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Abstract. This work describes an automated negotiation agent called OMAC
which was awarded the joint third place in the 2012 Automated Negotiating
Agent Competition (ANAC 2012). OMAC, standing for “Opponent Modeling
and Adaptive Concession”, combines efficient opponent modeling and adaptive
concession making. Opponent modeling is achieved through standard wavelet
decomposition and cubic smoothing spline; concession-making is made through
setting the best possible concession rate on the basis of the expected utilities of
forthcoming counter-offers.
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1 Introduction

Negotiation provides a mechanism for coordinating interaction among computational
autonomous agents which represent respective parties of different or even conflicting
interest. As automated negotiation can be applied to fields as diverse as electronic com-
merce and electronic markets, supply chain management, task and service allocation,
etc, it has become a core topic of multi-agent systems [6]. This paper introduces a novel
negotiation agent called OMAC (“Opponent Modeling and Adaptive Concession”) for
complex scenarios, where agents have no useful information about their opponents,
and in addition they are under real-time constraints. The negotiation strategy of OMAC
integrates two key aspects of successful negotiation: efficient opponent modeling and
adaptive concession making. Opponent modeling realized by OMAC aims at predicting
the utilities of an opponent’s future counter-offers and is achieved through two standard
mathematical techniques, namely, wavelet decomposition and cubic smoothing spline.
Adaptive concession making is achieved through dynamically adapting the concession
rate (i.e., the degree at which an agent is willing to make concessions in its offers) on
the basis of the utilities of future counter-offers it expects according to its opponent
model.

The remainder of this paper is structured as follows. Section 2 describes the standard
negotiation environment underlying our research. Section 3 overviews OMAC. Sections
4 to 6 describe OMAC in detail. Finally, Section 7 identifies some important research
lines induced by the work.
⋆ This is a shortened version of our OMAC description provided in [3]



2 Negotiation Environment

We adopt a basic bilateral multi-issue negotiation setting which is widely used in the
agents field (e.g., [2, 3]). The negotiation protocol is based on a variant of the alternat-
ing offers protocol proposed in [5]. Let I = {a, b} be a pair of negotiating agents, i
represent a specific agent (i ∈ I), J be the set of issues under negotiation, and j be
a particular issue (j ∈ {1, ..., n} where n is the number of issues). The goal of a and
b is to establish a contract for a product or service. Thereby a contract consists of a
package of issues such as price, quality and quantity. Each agent has a lowest expec-
tation for the outcome of a negotiation; this expectation is called reserved utility ures.
wi

j (j ∈ {1, . . . , n}) denotes the weighting preference which agent i assigns to issue j,
where the weights of an agent are normalized (i.e.,

∑n
j=1(w

i
j) = 1 for each agent i).

During negotiation agents a and b act in conflictive roles which are specified by their
preference profiles. In order to reach an agreement they exchange offersO in each round
to express their demands. Thereby an offer is a vector of values, with one value for each
issue. The utility of an offer for agent i is obtained by the utility function defined as:

U i(O) =

n∑
j=1

(wi
j · V i

j (Oj)) (1)

where wi
j and O are as defined above and V i

j is the evaluation function for i, mapping
every possible value of issue j (i.e., Oj) to a real number.

Following Rubinstein’s alternating bargaining model [5], each agent makes, in turn,
an offer in form of a contract proposal. Negotiation is time-limited instead of being re-
stricted by a fixed number of exchanged offers; specifically, each negotiator has a hard
deadline by when it must have completed or withdraw the negotiation. The negotiation
deadline of agents is denoted by tmax. In this form of real-time constraints, the number
of remaining rounds are not known and the outcome of a negotiation depends crucially
on the time sensitivity of the agents’ negotiation strategies. This holds, in particular, for
discounting domains, that is, domains in which the utility is discounted with time. As
usual for discounting domains, we define a so-called discounting factor δ (δ ∈ [0, 1])
and use this factor to calculate the discounted utility as follows:

D(U, t) = U · δt (2)

where U is the (original) utility and t is the standardized time. As an effect, the longer
it takes for agents to come to an agreement the lower is the utility they can achieve.

After receiving an offer from the opponent, Oopp, an agent decides on acceptance
and rejection according to its interpretation I(t, Oopp) of the current negotiation sit-
uation. For instance, this decision can be made in dependence on a certain threshold
Thresi: agent i accepts if U i(Oopp) ≥ Thresi, and rejects otherwise. As another exam-
ple, the decision can be based on utility differences. Negotiation continues until one of
the negotiating agents accepts or withdraws due to timeout.

3 Overview of OMAC

An overview of OMAC is given in Algorithm 1. In more detail, OMAC includes two core
stages – opponent modeling and concession rate adaptation – as described in detail in



Section 4 and 5, respectively. A third important stage of OMAC, its response mechanism
to counter-offers, is described in Section 6.

Algorithm 1 The strategy of OMAC. tc refers to the current time, δ the time discounting
factor, λ the layer of wavelet decomposition, ψ the wavelet function, and tmax the
deadline of negotiation. Oopp is the latest offer of the opponent, and Oown the offer to
be proposed by OMAC. χ represents the time series comprised of the maximum utilities
over intervals. Let υ be the smooth component of λ-th order wavelet decomposition
based on ψ, and α the predicted main tendency of χ. tl is the time we preform prediction
process and ul is the utility of our most recent offer. u′ is the target utility at time tc. R
is the reserved utility function.
1: Require : tmax, δ, λ, ψ,R
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage();
4: recordBids(tc, Oopp);
5: if needUpdate(tc) then
6: χ⇐ preprocessData(tc)
7: (α, tl, ul) ⇐ predict(χ, λ, ψ);
8: end if
9: u′ = getTarUtility(tc, tl, ul, δ, α,R);

10: if getOwnUtility(Oopp, tc, δ) ≥ u′ then
11: accept(Oopp);
12: else
13: Oown ⇐ constructOffer(u′);
14: proposeBid(Oown);
15: end if
16: end while

4 Opponent Modeling

According to OMAC, the aim of opponent modeling realized by a negotiating agent is
to estimate the utilities of future counter-offers it will receive from its opponent. This
corresponds to the lines 3 to 8 in Algorithm 1. Opponent modeling is done through a
combination of wavelets analysis and cubic smoothing spline. When receiving a new
bid from the opponent at the time tc, the agent records the time stamp tc and the utility
U(Oopp) this bid has according to the agent’s utility function. The maximum utilities
in consecutive equal time intervals and the corresponding time stamps are used period-
ically as basis for predicting the opponent’s behavior (line 5 and 6). The reasons for a
periodical updating are two-fold as discussed in [2]. Firstly, this degrades the computa-
tion complexity so that the agent’s response time is kept low. Assume that all observed
counter-offers were taken as inputs, then the agent might have to deal with thousands
of data points in every single session. This computational load would have a clear neg-
ative impact on the quality of negotiation in a real-time constraint setting. Secondly, the



effect of noise can be reduced. In multi-issue negotiation a small change in utility of the
opponent can result in a large utility change for the negotiator and this can easily result
in a misinterpretation of opponent’s behavior.

Behavior prediction is mainly done by applying discrete wavelet transformation
(DWT) to the time series χ; this is captured by line 7. We decided to use DWT because
wavelet analysis is known to be an efficient multi-scaling tool for exploring features
in data sets. With DTW a signal can be decomposed into two parts, an approximation
and a detail part. The former is smooth and reveals the trend of the original signal, and
the latter is rough and corresponds to noise (resulting e.g. from seasonal fluctuations).
OMAC focuses on the approximation part and intentionally ignores the detail part for
three reasons. First, the approximation part represents the trend of the opponent conces-
sion in terms of utility and indicates how the concession of opponent will develop in the
future. Second, it is smooth enough (compared to the original signals, i.e. χ) to allow
for quality prediction performance. Third, the detail part contains information which is
of little value in a negotiation setting. As we saw in various empirical investigations, the
ratio between the main tendency term and the original signal tends to be about 0.98 with
a small standard deviation. Precise extension of those detailed components can improve
effectiveness of our model slightly, it is however very costly for a medium-range lead
time in real-time negotiation.

Given the discrete wavelet function ψj,k(t) transformed by a mother wavelet ψ(t),

ψj,k(t) = a
−j/2
0 ψ(a−j

0 t− kb0), j, k ∈ Z (3)

DWT corresponds to a mapping from the signal f(t) to coefficients Cj,k which are
related to particular scales, where these coefficients are defined as follows:

Cj,k =

∫ +∞

−∞
f(t)ψj,k(t)dt, j, k ∈ Z (4)

The ψ(t) is required to be an orthogonal wavelet, the set {ψj,k(t)|j, k ∈ Z} is then an
orthogonal wavelet basis such that the signal f(t) can be reconstructed.

With recursive application of DWT to the signal f(t), the approximation (low fre-
quency) and detail (high frequency) components are recovered, respectively. For in-
stance, f can first be decomposed into a1 + d1 and the resulting part a1 can then be
decomposed in finer components, that is, a1 = a2 + d2, and so on. Based upon this
recursive process, the signal can be expressed as f = a1 + a2 + . . .+ an + dn (further
details on wavelets are given in e.g. [4]). The results reported in this paper are achieved
through wavelet decomposition using the Daubechies’ wavelets of order 10. We use the
following notation:

χ = υ +
λ∑

n=1

dn (5)

where υ represents the approximation component of χ and dn is n-layer detail part (n
is determined by the decomposition level λ). An example can be found in Fig. 1 which
shows χ and its corresponding approximation part υ along with the estimated upper and
lower bounds of χ. The two bounds are represented by v ± σ, where σ is the standard
deviation of the ratio between χ and υ.
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Fig. 1. Illustrating the opponent’s concession (given by χ, the thick solid line) and the correspond-
ing approximation part υ (the thin solid line) when negotiating with Agent K2 in the Camera
domain (this agent and domain are taken from ANAC 2011). The two dash-dot lines represent
the estimated upper and lower bounds of χ.

In order to forecast the opponent’s future behavior, cubic smoothing spline is used
to extend the smooth component υ. Cubic spline is widely used as a tool for prediction,
see [7]. For equally spaced time series, a cubic spline is a smoothing piecewise function,
denoted as the function ˆg(t) which minimizes:

p
n∑

t=1

w(t)(f(t)− ĝ(t))2 + (1− p)

∫
(ĝ(u)′′)2du (6)

where p is the smoothing parameter controlling the rate of exchange between the resid-
ual error described by the sum of squared residuals and local variation represented by
the square integral of the second derivative of g and w is the weight vector (for further
details, refer to [1]).

Fig. 2 shows the actual and the predicted smooth parts of opponent concession at
different time points for the opponent “Iamhaggler2011”: as this figure illustrates, cu-
bic spline is able to forecast the given signal within a medium range very well. Since
OMAC applies a periodical updating mechanism, it is not necessary and not wise to
forecast globally (i.e., from the current moment to the end point of negotiation), be-
cause this probably brings too much noise into the prediction. OMAC limits the range
of forecasting to ζ intervals and in this way achieves efficiency and noise reduction.

5 Adaptive Adjustment of Concession Rate

Given the extended version of the smooth part – α, we now discuss how to use it for
adaptively setting the concession rate of our expected utility (see line 9 in Algorithm 1).
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Fig. 2. Illustration of the predictive power of OMAC in two consecutive ranges. The dash line
indicates the time point tc at which the current prediction is made. The plus signs on left of the
dash line are the actual points of υ before tc. The crosses to the right of the dash line show the
actual points of υ after tc. The extended version of υ – α (i.e., the prediction of υ) is shown
by the solid line. These results are achieved against the agent Iamhaggler2011 in the domain
Amsterdam party (the agent and domain are taken from ANAC 2011).

A possibility is to maximize the expected utility merely according to the predicted op-
ponent move. This is quite straightforward but may be not so effective. Suppose the
negotiation partners are “tough” and always avoid making any concession in bargain-
ing. In this case the result of prediction could indicate a very low expectation about the
utility offered by the opponent and this, in turn, would result in an adverse concession.
In OMAC a simple function R, called reserved utility function, is used to realize conces-
sion adaptation. This function guarantees the minimum utility at each given time step.
This is because the function values are set as the lower bound of our expected utilities.
Moreover, in principle it makes concession over time, thereby taking into account the
impact of the discounting factor. Specifically, the reserved utility function is given by:

R(t) = ures + (1− t1/β)(maxUtility(p) · δη − ures) (7)

where ures is the minimum utility the agent would accept, β is a parameter which
has a direct impact on the concession rate, maxUtility(p) is the function specifying the
maximum utility given by the preference profile p of a negotiation domain, and η is a
parameter called risk factor which reflects the agent’s expectation about the maximum
utility it can achieve.

We define the estimated received utility Eru(t), which gives our agent the expecta-
tion of opponent’s future concession, as follows:

Eru(t) = D(α(t)(1 + Stdev(ratio[tb,tc])), t), t ∈ [tc, ts] (8)

where Stdev(ratio[tb,tc]) is the standard deviation of ratio between the smooth part υ
and the original signal χ from the beginning of negotiation(tb) till now and ts is the end
of α.



Suppose the future expectation the agent has obtained from Eru(t) is optimistic, in
other words, there exists an interval {T |T ̸= ∅, T ⊆ [tc, ts]}, so that

Eru(t) ≥ D(R(t), t), t ∈ T (9)

OMAC then sets the time t̂ at which the optimal estimated utility û is reached as:

t̂ = argmaxt∈T (Eru(t)−D(R(t), t)) (10)

and û is simply assigned by:
û = Eru(t̂) (11)

When the opponent’s future concession is estimated to be below the agent’s ex-
pectations according to R(t) (i.e., there is no such interval T described above), OMAC
investigates whether the best possible outcome under that “pessimistic” expectation of
opponent concession should be accepted given the threshold ρ. This outcome is denoted
as ξ and is given by:

ξ = ρ−1 · Eru(tξ)/D(R(tξ), tξ), tξ ∈ [tc, ts] (12)

where ρ is the tolerance threshold to accept Eru(tξ) as target utility and tξ is given by:

tξ = argmint∈[tc,ts](|Eru(t)−D(R(t), t)|) (13)

The rationality behind it is that if the agent rejects the “locally optimal” counter-offer,
the agent will probably loose the opportunity to reach a “globally good” agreement
(especially in discounting domains). If ξ > 1, û and t̂ are assigned to Eru(tξ) and tξ,
respectively. Moreover, the agent records the utility and time of its last bid as ul and tl,
respectively. Otherwise, the estimated utility is set to -1, meaning it does not take effect
anymore, and D(R(tc), tc) is used to set the target utility u′.

When the agent expects to achieve better outcomes (see Equation 9), the optimal
estimated utility û is chosen as the target utility for our agent’s future bids. Obviously,
it is not rational to concede immediately to û when ul ≥ û, nor should it shift to û
without delay given ul < û, especially because the predication may be not absolutely
accurate. To simplify the negotiation strategy, OMAC applies a linear concession making
and the concession rate is dynamically adjusted to grasp every chance to maximize its
profit. Overall, the target utility u′ is given as follows:

u′ =

{
D(R(t), t) if û = −1

û+ (ul − û) t−t̂
tl−t̂

otherwise
(14)

6 Response Mechanism

The response stage corresponds to lines 10 to 15 in Algorithm 1. With the target utility
u′ known (Equation 14), the agent then needs to examine the counter-offer to see if the
utility of that offer U(Oopp) is higher than the target utility. If so, it accepts this counter-
offer and, with that, terminates the negotiation session. Otherwise, the agent construct
a bid to be proposed next round whose utility is indicated by u′.



In multi-issue negotiation, offers with exactly the same utility for one side can have
different values for the other party. Moreover, in time-limited negotiation scenarios no
explicit limitation is imposed on the number of negotiation rounds and it is possible
to generate many offers having a utility close to u′. OMAC takes advantage of this
and aims at generating many offers in order to explore the space of possible outcomes
and to increase the acceptance chance of own bids. Specifically, offers are constructed
in such a way that the agent randomly selects an offer whose utility is in the range
[0.99u′, 1.01u′]. If no such solution is found, the latest offer made by the agent is used
again in the subsequent round. Moreover, in view of negotiation efficiency, if u′ drops
below the utility of the best counter-offer according to the agent’s utility function, this
best counter-offer is proposed by the agent as its next offer. This makes sense because
the counter-offer tends to satisfy the expectation of opponent and is thus likely to be
accepted by the opponent.

7 Conclusions and Future work

This paper introduced an effective negotiation agent called OMAC (“Opponent Model-
ing and Adaptive Concession”) for automated negotiation in complex – bilateral multi-
issue, time-constrained, no prior knowledge, low computational load, etc. – scenarios.
This agent, based on its efficient decision-making mechanism, achieved the joint third
place in ANAC 2012.

We think the experimental results justify to invest further research efforts into this
strategy and we see several interesting research questions. First, are there opponent
modeling techniques which are even more efficient than wavelet decomposition and
cubic smoothing spline? Second, are there techniques for concession rate adaptation
which are more accurate than the basic technique currently used? And third, can oppo-
nent modeling of OMAC, which currently focuses on modeling the opponent’s strate-
gies, be extended toward modeling the opponent’s preferences as well?
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