would make the analysis infeasible. To select the
set of strategies for our analysis, we first collect all the top 8 strategies that
enter into the past 3-year ANAC competitions from 2010 to 2012 (24 strategies
in total), and evaluate their relative rankings in terms of efficiency over a large
number of negotiation domains through extensive simulations. We find that the
top six strategies actually correspond to the top 3 strategies from ANAC 2011
and 2012, which indicates that the most recently developed negotiating strate-
gies are more efficient and thus more likely to be adopted in practice. Therefore,
we select the top six negotiating strategies as the set S of candidate strategies
for our analysis, i.e., S = {G,H, I,A, C,O}.5

Since the negotiation game is defined based on empirical game theory, we can
define the concept of empirical pure strategy Nash equilibrium in a similar way
to the definition of pure strategy (mixed strategy) Nash equilibrium by using
the finite strategy set S to replace the original infinite strategy set.

Definition 1. An empirical pure strategy Nash equilibrium for an n-player
negotiation game is a strategy profile (a∗1, a

∗
2, . . . , a

∗
n) such that ∀i ∈ N , we have

Ui(a
∗
i , a
∗
−i) ≥ Ui(ai, a

∗
−i),∀ai ∈ Si (2)

where Si (∀i ∈ N) is the finite set of strategies we choose to represent the original
infinite set of strategies.

5 These bold letters are the abbreviations for the six negotiating strategies as fol-
lows: G – Gahboninho, H – HardHeaded, I – IAMhaggler2011, A – AgentLG, C
–CUHKAgent, O – OMAC.
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If the agents are allowed to use mixed strategy, then we can naturally define
the concept of empirical mixed strategy Nash equilibrium similarly.

Definition 2. An empirical mixed strategy Nash equilibrium for an n-player
normal-form game is a strategy profile (π∗1 , π

∗
2 , . . . , π

∗
n) such that ∀i ∈ N , we

have
Ūi(π

∗
i , π
∗
−i) ≥ Ūi(πi, π

∗
−i),∀πi ∈ Π(Si) (3)

where Ūi(π
∗
i , π
∗
−i) is player i’s expected payoff under the strategy profile (π∗i , π

∗
−i),

and Π(Si) is the set of probability distributions over player i’s action space Si.

An empirical mixed strategy Nash equilibrium (π∗1 , π
∗
2) is degenerated to an em-

pirical pure strategy Nash equilibrium if both π∗1 and π∗2 are pure strategies.
We consider the general setting of the repeated negotiation game where each

agent is free to choose its negotiating strategy simultaneously based on the feed-
back from the previous round. In each round, given the negotiation strategy
profile of agents, the negotiation tournament starts and each agent i receives its
own average payoff Ui(P) from the current round. We assume that initially each
agent has equal probability to select each of the negotiation strategy from its
strategy space Si. We evaluate the relative robustness of different negotiation
strategies based on the corresponding probability that each strategy profile can
be converged to. Given a particular negotiation strategy s, we define its basin of
attraction as the accumulated frequency of all strategy profiles that the agents
can learn to converge to and also involve strategy s. The robustness of a strat-
egy s is then defined based on its basin of attraction.The higher the basin of
attraction of a strategy s is, the more robust strategy s is. For example, con-
sider two negotiation strategy s1 and s2, and the agents converge to (s1, s1) with
probability of 0.8, and (s2, s2) with probability of 0.2. The basin of attraction of
strategy s1 and s2 is 0.8 and 0.2 respectively, and thus we can say strategy s1
is more robust then strategy s2. The overall robustness analysis framework can
be summarized as follows in Algorithm 1.

Algorithm 1 Overall Robustness Analysis Framework

1: Choose a learning strategy for each agent to determine its negotiation strategy
each round

2: repeat
3: Each agent choose its current-round negotiation strategy according to its learning

strategy
4: Each agent update its learning strategy based on the current round outcome.
5: until The negotiation game ends
6: Calcualte the basin of attraction of each negotiation strategy
7: Determine the relateive robustness of each negotiation strategy

3.2 Learning Strategies

A remaining question is how the agents should select their negotiating strategies
each round. We assume that the agents are individually rational and thus each
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agent is faced with the task of how to make decisions to increase its individual
payoff as much as possible through negotiation given the uncertainty of the
negotiating strategies chosen by others. We adopt three representative rational
learning strategies from multiagent learning literature: fictitious play learning [4],
Q-learning [14] and WoLF-PHC learning [3].6 All the three learning strategies are
rational in that they all aim at learning the policy of maximizing their individual
payoffs based on the past feedbacks in different ways. Next we will describe how
these three strategies can be applied to select negotiating strategies for agents
in the context of repeated negotiation games respectively.

Fictitious Play Learning Under fictitious play, an agent maintains the belief
that its opponent makes decisions following a fixed mixed strategy and always
chooses actions to maximize its average payoff regarding its current belief each
round. In the context of n-player repeated negotiation game, the overall learning
rule of fictitious play can be described as follows. Similar to the robustness anal-

Algorithm 2 Fictitious Play in Repeated Negotiation Games

1: Initialize the agent’s belief about its opponents.
2: repeat
3: Choose the negotiating strategy maximizing its average payoff (random choose

one in case of a tie) based on its current belief.
4: Update its belief based on the current round outcome.
5: until The negotiation game ends

ysis, fictitious play learning implicitly requires that each agent i should know its
own utility over all strategy profiles in advance. Besides, it is well-known that
a fictitious play learner may never learn its best strategy due to its erroneous
belief of other players always playing fixed mixed strategies. To this end, we
modify the original fictitious play by allowing each agent to make explorations
occasionally, which thus gives the agents the opportunity to identify other pos-
sibly better strategies. Specifically, each fictitious play learner chooses action to
maximize its expected payoff based on its current belief with probability 1 − ε,
and make random selection with probability ε.

Q-Learning Q-learning [14] is one representative reinforcement learning ap-
proach and has received much attention in multiagent learning literature. In the
context of repeated negotiation game, each Q-learning agent i holds a Q-value
Qt

i(s) for each negotiating strategy s ∈ Si, and gradually updates its Q-value
Qt

i(s) for each action s based its own payoff in each round. The Q-value update
rule for each action s is as follows:

Qt+1
i (s) =

{
Qt

i(s) + αi(U
t
i (P)−Qt

i(s)) if s is chosen
Qt

i(s) otherwise
(4)

6 It is worth noting that any other rational learning strategies could be used here.
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where U t
i (P) is the payoff agent i obtains in round t under current outcome P

by taking action s. Besides, αi is the learning rate of agent i, which determines
how much weight we give to the newly acquired payoff U t

i (P), as opposed to the
old Q-value Qt

i(s).
In each round t, each agent i chooses its action based on the ε-greedy explo-

ration mechanism as follows. With probability 1 − ε, it chooses the negotiating
strategies with the highest Q-value from the set S of candidate strategies, and
makes random selection from S with probability ε. The value of ε controls the ex-
ploration degree during learning. It initially starts at a high value and decreased
gradually to zero as negotiation goes on.

WoLF-PHC Learning WoLF-PHC learning [3] is a rational learning algo-
rithm which incorporates the “ win or learn fast” principle into the basic policy
hill-climbing (PHC) algorithm [3]. In PHC algorithm, each round each agent
maintains a Q-table for each negotiating strategy and updates it in a way simi-
lar to that in Q-learning algorithm, but it also explicitly keeps and updates its
mixed strategy policy. Each round each agent’s mixed strategy policy is updated
in the direction of increasing the probability that the action with the highest
Q-value with a fixed learning rate. WoLF-PHC learning algorithm extends the
basic PHC algorithm by introducing two different learning rates to update its
mixed strategy policy. The principle of WoLF update is that it selects the smaller
learning rate to update its mixed strategy policy when it wins, and the larger
one to update when it losses. A WoLF-PHC agent evaluates whether it wins
or not by comparing its expected payoff by playing its current mixed strategy
policy with that by playing the average mixed strategy policy over all previous
rounds. If its expected payoff by adopting its current mixed strategy is higher,
it means it wins, otherwise it losses. The overall description of the WoLF-PHC
algorithm in the context of repeated negotiation game is shown in Algorithm 3.

Similar to Q-learning, one advantage of WoLF-PHC learning is that it also
only requires the minimum amount of information for each agent, i.e., each agent
only needs to know its payoff obtained from each round of negotiation. However,
Q-learning only enables the agents to learn pure strategy policies, while WoLF-
PHC enables the agents to learn mixed strategy policies.

4 Experimental Evaluation

4.1 Experimental Settings

The payoff matrix for each pair of negotiating strategies in S × S is obtained
based on extensive simulations over all the possible negotiation domains shown
in Table 1. For any negotiation game, given a negotiating strategy profile P, the
corresponding payoff Ui(P) for each agent i can be easily calculated based on
Equation 1 and the payoffs in Table 1.

We start with the simplest setting, bilateral repeated negotiation, in which
only two agents repeatedly negotiate with each other. The second negotiation
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Algorithm 3 WoLF-PHC Learning in Repeated Negotiation Games

1: Initialize Q0(s) = 0, π0(s) = 1
|S| , C = 0, ∀s ∈ S.

2: Initialize two learning rates ρs, ρl.
3: repeat
4: Choose a negotiating strategy s from S according to the current mixed strategy

policy πt(s) with appropriate exploration.
5: Update its Q-table based on the payoff obtained in the current round following

Equation 4.
6: Update its average mixed strategy policy as follows,

C = C + 1, π̄t(s) = π̄t−1(s) + π̄t−1(s)−πt(s)
C

, ∀s ∈ S
7: Determine the learning rate ρt to update its mixed strategy policy πt(s) as

follows,

ρt =

{
ρs

∑
s∈Si

πt(s)Qt(s) ≥
∑
s∈Si

π̄t(s)Qt(s)

ρl otherwise
(5)

8: Update its mixed strategy policy w.r.t. the Q-table.

πt+1(s) =

{
πt(s) +

∑
s′ 6=s δ(s

′) Q(s) is the highest

πt(s)− δ(s) otherwise
(6)

where δ(s) = min(πt(s), ρt

|S|−1
)

9: until The negotiation game ends

setting we consider is three-agent repeated negotiation, and the last setting is to
consider six-agent repeated negotiation. For all settings, each agent is allowed to
choose any negotiating strategy from the strategy set S. Since the negotiation
game itself is symmetric, we only need to care about the number of agents
choosing each negotiating strategy. Therefore, in the following analysis, we merge
those strategy profiles with the same number of agents choosing each negotiation
strategy and treat them as the same outcome to make the results clearer. For
example, an outcome (G : 1, A : 1) in a bilateral negotiation means one agent
chooses strategy G and the other chooses A, and covers both the strategy profiles
of (G,A) and (A,G). The parameter settings for each learning appraoch are listed
in Table 2.

Table 1: Payoff matrix for the top six negotiation strategies average over all domains
(For each strategy profile, only the row player’s payoff is given since the game is sym-
metric.) The letters in bold are the abbreviations for each strategy.

Payoff G H I A C O

G 0.680 0.520 0.812 0.676 0.580 0.555

H 0.662 0.599 0.757 0.569 0.604 0.549

I 0.622 0.564 0.715 0.595 0.470 0.492

A 0.709 0.590 0.787 0.568 0.664 0.561

C 0.740 0.639 0.826 0.552 0.597 0.590

O 0.697 0.628 0.771 0.551 0.605 0.571
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Table 2: Parameter Settings for Each Learning Approach

Payoff Matrix exploration
rate ε

Learning Rate
α

Learning Rate
ρs

Learning Rate
ρl

Fictitious-Play 0.05 N/A N/A N/A

Q-learning 0.05 0.6 N/A N/A

WoLF-PHC 0.05 0.6 0.2 0.5

4.2 Bilateral Repeated Negotiations

In this setting, we first give the robustness analysis results based on the previous
robustness analysis approach [1]: there only exists a best reply cycle of (G : 1, A :
1) → (G : 1, C : 1) → (C : 1, A : 1). In other words, for any initial state, the
agents would always converge to and stick in this cycle, however, it says nothing
about dynamic details within that cycle (e.g., the probability that each strategy
profile would be finally adopted by the agents) and the relative robustness of
the strategies within that cycle.

Figure 1(a) shows the dynamics of the average frequency the previous three
outcomes can be achieved as a function of the number of rounds when both agents
negotiates following fictitious play. This can be considered as the dynamic way
of understanding how the three outcomes within the best reply cycle evolve from
one to another. Whenever the probability of reaching one outcome is decreased,
the probability of reaching its neighbor outcome is increased. We can also observe
that the basin of attraction of (G : 1, A : 1) and (G : 1, C : 1) (i.e., the frequencies
of reaching these two outcomes) is usually larger that that of the outcome (C :
1, A : 1), which thus may indicate that strategy G is more robust than the other
two strategies in practice.

Figure 1(b) and Figure 2(a) show the average probabilities that the previous
three outcomes can be achieved as a function of rounds when the agents negotiate
following Q-learning and WoLF-PHC respectively. Different from fictitious play,
it turns out surprisingly that the basin of attraction of outcome (G: 1, A: 1)
(i.e., the probability of reaching it) is much larger than the rest of outcomes
in the best reply cycle. We hypothesize that it is because in fictitious play the
agents are assumed to know their payoff information for each pair of negotiating
strategies beforehand, while this is not allowed in both Q-learning and WoLF-
PHC. This result may indicate that in practice it is most likely that any rational
agent would choose strategy G to participate in a bilateral negotiation while its
(rational) opponent chooses strategy A and vice versa. In other words, strategy
C is not as robust as the other two strategies G and A even though all of them
are within the best reply cycle. For both Q-learning and WoLF-PHC learning,
we can easily calcualte the basin of attraction of these three strategies and thus
obtain their relative robustness ranking as follows: G > A > C.
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(a) (b)

Fig. 1: Average probability of reaching each outcome for 2-agent case under a) fictitious
play, b) Q-learning

(a) (b)

Fig. 2: (a) Average probability of reaching each outcome for 2-agent case WoLF-PHC
learning, (b) Average probability of reaching each outcome for 3-agent case under
fictitious play
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4.3 Three-agent Repeated Negotiation Tournaments over Six
Strategies

Next we increase the number of agents in the negotiation and investigate the
case of three-agent repeated negotiations where each agent is allowed to choose
any negotiating strategy from S. We first give the analysis results based on the
previous robustness analysis approach [1], which indicates that there only exists
one best reply cycle: (G : 2, C : 1) → (G : 1, A : 1, C : 1) → (G : 2, A : 1). This
means that all these three strategies are more robust than the rest of strategies.

Figure 2(b) shows the average frequency of reaching the previous three out-
comes as a function of rounds when all agents employ fictitious play. We can see
that the frequencies of achieving these three outcomes are significantly different
((G : 1, A : 1, C : 1) ranks first, (G : 2, A : 1) ranks second and (G : 2, C : 1)
ranks last) even though they are all within the best reply cycle. Based on this,
we can also calculate the average frequency of each negotiating strategy can be
adopted by the agents, and come to the conclusion of their robustness ranking
as follows: G > A > C.

Figure 3(a) and 3(b) illustrate the average frequency the previous three out-
comes can be reached as a function of the number of rounds when the agents
employ Q-learning and WoLF-PHC respectively. The results for both cases are
similar in that the probability of reaching outcome (G : 2, A : 1) (> 80%) is
much higher than that of reaching the other two outcomes. This indicates that
it is most likely that two agents would adopt strategy G while one agent adopt
strategy A rather than always cycling around the three outcomes. Besides, this
result also further confirms our previous conclusion that strategy C is not as
robust as the other two strategies.

(a) (b)

Fig. 3: Averag probability of reaching each outcome for 3-agent case under a) Q-
learning, and b) WoLF-PHC learning
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4.4 Six-agent Repeated Negotiation Tournaments over Six
Strategies

Finally we further increase the number of agents to be equal to the number of
negotiating strategies. Based on the previous robustness analysis approach [1],
we can know that there only exists one best reply cycle as follows: (G : 4, A :
1, C : 1) → (G : 4, C : 2) → (G : 3, A : 1, C : 2) → (G : 2, A : 2, C : 2) → (G :
3, A : 2, C : 1) → (G : 4, A : 2), which indicates that the agents will eventually
reach this cycle and the three strategies G, A, and C are more robust than the
rest of strategies. However, we cannot distinguish the relative robustness among
these three negotiation strategies.

We present the dynamics of the frequency of reaching the previous six out-
comes when all agents employ fictitious play in Figure 4(a). We can see that the
frequencies of reaching each outcome vary dynamically, with (G : 3, A : 2, C : 1)
ranks first and (G : 3, A : 1, C : 2) ranks second most of the time (the sum of the
probabilities of reaching these two outcomes is about 70%). This means that it
is most likely that the agents would frequently change their strategies between
A and C during repeated negotiation, which thus indicates that strategy G is
more robust than A and C, even though all of them are within the best reply
cycle.

(a) (b)

Fig. 4: Average probability of reaching each outcome for 6-agent case under a) fictitious
play, b) Q-learning

Figure 4(b) and 5 illustrate the dynamics of the average frequency of reaching
the previous six outcomes when the agents employ Q-learning and WoLF-PHC
respectively. Both figures show similar results that the frequency of reaching
outcomes (G : 4, A : 2) and (G : 3, A : 2, C : 1) dominates the rest of outcomes,
i.e., the probability of reaching these two outcomes are much higher than the rest
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of them. Based on the average probabilities of reaching each outcomes within
the best reply cycle, we can also approximately estimate the relative robustness
of the three strategies G, A, and C, i.e., G > A > C, which is in consistent with
the analytical results from previous two cases.

Fig. 5: Average probability of reaching each outcome for 6-agent case under WoLF-PHC
learning

4.5 Discussion

From previous analysis results, we can see that our robustness analysis can pro-
vide more fine-grained analysis of the relative robustness of different negotia-
tion strategies than the previous approach [1]. If there exists an empirical pure
strategy Nash equilibrium, the corresponding interpretation under our analysis
framework is that the negotiators learn to converge to that pure strategy equi-
librium. If there exists a best reply cycle, for those learning strategies capable
of learning a mixed strategy, one reasonable interpretation under our framework
could be that the agents are actually learning to converge to the corresponding
empirical mixed strategy Nash equilibrium.

From Section 4.2 to 4.4, only the results for one particular learning strategy
are shown due to space limitation. However, it is worth noticing that for each
tournament setting, the consistent analysis results are obtained for all three
learning strategies. Intuitively, our analysis results reflect the relative robustness
of different negotiation strategies when the negotiators are rational and have the
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freedom to choose their negotiation strategies based on their past experience.
We believe that this kind of robustness analysis framework can better reflect the
practical multi-agent negotiation scenarios (e.g., e-commerce area) which usually
involves repeated negotiations [10], and thus provide more accurate predictions
of which negotiation strategies are more likely to be adopted in practice.

5 Related Work

Baarslag et al. [1] firstly propose an alternative evaluation criterion, robustness,
to evaluate the performance of different negotiation strategies from a different
perspective based on empirical game-theoretic analysis. The authors investigate
the relative robustness of the top 8 strategies participating in ANAC’11 compe-
tition in different tournament settings. Their analysis provides some interesting
results. For the bilateral negotiation setting, it is found that the winning strat-
egy in ANAC’11 is not the most robust strategy, and also no pair of agents
adopting the same negotiating strategy is stable. For the setting of 8-player
tournament with three strategies, it is surprisingly found that the Gahboninho
strategy, which is not the winner strategy, seems to be the most robust strat-
egy. For the last setting of 8-players tournament with 8-strategy, it is also found
that the non-winner Gahboninho strategy is more robust than the winning strat-
egy HardHeaded. All the previous robustness analysis can provide us with some
useful insights about which strategies would be adopted by agents in practice.
However, the robustness analysis is limited by the assumption of single-agent
best-deviation and the requirement of global payoff information, which may not
be realistic in practice. Last, when the agents end up with a best reply cycle, it
provides us with little information about the relative robustness of the strategies.

Williams el al. [15] propose a novel concession negotiating strategy, which
make concessions based on the observed concession of the opponent and other
negotiation constraints under the elapsed real time. They evaluate the efficiency
of their strategy against the state-of-the-art strategies under a number of bench-
mark domains taken from ANAC’10. The simulation results show that their
strategy is more efficient in terms of the average payoff obtained over all op-
ponents. The authors also evaluate the robustness of their strategy based on
empirical game-theoretic analysis, and focus on the case of 5 players’ tourna-
ment negotiation with the top 3 strategies. It is found that their strategy is the
most robust one among all strategies considered and all agents have the incen-
tive to switch to their strategy eventually. Their robustness analysis follows the
work of Baarslag et al. [1], and thus suffers from the same limitations as theirs.

Chen and Weiss [5] propose a novel negotiating strategy, Dragon, which em-
ploys sparse pseudo-input Gaussian processes to support more accurate estima-
tions of the opponent’s behaviors. In their robustness analysis, they focus on
the bilateral negotiation setting among eight strategies, and it is found that the
only stable state is when one agent adopts the Dragon strategy while the other
agent adopts the TheNegotiator Reloaded strategy from ANAC’12. The result
indicates that Dragon strategy is robust compared with others in the bilateral
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negotiation setting. However, the robustness analysis also follows the work of
Baarslag et al. [1], and thus the same limitations as theirs [1] apply here.

6 Conclusion and Future Work

We introduce the concept of repeated negotiation game and propose employing
different rational learning strategies to provide more realistic and fine-grained
analysis of the robustness of different negotiating strategies. We make extensive
evaluation of the top 6 negotiation strategies participated in the past three-year
negotiations under three different negotiation tournament settings. Through our
analysis, we show that more insights in terms of the relative robustness of differ-
ent negotiation strategies can be revealed, which are usually not available from
the analysis using the previous approach [1]. As future work, we are going to
further generalize the robustness evaluation process in a more formal and system-
atic way to make the robustness evaluation and analysis of different negotiating
strategies more meaningful and efficient.
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