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Abstract

The evolution of cooperation in social networks, and the
emergence of these networks using simple rules of attach-
ment, have both been studied extensively although mostly in
separation. In real-world scenarios, however, these two fields
are typically intertwined, where individuals’ behavior affect
the structural emergence of the network and vice versa. Al-
though much progress has been made in understanding each
of the aforementioned fields, many joint characteristics are
still unrevealed. In this paper we propose the Simultane-
ous Emergence and Evolution (SEE) model, aiming at uni-
fying the study of these two fields. The SEE model combines
the continuous action prisoner’s dilemma (modeling the evo-
lution of cooperation) with preferential attachment (used to
model network emergence), enabling the simultaneous study
of both structural emergence and behavioral evolution of so-
cial networks. A set of empirical experiments show that the
SEE model is capable of generating realistic complex net-
works, while at the same time allowing for the study of the
impact of initial conditions on the evolution of cooperation.

Introduction
Understanding the dynamics of networked interactions is of
vital importance to a wide range of research areas. For ex-
ample, these dynamics play a central role in biological sys-
tems such as the human brain (Bullmore and Sporns, 2009)
or molecular interaction networks within cells (Barabási and
Oltvai, 2004); in large technological systems such as the
word wide web (Easley and Kleinberg, 2010); in social net-
works such as Facebook (Backstrom et al., 2011; Ghanem
et al., 2012; Ugander et al., 2011); and in economic or finan-
cial institutions such as the stock market (Chapman et al.,
2012; Jackson, 2008). Recently, researchers have focused
on studying the evolution of cooperation in networks of self-
interested individuals, aiming to understand how coopera-
tive behavior can be sustained in the face of individual self-
ishness (Hofmann et al., 2011; Nowak and May, 1992; San-
tos and Pacheco, 2005; Ranjbar-Sahraei et al., 2014).

Many studies have targeted the discovery of structural
properties of networks that promote cooperation. For in-
stance, Santos and Pacheco (2005) show that cooperation
has a higher chance of survival in scale-free networks; Oht-

suki et al. (2006) find a relation between the cost-benefit ra-
tio of cooperation and the average node degree of a network
that determines whether cooperation can be sustained; and
Van Segbroeck et al. (2010) look at heterogeneity and clus-
tering to find that these structural properties influence behav-
ior on the individual rather than network-wide level. Others
have focused on the role of the particular interaction model
between neighboring nodes in determining the success of
cooperation. For example, Hofmann et al. (2011) simulate
various update rules in different network topologies and find
that the evolution of cooperation is highly dependent on the
combination of update mechanism and network topology.
Ranjbar-Sahraei et al. (2014) propose a mathematical model,
based on control theory, that allows individuals to choose
their actions from a continuous range between pure defec-
tion and pure cooperation, and show that this model leads
to a higher degree of cooperation than the traditional binary
choice models. Control theory is also used by Bloembergen
et al. (2014) aiming at ways of influencing the behaviors in
social networks.

These studies have assumed the network to be fixed,
looking only at the evolution of cooperation over time.
In contrast, real-world social networks are not fixed, but
continuously change as individuals make and break their
ties (Kossinets and Watts, 2006). To this end, Zimmermann
and Eguı́luz (2005) and Santos et al. (2006) allow individu-
als to choose with whom to interact, e.g. by giving them the
possibility to break ties with ‘bad’ neighbors and replacing
them with a random new connection, and show that such
a mechanism may promote cooperation. However, these
works still assume a network to be in place, only modify-
ing the connections between nodes over time.

Here, we investigate what happens when nodes are added
to the network during interaction. Specifically, we start
with an empty network, and add a new node at each time
step. Simultaneously, the existing nodes in the network in-
teract following the Continuous Action Iterated Prisoner’s
Dilemma (CAIPD) model of Ranjbar-Sahraei et al. (2014).
New nodes are attached following preferential attachment.
Usually, preferential attachment is assumed to follow the



Barabási-Albert model (Barabási and Albert, 1999) where
links are formed to existing ones proportional to their de-
gree. However, in many social scenarios it intuitively makes
sense to look at other individuals’ performance rather than
their degree when determining with whom to interact - con-
necting with high performing individuals may give you an
edge. We empirically compare both methods of preferential
attachment, looking at the structure of the networks formed
in detail.

This paper proceeds as follows. First, relevant back-
ground is provided on networks and game theory, and
an overview of the continuous action iterated prisoner’s
dilemma (CAIPD) model and preferential attachment is
given. These lay the foundation for the proposed Simultane-
ous Emergence and Evolution (SEE) model that is detailed
thereafter. Finally, empirical evaluations highlight the prop-
erties of the proposed model.

Background
This section provides background knowledge needed for the
remainder of the paper. Firstly, preliminaries on the theory
of networks and games are given, constituting the founda-
tion for the model of the evolution of cooperation used in
this work. Hereafter, the continuous action iterated prison-
ers dilemma (CAIPD) is introduced. Finally, preferential
attachment, used for the generation of Scale Free (SF) net-
works, is detailed.

Networks
Networks describe collections of entities (nodes) and the re-
lation between them (edges). Formally, a network can be
represented by a graph G = (V,W) consisting of a non-
empty set of nodes (or vertices) V = {v1, . . . , vN} and an
N ×N adjacency matrixW = [wij ] where non-zero entries
wij indicate the (possibly weighted) connection from vi to
vj . IfW is symmetrical, such that wij = wji for all i, j, the
graph is said to be undirected, meaning that the connection
from node vi to vj is equal to the connection from node vj
to vi. In social networks, for example, one might argue that
friendship is usually mutual and hence undirected. This is
the approach followed in this work. In general however this
need not be the case, in which case the graph is said to be
directed, and W asymmetrical. The neighborhood, N, of a
node vi is defined as the set of nodes it is directly connected
to, i.e. N(vi) = ∪jvj : wij > 0. The node’s degree deg[vi]
is given by the cardinality of its neighborhood.

Several types of networks have been proposed that capture
the structural properties found in large social, technological
or biological networks, two well-known examples being the
small-world and scale-free models. The small-world model
exhibits short average path lengths between nodes and high
clustering, two features often found in real-world networks
(Watts and Strogatz, 1998). Another model is the scale-
free network, characterised by a heavy-tailed degree distri-

bution following a power law (Barabási and Albert, 1999).
In such networks the majority of nodes will have a small
degree while simultaneously there will be relatively many
nodes with very large degree, the latter being the hubs or
connectors of the network. For a detailed description of net-
works and their properties, the interested reader is referred
to Jackson (2008).

Game Theory
Game theory models strategic interactions in the form of
games (Gibbons, 1992). Each player has a set of actions,
and a preference over the joint action space that is captured
by the received payoffs. The goal for each player is to come
up with a strategy (a probability distribution over its actions)
that maximizes his expected payoff in the game. A strategy
that maximizes the payoff given fixed strategies for all op-
ponents is called a best response to those strategies. The
players are thought of as individually rational, in the sense
that each player purely tries to maximize his own payoff,
and assumes the others are doing likewise. However, this
reasoning might not always lead to a beneficial outcome for
everyone, and might even be detrimental to all players in the
game. Often, there is tension between individual rationality
on the one hand, and social welfare on the other.

This archetypal dilemma is aptly captured by the Pris-
oner’s Dilemma (Axelrod and Hamilton, 1981). In this one-
shot interaction, players simultaneously choose between ei-
ther cooperation or defection, after which payoffs are dis-
tributed based on their joint action. Cooperation is costly,
however cooperators distribute benefits among the other
players. Defectors do not pay a cost, but do receive bene-
fits from cooperators as well. In this game, defection (free-
riding) is a best response against any opponent strategy, and
therefore individually rational players can be expected to
defect. However, if all players would cooperate their dis-
tributed benefits would outweigh the cost of cooperation,
and hence all players would be strictly better off. Herein
lies the dilemma.

In this work the players are nodes in the network, re-
peatedly playing a game with their neighbors. The players
have no knowledge of the underlying game, however this re-
peated interaction allows for adaptation, i.e. to learn a better
strategy over time based on the payoff received. The game
used in this paper is a generalization of the classical Pris-
oner’s Dilemma, in that the players can have a continuous
strategy defining their level of cooperation rather than a bi-
nary choice, and payoffs are calculated accordingly. The
dilemma, however, remains.

Continuous Action Iterated Prisoner’s Dilemma
The continuous action iterated prisoner’s dilemma (CAIPD)
is a mathematical model of the evolution of cooperation on
complex social networks, proposed in Ranjbar-Sahraei et al.
(2014). The model describes how the individuals in the net-



work, placed on the nodes, interact with their neighbors ac-
cording to the aforementioned prisoner’s dilemma. Cooper-
ators incur a cost c for each interaction, while their neighbor
receives a benefit b with b > c. Defectors free-ride, in the
sense that they do not pay costs while still receiving benefits
from cooperative neighbors.

Formally, in CAIPD the individuals in a network are rep-
resented by N vertices vi ∈ V for i = {1, . . . , N} on a
weighted graph G = (V,W). The characteristics of the
graph G are described by the symmetrically weightedN×N
adjacency matrixW = [wij ]. Namely, the connections be-
tween the ith and jth individual are denoted bywij ∈ {0, 1}
with all wii = 0. The latter prevent individuals from self-
interaction. In contrast to other existing models, CAIPD al-
lows individuals to choose their level of cooperation from a
continuous range between pure cooperation and pure defec-
tion, rather than a binary choice between those. This choice
is captured by the individuals’ state variable xi ∈ [0, 1]. A
value of xi = 0 corresponds to pure defection while xi = 1
represents pure cooperation; however x can take on any ar-
bitrary value between those extremes. Extending the pris-
oner’s dilemma to account for this continuous nature of co-
operation, a player pays a cost cxi while the opponent re-
ceives a benefit bxi, again with b > c. This way a defector
(i.e., xi = 0) pays no cost and distributes no benefits. Then,
the fitness of player i can be calculated as:

fi = −deg[vi]cxi + b

N∑
j=1

wijxj (1)

where deg[vi] denotes the number of neighbors of the indi-
vidual vi. Each player observes how well their neighbors
are doing, and will then take over one of their neighbors’
strategies with some probability based on their respective
fitness difference. In particular, player i adopts the strategy
of neighbor j with probability

pij = wij · sigmoid(β(fj − fi)) (2)

where sigmoid(x) = 1
1+exp(−x) , and β is a parameter vary-

ing the opponents’ influence on individual i.
A network with a state x and topology G is defined as

Gx = (G,x) with x = [x1, x2, . . . , xN ]T representing the
state of each node in the network. Such a network Gx can
then be regarded as a dynamical system, where x evolves
with respect to time. This evolution depends on a nonlinear
mapping

ẋ = [h1(x), . . . , hN (x)]T. (3)

Specifically, the dynamics of the ith player are described by

hi (x) =
1

deg[vi]

 N∑
j=1

pij (xj(t)− xi(t))

 (4)

where deg[vi] denotes the number of neighbors of player i
(i.e., the degree of node vi); xi and xj denote the current co-
operation level of players i and j, respectively; and pij rep-
resents the probability with which player i adopts the strat-
egy of player j, as defined in Equation 2. For a detailed
description of the CAIPD model, the interested reader is re-
ferred to Ranjbar-Sahraei et al. (2014).

The CAIPD model is more general than other existing
models, in that is can be used to model the evolution of co-
operation on arbitrary complex social networks. Moreover,
the continuous nature of the model, allowing for a degree of
cooperation rather than a binary choice, is better suited to
model many real-world problems (Killingback and Doebeli,
2002). Finally, the deterministic nature of the mathemati-
cal model makes it computationally less complex, allowing
to study a wider range of scenarios. For these reasons, we
adopt this model in the current paper as well.

Preferential Attachment
The preferential attachment model was proposed by
Barabási and Albert to explain the power-law degree dis-
tribution that is present in many complex real-world net-
works (Barabási and Albert, 1999). This model is based
on the assumption that, in many social settings, the chance
of making new connections grows proportionally with the
number of connections that you already have (also known
as the rich-get-richer phenomenon). The Barabási-Albert
model simulates this by growing the network over time,
adding one new node at a time, and linking it to a fixed num-
ber of existing nodes, these being chosen proportionally to
their current degree. Specifically, starting from an initial net-
work of m0 nodes, at every time step one new node is added
to the network. The new node forms m < |m0| connections
to existing nodes, where the probability pi that the new node
connects to existing node vi is proportional to its degree:

pi =
deg[vi]∑
j deg[vj ]

. (5)

Preferential attachment generates a long-tailed degree distri-
bution following a power-law:

P (k) ∼ k−α

with k denoting the degree of the nodes. The power-law ex-
ponent for the Barabási-Albert model is α = 3; in compar-
ison, many real-works complex networks have been shown
to lie in the range 2 ≤ α ≤ 4 (Barabási and Albert, 1999;
Newman, 2005).

It is worth noting that although the Barabási-Albert model
is a well known model for generating scale-free graphs, in-
dividual properties of the nodes other than their degree are
typically not taken into account. In real world scenarios,
however, both structural as well as behavioral properties af-
fect the preferential attachment process. For instance, in a



co-authorship network, new authors may indeed have a ten-
dency to team up with existing authors that already worked
together with many others (i.e., high degree nodes, a struc-
tural property), but will also consider paper quality, number
of citations, etcetera (i.e., individual behavioral properties).

In this work, we adapt the preferential attachment model
of network growth to take behavioral properties into account
when forming new links, where the behavior itself follows
the dynamics of the CAIPD model. This approach of Simul-
taneous Emergence and Evolution (SEE) is detailed next.

Simultaneous Emergence and Evolution
Aiming at a unification, the Simultaneous Emergence and
Evolution (SEE) model incorporates two evolutionary pro-
cedures. The first is concerned with the evolution of behav-
iors in the network, which follows from the CAIPD model.
The second deals with the construction of the network itself.
Here, preferential attachment is used. Contrary to previous
works, however, the links that each new individual forms
with existing nodes depend on the current fitness of those
nodes under the CAIPD dynamics, rather than on their de-
gree. Next, an in-depth description of the SEE algorithm is
presented.

The SEE Algorithm
Starting from m initially connected individuals, new nodes
are added one at a time. The initial state of these m nodes,
as well as of each new node, are set randomly to either pure
defection or pure cooperation with equal probability. Each
new node is connected to m existing ones with a probability
proportional to the fitness of the existing nodes, computed
according to Equation 1. The connection probability pi (i.e.,
the probability that a new node is connected to i) is defined
as

pi =
fi∑
j fj

(6)

where fi is the fitness of node i and the sum runs over all
N pre-existing nodes j = 1, 2, . . . , N . Therefore, nodes
with high fitness tend to quickly accumulate more neighbors,
while nodes with low fitness are unlikely to be chosen as the
connector for a new node. An upper limit size of Nmax is
defined. This ensures that the network halts its expansion
after reaching size Nmax.

In parallel to the structural emergence of the network, the
CAIPD model is used to evolve the individual behaviors of
the existing nodes. At each iteration, the adjacency matrix
W is updated. Fitnesses are then computed according to
Equation 1. These new fitness values are then used to up-
date the state of each node, and therefore of the network as
a whole, using the dynamical model of Equations 3 and 4.
This is in practice performed with an adequately small step
size. The SEE model allows to vary the update rates of both
evolutionary processes independently. For example, the be-
havior of the individual nodes might evolve faster or slower

0

(a) iteration 1

0

1

(b) iteration 2

0

1

2

(c) iteration 3

0

1

2

3

(d) iteration 4

0

1

2

3

4

(e) iteration 5

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14 15

16

17

18

19

20

21

22

23
24

25

(f) iteration 25

Figure 1: Emergence and evolution of a network according
to the SEE model. Node size reflects individual’s fitness and
its color denotes the state (red for defection to green for co-
operation). The direction of arrows shows how individuals
influence each other.

than the rate at which new nodes are added. This ratio be-
tween the update rate of the behavior and the update rate of
the network is defined by REvo, such that when at each time
step k a new node is added, the CAIPD model progresses
REvo steps.

Illustration of SEE for a Sample Network
In this section an illustration of the SEE model on a sample
network is presented. Initially, there is just one node with
pure defection state x0 = 0, as depicted in Figure 1(a). At
the second iteration, Figure 1(b), a cooperating individual
is entering the environment (i.e. individual 1), and gets at-
tached to the defector (i.e., individual 0). At this stage, the
defector acquires some benefits from the cooperator, while
imposing a cost on the cooperator. This results in a higher
fitness for the defector than the cooperator (depicted using
the node size in the figure).

For further illustration, Figures 1(c)-1(e) show the attach-
ment of three more individuals with defecting or cooperating
states (chosen randomly) after joining the network. In par-
allel to this network emergence, individuals influence each
other as described by the CAIPD model, resulting in a si-
multaneous evolution of their behavior. Figure 1(f) shows
the structure and behavioral state of the network after the
25th iteration.
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Figure 2: Sample network topologies generated by the SEE model (a) and (b) for m = 1 and (c) for m = 2, after 1000
iterations. The state and degree of the individuals are denoted by the color (red for pure defection to green for pure cooperation)
and size of the nodes. The cumulative degree distribution of each network, shown as blue dots, shows how close this network
follows a power law curve, shown as red line, with exponent α.

Experiments and Results
In this section we first illustrate sample networks gener-
ated using the proposed SEE model, and show the scale-free
characteristics that emerge. Hereafter, the cumulative degree
distribution of 8000 different networks generated for 8 dif-
ferent settings of the SEE model will be studied in detail by
computing the power law exponent in these networks. Fi-
nally, the evolution of cooperation resulting from the pro-
posed SEE model is compared to the standard Barabási-
Albert model of preferential attachment. In all experiments,
the upper limit for network size is set to Nmax = 1000. The
number of links added for each new individual, m, is set to
either 1 or 2 (indicated where applicable). In the CAIPD
model the step size is 0.1; b = 4, c = 1 and β = 1.

Sample Networks Generated by the SEE Model
Consider an evolution ratio REvo of 1 in a network that ini-
tiates from a single individual which is set initially to either
pure defection or pure cooperation. When applying the SEE
model, various different network structures can be expected
to emerge, as there is stochasticity involved in both initial-

ization of the nodes’ states and their attachment. Three sam-
ples of such networks are illustrated in the top portion of
Figures 2(a)-(c).

In order to study whether the networks generated by the
SEE model follow a power law degree distribution, the cu-
mulative degree distribution, i.e., the number of nodes with
degree greater than or equal to k, of the sample networks in
Figures 2(a)-(c) are shown on a log-log scale1. The results
indeed show a power-law degree distribution with exponent
close to α = 2.5 for the sample networks in Figure 2. Next,
we study the average cumulative degree distribution of net-
works generated by the SEE model in more detail.

Degree Distribution in the SEE Model
In this section, we provide an empirical study on a large
number of different networks generated using the proposed
SEE model. We analyse different settings for REvo, ranging
from 0.05 (slow evolution) to 2 (fast evolution). Figures 3(a)

1The cumulative distribution of a power law distribution is
also power law but with an exponent α − 1, i.e.,

∫
cx−α =

c
1−αx

−(α−1), where c is the power law coefficient
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Figure 3: Cumulative Degree distribution of nodes for dif-
ferent evolution rates. The gray region contains the power
law distributions corresponding to the scale free networks
with exponent α = 2.5 and different coefficients of the
power law.

and (b) show the average cumulative degree distribution of
these networks for m = 1 and m = 2, respectively. For
each combination of settings, the SEE model is run 1000
times, with initial nodes randomly set to either cooperation
or defection, and the results are averaged.

It can be observed from Figures 3(a) and (b) that the
networks that emerged using the SEE model, on average,
largely follow a power law degree distribution with exponent
close to α = 2.5. When evolution is slow (i.e., REvo → 0)
the power law is less clearly present, in particular towards
the high end of the degree distribution. A possible explana-
tion is that, as the CAIPD evolution slows down, the fitness
of the nodes gets updates less frequently as there are fewer
interactions. Hence, having more neighbors does not imme-
diately translate to a potential higher fitness.

To get a more detailed insight, the distribution of the ex-
ponent of power law distribution that is fit to the constructed
networks is illustrated in Figures 4(a)-(d) and 4(e)-(h) for
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Figure 4: Distribution of the power law exponent for vari-
ous evolution ratios in the SEE model.

m = 1 and m = 2, respectively. These figures show that the
SEE networks with slow evolution rates exhibit power law
degree distribution with exponents 1 < α < 5 (i.e., some
of the networks fall outside the range of typical real-world
complex networks). Increasing the evolution ratio shrinks
the range of α values that are observed and centers their dis-
tribution around α = 2.5, yielding realistic scale-free net-
works. Moreover, it is interesting to note that a bifurcation
seems to take place when REvo decreases (in Figures 4(a),
(b) and (e)): the distribution of power law exponents splits
into two parts with their mass centered around 2 and 4. This
phenomenon warrants a closer inspection in future work.

SEE model vs. Barabási-Albert model
In the previous section the scale-free characteristic of the
SEE model was studied and it was shown that the degree
distribution of these networks follows a power law degree
distribution with α ≈ 2.5. In this section we study the influ-
ence of the SEE model on the evolution of behavior in the
network. We compare the proposed SEE model, which uses
preferential attachment based on fitness (see Equation 6),
with the standard Barábasi-Albert model that uses the de-
gree (see Equation 5). For all experiments, NMAX = 1000,
and the evolution ratio REvo is set to 1.

Figures 5(a) and (b) show the evolution of cooperation
under the SEE model, specifically the figures show the fi-
nal cooperation level in the network depending on whether
the initial nodes where either defectors or cooperators. Sim-
ilarly, Figures 5(c) and (d) show the same results when the
Barábasi-Albert (B-A) model is used for the preferential at-
tachment. It is clear from these figures that the final coop-
eration level in the network greatly depends on the initial
state of the first individuals. When the initial nodes are co-
operators, the network tends to cooperate to a large (> 0.5)
degree, whereas the situation reverses when the initial nodes
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(b) SEE Model, m = 2
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Figure 5: Final degree of cooperation as a function of the
initial members’ state in the SEE model in (a) and (b) and
the Barábasi-Albert (B-A) model in (c) and (d). The colors
indicate the state of the initial members: blue for coopera-
tors, and yellow for defectors.

are defectors. This effect is most clear under the SEE model,
where a large fraction of the networks eventually reaches
either a high (≈ 1) or low (≈ 0) degree of cooperation.
When preferential attachment according to Barábasi-Albert
is used, this effect is less strong. Here we observe a broad
mix of final cooperation levels; moreover the divide between
initial cooperators and initial defectors is less clear.

Clearly, the above results demonstrate that final agree-
ments depend on the initial state of the first individuals in
the network. This phenomenon is manifested in both the
SEE and the Barábasi-Albert model. Having proposed a
generalized and formal framework for analysing evolution
of cooperation and network emergence, this aspect consti-
tutes a major direction in our future work, where SEE can
be used to acquire analytical conclusions describing the ef-
fects of such a dependence.

Conclusions
The recent interest to study social networks and their behav-
ior has led to many studies, which can roughly be divided
in two streams. The first stream has studied the emergence
of these networks, and has in particular tried to find gen-
erative models that can explain certain structural properties
of real-world complex networks, such as a scale-free degree
distribution. The second stream of research has focussed on
the evolution of behavior on such networks, when the nodes
represent individuals that interact according to some rules.
Most notably, interest has been in the evolution of coopera-

tion in social networks, aiming to identify properties of both
the network and the interactions that sustain cooperation.

This paper aims to unify these two streams, by studying
the simultaneous evolution of behavior on a social network,
and the structural emergence of the network itself. The
Simultaneous Emergence and Evolution (SEE) model pro-
posed in this paper combines a modified version of prefer-
ential attachment, used to generate scale-free networks, with
the continuous action iterated prisoner’s dilemma (CAIPD)
model, describing the evolution of cooperation. Using the
proposed model, a number of different networks, emerging
from different initial conditions, have been studied. It has
been shown that the SEE model yields realistic scale-free
networks, despite the fact that the preferential attachment is
based on individual’s fitness rather than degree.

Moreover, results show that that both structural emer-
gence and behavioral evolution are intertwined, mutually in-
fluencing each other, and should therefore be studied in tan-
dem. Aiming at a better understanding of such phenomena,
the SEE model provides a fundamental and general frame-
work that allows the analysis of these processes as they co-
evolve.

An interesting direction for future work is to include the
possibility of rewiring as well in the SEE model, whereby
existing nodes may break or create links at any time.
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