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Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug
discovery process. Existing methods consider mainly the chemical and biological characteristics of each
drug individually, thereby neglecting information hidden in the relationships among drugs. Com-
plementary to the existing individual methods, in this paper, we propose a novel network approach for
ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an
existing method to build a network of highly related drugs. Then, it augments the original drug network
by adding new nodes and new edges to the network and finally, it applies RandomWalks with Restarts to
predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the
existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of
generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A typical drug discovery cycle, from target identification to
clinical use, can take approximately 14 years [1] with an associated
cost of 800 million US dollars [2]. One of the main causes of failure
in the process of the drug development is the existence of Adverse
Drug Reactions (ADRs). ADRs are known as a serious clinical pro-
blems and are estimated to result in more than 2 million hospi-
talizations [3] and more than 100,000 deaths in the United States
per year [4]. Additionally, in case of serious ADR pharmaceutical
companies are forced to withdraw their drugs from the market,
which involves significant danger for patients, as well as major
financial implications to the companies involved. Therefore, pre-
dicting the ADRs prior to market introduction of the drug is
necessary and has been considered as a very challenging issue in
drug development.

Laboratory-based approaches for predicting and evaluating the
potential ADRs are very costly and time consuming. Therefore,
using computational approaches for early identification of poten-
tial ADRs in the drug discovery process gained much attention in
the recent years.

The general pattern for computational methods is as follows:
First, they consider different chemical and biological properties of
the drugs. Second, they transform the considered properties into
l (H. Rahmani).
numerical features. Third, they develop a systematic way of under-
standing, predicting and interpreting the desired and undesired
effects of drugs [5–16]. The main difference among these methods
lies in the type of properties they consider for the ADRs analysis.

In the most domains, more interesting knowledge can be
mined from the relationships among entities [17]. For example,
several studies [18–21] showed that considering the relationships
among different diseases reveals informative patterns and is
indeed useful for different prediction tasks. To the best of our
knowledge, most of the existing methods focus on each drug
individually neglecting the informative knowledge that could be
gained from the hidden relationships among different drugs.
However, there are some more recent approaches that follow
“similar drugs have similar ADRs” pattern and consider relation-
ships among drugs for predicting ADRs [22,23]. For example, Vilar
et al. [22] and Luo et al. [23] calculated similarity between two
drugs according to drugs’ 3D molecular structure and their dock-
ing profiles, respectively, to predict potential ADR for new drugs.

Extending upon previous approaches, we now in this work
consider also information hidden in the relationships among drugs.
We apply the previous method [24] (as described in Section 6.2) to
discover hidden relationships among drugs. Rahmani et al. [24]
consider target proteins of drugs, Protein–Protein Interaction (PPI)
networks, functional and structural information of PPI networks to
discover the most informative relationships among drugs and
accordingly, build a network among highly related drugs. Network
representation of relationships among drugs provides the unique
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opportunity to apply the successful off-the-shelf network-based
classifiers in other domains for predicting novel ADRs. The effec-
tiveness of the network approach for generating novel hypotheses
about drugs has been shown in previous studies [24–29].

In this paper, we explore methods implementing the network
approach for predicting the novel ADRs. We examine two classi-
fiers for this purpose. The first classifier is called the Majority Rule
Method (MRM) [30] and considers the ADR of neighboring drugs
in the network for the prediction. MRM has been used as a base-
line method in different domains [31–33]. Considering the lim-
itations of MRM, we propose a second classifier that is called
Augmented Random WAlk with Restarts (ARWAR). Our empirical
results show that ARWAR outperforms MRM significantly with
respect to Fmeasure and is capable of generating novel hypotheses
about ADR.

This paper is structured as follows: Section 2 discusses the
previous methods on ADR prediction. We model, formally, the task
of ADR prediction as a multi-label classification problem in Section
3. Section 4 discusses MRM and its limitations as one of the pro-
minent methods for the multi-label classification problem. We
describe our proposed ARWAR approach in details in Section 5. In
Section 6, a drug network is constructed and then evaluated in
terms of interpretability and novel ADR predictions. Section 7
concludes.
Fig. 1. Simple graph with node set V ¼ fv1 ; v2; v3; v4g and labeling set lðviÞ for each
node vi. MRM predicts fl1g for node v1 as it occurs most in the neighborhood of v1.
2. Background

Considering different types of input data, we categorize the
existing computational methods for the task of novel ADR pre-
diction into three categories.

The first category of methods tries to relate drug side-effects to
their chemical substructures [11,12,8,5]. Their results indicate that
side-effects of drugs are usually associated with the presence of
specific chemical substructures. However, their precision is highly
dependent on the pre-definition of chemical substructures. This is
true for specific toxic features, e.g. nitrogen mustards, but usually
toxicity depends on complex combination of substructures that is
not captured by these methods.

The second category of methods relates drug side-effects to its
protein targets [9,14,34]. Campillos et al. [9] propose a measure for
side-effect similarity by considering the relations among terms in
the Unified Modeling Language System (UMLS) ontology. Then,
they observe a clear correlation between side-effect similarity and
the likelihood that two drugs share protein targets. Finally, they
exploit this characteristic to predict novel target proteins for drugs.
Fukuzaki et al. [14] use cooperative pathways and gene expression
profiles to predict ADRs. Brouwers et al. [34] present the con-
tribution of Protein–Protein Interaction (PPI) networks to drug
side-effect similarities.

The third category of methods predicts drug side-effects by
integrating multiple data sources [10,13,35,36]. Yamanishi et al.
[10] describe each drug according to its chemical profile (an 881
dimensional feature vector where each element encodes for the
presence/absence of each PubChem chemical structure) and bio-
logical profile (an 1368 dimensional feature vector where each
element encodes for the presence/absence of each target protein).
Then, they apply different machine learning methods to predict
potential side-effect profiles for uncharacterized drugs. Huang
et al. [13,35] significantly improve the accuracy of ADR prediction
by integrating drug target data, PPI networks, drug structure and
Gene Ontology (GO) term annotations. Liu et al. [36] apply five
different machine learning methods, namely logistic regression
(LR), naive Bayes (NB), K-nearest neighbor (KNN), random forest
(RF), and support vector machine (SVM) on the integration of
chemical, biological and phenotypic (i.e., indications and other
known side-effects) properties. Then, they show that SVM out-
performs the other methods and phenotypic data are the most
informative for the ADR prediction. The latter conclusion can be
explained by the existence of high correlation among ADRs.
3. Problem statement

In this section, we model the task of ADR prediction as a
network-based multi-label classification problem. Consider an
undirected network G〈V ; E〉 with node set V and edge set E, where
each node viAV is annotated with a description dðviÞAD and,
optionally, a label lðviÞAL. We assume that there exists a “true”
labeling function λ from which l is a sample, i.e., lðvÞ ¼ λðvÞ where l
(v) is defined. The task of node classification [37] is to predict the
labeling set lðviÞ for each unclassified node vi. If j Lj ¼ 2 then the
classification problem is called binary classification while if j Lj42
then it is called multi-class classification. In case l(v) associated
with a set of labels YDL then the classification problem is called
multi-label classification [38].

In our Human Drug Network (HDN) (as described in details in
Section 6.2), each node viAV represents a drug and each edge eij
AE represents an relationship between two drugs vi and vj.
Description vector dðviÞ contains the available biological and che-
mical properties of drug vi. The labeling function lðviÞ returns a set
of ADR for drug vi (j lðviÞj4 ¼ 0). In this context, the task of a
multi-label classification is to generate a classifier H that, given an
unlabeled drug vj with description vector dðvjÞ, is capable of pre-
dicting the ADR associated to vj.

In the following sections, we discuss two network approaches
for predicting novel ADR considering relationships among drugs.
The first one is called Majority Rule Method (MRM) and has been
applied before in several domains [30–33], while the second
method is the Random-WAlk with Restarts (ARWAR) method
proposed here. Both methods take Human Drug Network, that is
partially annotated with ADR, as input and predict new ADR for
drugs in HDN as an output. We discuss both methods in the fol-
lowing sections.
4. Majority Rule Method (MRM) and its limitations

K-nearest neighbor (KNN) classifier considers the majority label
(s) of k nearest neighbors of unclassified input data in the classi-
fication process [39]. KNN is easy to implement, its results are easy
to interpret and it has been studied extensively in the literature
[40–42]. One specific graph implementation of KNN classifier is
called Majority Rule Method (MRM) [30] that assigns to each
unclassified node those labels that occur most frequently among
its neighbors in the graph. As an example, Fig. 1 shows the simple
graph with four nodes V ¼ fv1; v2; v3; v4g and labeling set lðviÞ for
each node vi. MRM predicts fl1g for node v1 as it occurs most in the
neighborhood of v1.

However, this method suffers from several limitations. First,
this method only considers the local neighborhood of the vi
ignoring the remaining information in the network. In Fig. 2, MRM
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cannot discriminate three labels l1, l2 and l3 from each other since
they all occur two times in the neighborhood of v1. However one
might prioritize l1 over fl2; l3g by considering the labeling infor-
mation of the second level neighboring nodes (node v5 in Fig. 2).

Second, MRM does not take into account the connectivity of the
neighboring nodes in the prediction process. In Fig. 3, independent
from the existence of edge e1, MRM cannot discriminate three
labels l1, l2 and l3 from each other. However, one might give more
priority to class label l1 since it is more reachable to unclassified
node v1.

Third, MRM does not consider the confidence of class labels in
the neighborhood of the unclassified nodes. In Fig. 4, all three
labels l1, l2 and l3 occurred two times in the local neighborhood of
v1 but one might consider l3 as class label with higher confidence
since it occurs in nodes with a smaller number of class labels. In
general, we assume that for one node, the confidence of its class
labels decreases as the number of class labels increases.
5. Augmented Random WAlk with Restarts (ARWAR)

Considering the limitations of MRM discussed in Section 4, in
this section, we propose a network-based multi-label classifier
that first augments the initial network by adding new nodes and
edges and then applies the Random Walk with Restarts method to
Fig. 2. MRM considers only the first neighborhood level and accordingly cannot
discriminate three labels l1, l2 and l3 from each other.

Fig. 3. MRM neglects the connectivity of neighboring nodes and accordingly can-
not discriminate three labels l1, l2 and l3 from each other.

Fig. 4. MRM neglects the confidence of class labels and accordingly cannot dis-
criminate three labels l1, l2 and l3 from each other.
predict novel ADRs. These steps are discussed in the following sub-
sections.

5.1. Augmenting initial network

In this section, we augment the initial (Human Drug) Network G
(which is formally described in Section 3) by adding new nodes and
edges to G. If L¼ fl1; l2;…; lng is the set of all considered ADR then,
for each liAL we add a new node li to G (V ¼ V [ fli}) and for each
annotated drug vj in which liA lðvjÞ, we add a new edge ei;j ¼ fvj; lig
connecting drug vj to ADR li (E¼ E [ feijg). As a result, if each drug vj
is annotated, on average, with k ADRs, then the augmented graph G0

will have jV j þ j Lj nodes and, on average, jEj þ jV jnK edges.

5.2. Applying Random Walk with Restarts

After augmenting the initial network, in order to predict the
novel ADR, we apply the steady state distribution of a Random
Walk with Restarts (RWR) technique [43] to calculate the network
similarity between each drug vi and each ADR lj. We simulate the
trajectory of random walker that starts from vi and moves to its
neighbors with uniform probability. We keep the random walker
close to the original node vi by allowing transition to the original
node with probability r as the restart probability. Formally, the
RWR technique can be represented by the following formula:

xkþ1’ð1�rÞAxkþcx0 ð1Þ
where xk denotes the proximity vector at iteration t (i.e., a vector
which contains the probability of reaching each node from vi in k
steps in the corresponding element). Therefore, x0 is a vector with
all elements being zero except the ith element which is one, and A is
the adjacency matrix. This formula is used iteratively to generate the
steady state RWR proximity vector (for more details refer to [43]).
6. Empirical results and discussion

6.1. Dataset

For each drug in the DrugBank [44] database, we extract its
side-effects from the SIDER (Side Effect Resource) [45] database
and then select 146 drugs that have at least 5 target proteins and 5
side-effects. The decision of focusing on elements with sufficient
annotation information has been addressed in the drug literature
[22,11,10]. Atias and Sharan [11] consider drugs with at least
2 ADRs. Vilar et al. [22] and Yamanishi et al. [10] consider ADRs
associated with at least 5 and 2 drugs, respectively. Target proteins
and side-effects of the 146 selected drugs are listed in [46] and
[47], respectively. In the final integrated dataset, each drug has, on
average, 11.6 target proteins and 134.7 side-effects.

6.2. Building a human drug network

Rahmani et al. [24] proposed a novel approach that takes drug
target proteins (seed proteins), Protein–Protein Interaction (PPI)
networks and functional annotation of proteins as input and dis-
covers informative relationships among drugs and accordingly,
builds a Human Drug Network (HDN) as output. No side-effect
information is used in the construction of the HDN. To construct
the HDN, Rahmani et al. [24] perform the following four steps for
each drug di:

1. let testSet contain the seed proteins of all drugs except di.
2. let trainSet contain all proteins not in testSet.
3. Rahmani et al. [24] learn a predictive model M from trainSet,

using the seed proteins of di as positive examples and all other
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proteins as negative examples. They then use M to predict for
each protein in testSet how likely it is targeted by di. For
randomized learners, they repeat this 10 times (otherwise just
1 time) and calculate for each pAtestSet the average, denoted
APV(p). There are many ways in which the predictive model M
can be learned from the PPI network. Based on the study on the
same PPI dataset [48], Rahmani et al. [24] choose a hybrid
prediction method which considers both Structural and Func-
tional information in the PPI network.

4. For each drug djADðja iÞ, they add an edge di-dj to the HDN
with a weight

weightðdi-djÞ ¼
P

pA SPðdjÞAPVðpÞ
jSPðdjÞj

ð2Þ

with jSPðdjÞj the number of seed proteins of dj.

This procedure is repeated for all drugs. The resulting HDN is a
directed, fully connected network in which each node is a drug
and each weighted edge shows a relationship between two drugs.
In order to focus on the most important relationships in the HDN,
Rahmani et al. [24] prune the network by keeping only the
highest-ranked edges.

We applied the same method to the PPI network used by
Milenkovic et al. [49]. This dataset is the union of three human PPI
datasets: HPRD [50], BIOGRID [51] and the dataset used by Radi-
vojac et al. [52] and contains 47,303 physical interactions among
10,282 proteins. Milenkovic et al. [49] provide details on the
construction of the integrated network. The GO functions of pro-
teins are extracted from [53]. As a result, there are 21;170ð146�
145Þ possible edges in the original Human Drug Network (HDN).
Each edge di-dj shows the average rank of seed proteins of dj
among all the proteins in the Test set using the seed proteins of di
as positive examples in the Train set. Train and Test sets have both
been described before (Steps 1 and 2 of building the HDN). The
lower average rank indicates stronger relationship between di and
dj, in comparison with other drugs. To select the most informative
relationships among drugs, first, we sort the edges according to
their score, in ascending order. The result is shown in Fig. 5. In this
figure, the X axis shows the 21,170 edges in the HDN and the Y axis
shows, for each edge di-dj, the average rank of the seed proteins
of dj (the smaller, the better). Second, we determine the candidate
cutoff points by discovering two turning points in Fig. 5, roughly at
9% and 92% of all edges. Finally, instead of analyzing the whole
HDN, we focus on the pruned HDN containing only the 1767
(9% of the original HDN) highest-ranked edges. This turns the fully
connected graph into a more informative, visualizable graph.
Fig. 5. HDN Edge Distribution. The X axis shows the 21,170 edges in the HDN and
the Y axis shows, for each edge di-dj , the average rank of the seed proteins (a set
of proteins which are known to be drug targets) of dj among all the proteins in the
Test set using the seed proteins of di as positive examples in the Train set. The lower
average rank indicates stronger relationship between di and dj, in comparison with
other drugs. (Refer to Rahmani et al. [24] for details). There are two turning points
in the curve, roughly at 9% and 92% of all edges.
Fig. 6 shows the pruned HDN using Cytoscape [54]. Addition-
ally, Table 1 shows the 20 highest-ranked relationships in the HDN
shown in Fig. 6.

Fig. 6 shows the Human Drug Network where three main
clusters can be observed, one in Fig. 6a and two smaller ones in
Fig. 6b. Interestingly, the top section of the cluster located in
Fig. 6a contains drugs that are known to interact with different G
protein-coupled receptors (GPCRs). These include ergotamine,
epinephrine, mirtazapine among others which bind mainly to
GPCRs of class A, e.g. serotonine, adrenergic, muscarinic, dopa-
mine, and histamine receptors. Many of the drugs in this cluster
present high degree of polypharmacology, i.e., they bind to many
different receptors and hence present several side-effects. On the
other hand, the bottom of Fig. 6a encloses a large number of
psychoactive drugs. Different benzodiazepines and barbiturates
Fig. 6. Pruned Human Drug Network including only 1767 highest relationships (9%
of the original network). It can be seen that GPCR ligands are grouped on the top
and GABA positive allosteric modulators are grouped at the bottom of panel a.
Panel b shows that kinase inhibitors are clustered together close to other anti-
cancer agents. Also, retinoids are grouped in lower section of the figure. The bio-
logical significance of the observed findings is discussed in Section 6.2. The original
Cytoscape file of HDN is available at [55].



Table 1
The 20 highest-ranked relationships in the Human Drug Network shown in Fig. 6. It
can be seen that ARWAR method found a strong relationship between benzodia-
zepines and anesthetic agents.

Index Drug 1 Drug 2

1 Acitretin Adapalene
2 Clonidine Labetalol
3 Enflurane Flumazenil
4 Enflurane Alprazolam
5 Enflurane Clobazam
6 Enflurane Chlordiazepoxide
7 Enflurane Meprobamate
8 Lorazepam Flumazenil
9 Lorazepam Alprazolam
10 Lorazepam Clobazam
11 Lorazepam Chlordiazepoxide
12 Lorazepam Meprobamate
13 Etomidate Flumazenil
14 Etomidate Alprazolam
15 Etomidate Clobazam
16 Etomidate Chlordiazepoxide
17 Etomidate Meprobamate
18 Clonazepam Flumazenil
19 Clonazepam Alprazolam
20 Clonazepam Clobazam
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can be located in this region including lorazepam, bromazepam,
clobazam, phenobarbital, pentobarbital, etc. These drugs are
commonly used to treat anxiety disorders, insomnia, seizures but
also present side-effects such as sedative effects and muscle
relaxation [56]. Both barbiturates and benzodiazepines act as
positive allosteric modulators of the GABAA receptor. In other
words they enhance the action of a neurotransmitter called
gamma-aminobutyric acid (GABA) [56]. In the same section of the
figure we can find anesthetic compounds such as halothane,
sevoflurane and enflurane, which also act as positive GABAA
allosteric modulators. Although is not surprising that all these
GABAA ligands produce a similar sedative effect, it is encouraging
that these structurally unrelated compounds were grouped toge-
ther based on their side-effects.

The cluster located on the top of Fig. 6b shows a set of four
kinase inhibitors namely, imatinib, sorafenib, sunitinib and dasati-
nib [57]. These compounds are known to inhibit multiple kinases
and hence present similar side-effects during cancer therapy [58].
For instance, Davis et al. showed in a recent kinome profiling study
that 32 kinase sequences are inhibited by the four kinase inhibitors
mentioned before and another 47 kinase variations are target by at
least three of the four inhibitors [59]. The most common shared
targets of the four inhibitors include ABL1, ABL2, KIT, PDGFRA,
PDGFRB among others. The large number of shared targets is not
surprising as the four compounds bind to a highly conserved region
across the kinome, i.e., the ATP binding site. Close to this cluster, we
find tamoxifen and arsenic trioxide, two drugs also used in the
cancer chemotherapy. In the lower part of Fig. 6b there is cluster
containing acitretin and adapalene. Both are retinoids that help to
normalize epithelial cell cycle and differentiation [60]. As retinoids,
both compounds present a similar structure to vitamin A (retinol),
especially acitretin that contains the polyene side-chain and a polar
group. The flexibility given by the polyene chain allows Vitamin A
and acitretin to bind several retinoid receptors and hence present
similar side-effects as proposed by the network. ADRs presented by
synthetic retinoids include skin irritation, mucocutaneous toxicity
hyperglyceridemia among others, which are associated with the
retinoid receptors, and not surprisingly are similar to the symptoms
of chronic Vitamin A intoxication [61]. Apart from the common
ADRs, the shared targets among retinoids, such as RXRs, also confer
common indications such an anti-inflammatory effect. It is known
that many retinoids present anti-inflammatory effects although the
mechanism of action is not completely understood [62,63]. This was
captured by the network by joining acitretin and adapalene with
other anti-inflammatory drugs such as sulfasalazine, indomethacin
and ibuprofen. Moreover, acitretin and adapalene are linked to
progesterone and troglitazone, two drugs with different medical
prescriptions that also present anti-inflammatory effects [64,65].
These results support the idea that ARWAR is robust enough to find
the link between compounds regardless of their main target or
medical prescription.

Table 1 shows the highest-ranked drug relationships in the
network. In the first place we found acitretin and dapalene. As
discussed before, both compounds are retinoid derivatives, pre-
sent similar therapeutic effect in the regulation of epithelial cells
and anti-inflammatory activity. The interaction between clonidine
and labelatol occupies the second place of the top ranked inter-
actions. Labelatol acts as an adrenergic antagonist by blocking the
binding of epinephrine or norepinephrine to the α1 receptor. On
the other hand, clonidine is an agonist of α2 receptor, which
inhibits the release of norepinephrine. Both compounds are used
to treat high-blood pressure due to their antiadrenergic effects, i.e.,
inhibit signals of epinephrine or norepinephrine. All the relation-
ships ranked between position 3 and position 20 are between
GABAA agonist. These include the relationships between different
anesthetic agents (etomidate and enflurane) and benzodiazepines
in good accordance with Fig. 6. Overall, these results support the
idea that clustering drugs based on ADRs provides different
information compared to methods relying on the chemical struc-
ture or biological targets.

6.3. Augmenting the initial Human Drug Network

Our original HDN shown in Fig. 6 contains 1767 relationships
among 128 drugs. Following the steps described in Section 5.1, we
augmented the original HDN by adding 4192 nodes, representing
the side-effects and 17,977 edges, connecting each drug to its
related side-effects. As a result, the final augmented graph con-
tains 4320 nodes and 19,744 edges.

6.4. Comparing ARWAR with MRM

We next compared our proposed ARWAR method, discussed in
Section 5, with MRM, discussed in Section 4, with respect to leave-
one-out cross validation (LOOCV). LOOCV is the particular case of
cross validation where a single node from a network is considered
as a validation data, and the remaining nodes as the training data.
We repeated this process for each node in the graph data and we
averaged the N (¼number of the examined nodes) results to
produce a single estimation.

Following the LOOCV, we applied MRM and ARWAR to predict
Xð ¼ 10;20;…;100Þ side-effects for each drug vi. The result of
comparing ARWAR and MRM is shown in Fig. 8. Our ARWAR
method outperforms MRM, on average, 20% with respect to aver-
age Fmeasure. Formula (3) defines Fmeasure with respect to Pre-
cision and Recall that are defined in Formulas (4) and (5), respec-
tively:

Fmeasure¼ 2nPrecisionnRecall
PrecisionþRecall

ð3Þ

Precision¼ tp
tpþ fp

ð4Þ

Recall¼ tp
tpþ fn

ð5Þ

where tp, fp and fn denote the number of true positives, false
positives, and false negatives, respectively and are defined in Fig. 7.



Fig. 8. Comparing ARWAR with MRM in predicting Xð ¼ 10;20;…;100Þ drugs side-
effects using leave-one-out cross validation (LOOCV). The ARWAR method out-
performs MRM, 20% with respect to average Fmeasure.
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Applying paired t-test results in p-value r0:000001 which
indicates that MRM and ARWAR methods are significantly
different.

6.5. Predicting novel side-effects for drugs

In this section, we predicted novel side-effects for each drug
shown in Fig. 6 using the ARWAR method discussed in Section 5.2.
Then, we sorted the novel side-effects based on their prediction
scores, in descending order. Table 2 shows 20 novel side-effects
with the highest prediction scores. The list of 200 novel predicted
side-effects is available in [66]. Usually, it is not straightforward to
give a direct interpretation of side-effects as many of these are
caused by the action on unknown targets. Nevertheless, some of
the side-effects predicted in Table 2 have a direct biological
interpretation. This is the case of phenoxybenzamine which is an α
receptor antagonist used to treat hypertension. The vasodilatation
of blood vessels caused by this drug, which drops blood pressure,
can activate nocireceptors and cause headache [67]. In a similar
way, the predicted side-effect of halothane and enflurane can be
explained as an effect of blocking NMDA receptors [68]. It is
known that these two compounds are antagonist of NMDA
receptors, which have been associated with ataxia and can pro-
duce a dissociative state. Another example of side-effects pro-
duced by off targets is hypotension caused by ergotamine. It has
been reported that ergotamine is a potent inhibitor of α1 and α2
Fig. 7. Definition of true positive (TP), false positive (FP), false negative (FN) and
true negative (TN) in a binary classification.

Table 2
20 novel side effects predicted for drugs with the highest scores. Many of the
predicted side effects have a biologically meaningful explanation (see main text for
details).

Index Drug New side-effect

1 Enflurane Ataxia
2 Halothane Ataxia
3 Halothane Drowsiness
4 Cocaine Fatigue
5 Dipivefrin Fatigue
6 Ergotamine Fatigue
7 Cocaine Headache
8 Halothane Headache
9 Phenoxybenzamine Headache
10 Chlordiazepoxide Hypotension
11 Cocaine Hypotension
12 Dipivefrin Hypotension
13 Epinastine Hypotension
14 Ergotamine Hypotension
15 Primidone Hypotension
16 Clobazam Nausea
17 Phenobarbital Nausea
18 Phenoxybenzamine Pain
19 Chlordiazepoxide Vomiting
20 Oxazepam Vomiting
receptors (pKi α1¼8, pKi α2¼8.2) [69]. As discussed before,
antiadrenergic agents (α receptor antagonist) are used to treat
high-blood pressure and hence hypotension could be expected as
a side-effect. Hence, overall it can be seen that ARWAR is a pow-
erful method to predict side-effects that, in some cases, can be
associated with specific targets.
7. Conclusions and future work

One of the main causes of drug failure not only in the market,
but also during clinical studies (before drugs come to the market),
is the existence of serious Adverse Drug Reactions (ADRs).
Accordingly, much attention has focused on ways to detect, and
predict, Adverse Drug Reactions as early as possible during dis-
covery and development. To the best of our knowledge, most of
the existing methods for ADR prediction focus on each drug
individually, predicting ADRs based on the chemical and biological
properties of a drug. However, we strongly believe that there is an
informative knowledge in the relationships among drugs that
could be taken into consideration for the ADR prediction process.
To discover the relationships among drugs, we applied the method
proposed by Rahmani et al. [24] to our dataset and we succeed to
discover 1767 relationships among 146 drugs. Next, domain
experts manually confirmed (in Section 6.2) the accuracy and
biologically meaningfulness of the predicted relationships. Having
found the informative drug–drug relationships and accordingly,
build a network among highly related drugs, then we were able to
examine different multi-label network-based classifiers. Con-
sidering the main limitations (discussed in Section 4) of existing
classifiers, we proposed an Augmented Random WAlk with
Restarts (ARWAR) method that is capable of resolving the short-
comings of the previous method, outperforming the Majority Rule
Method (MRM) by 20% with respect to average Fmeasure and
predicting novel and biologically meaningful side-effects, even for
drugs with no initial side-effect information in the SIDER [45]
database. The main limitation of our proposed method is that the
proposed method by Rahmani et al. [24] may not discover infor-
mative relationships for drugs with a limited number of target
proteins and accordingly, the performance of our proposed
ARWAR method decreases in such cases. In addition to this, the
ARWAR method only is capable to identify general side effects
associated directly associated with the drug structure or phar-
macological effect, but overlooks idiosyncratic drug reactions (also
known as type B) or those associated with allergies. This limitation
results from the fact that allergies and many idiosyncratic reac-
tions are patient-dependent, this information not taken into
account in this method.
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Regarding future research induced by our work, we see two
important directions for refinement and extension of our
approach. First, further exploration of possibilities for extensive
validation of the achieved results. We have already discussed and
validated our results in Sections 6.2 and 6.5 using literature
mining, however, validation of the findings is still challenging and
needs separate clinical studies. Second, by further analysis of the
augmented graph, we could cluster side-effects according to their
graph connectivity and then use the co-cluster information to
predict more precise and complete set of ADRs. Additionally, we
could use the augmented graph to relate the side-effects to other
biological elements such as the target proteins of drugs or Gene
Ontology (GO) of the target proteins.
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