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13.1 Introduction

Recent years have seen an increasing interest in nature-inspired modeling for solving

complex computational problems in disciplines at the intersection of computer sci-

ence, robotics, and economics. An interesting natural phenomenon is the coordination

behavior that can be observed in colonies of social insects such as ants and bees. For

instance, recent work shows a strong potential in creating artificial systems that mimic

insect behavior for solving complex coordination tasks such as, e.g., routing on the

internet, mobile ad hoc network routing, robotic tasks (Lemmens and Tuyls, 2012;

Dressler and Akan, 2010; Floreano and Mattiussi, 2008). These insects have evolved

over a long period of time and display remarkable behaviors that are highly suitable

for addressing the complex tasks that they are facing. Swarm optimization algorithms,

like ant colony optimization (ACO) (Dorigo et al., 2006b), rely on pheromone trails to

mediate (indirect) communication between agents. Such insect-inspired multi-agent

research has also opened the possibility of applying some of these techniques to

robotic systems, i.e., swarm robotics (Dorigo and Roosevelt, 2004; Şahin, 2005).

Swarm robotic systems are motivated by a wide range of application areas, such as

for instance surveillance and patrolling, where mobile guarding robots are considered

as an alternative and improvement over fixed security cameras and even humans.

Other application areas include exploration and identification of hazardous environ-

ments (e.g., nuclear plants and fire detection), mobile sensor networks, wireless sensor

and robot networks, space exploration, etc.

Though easy to simulate, artificial pheromones are hard to bring into real life robotic

applications as pheromones need to be deployed and sensed by robots while they decay

over time. Recently, non-pheromone-based algorithms were developed as well

(Lemmens, 2011). Such algorithms are inspired by the foraging and nest-site selection

behavior of (mainly) bees. Generally speaking, bees explore the environment in search

for high-quality food sources, and once returned to the hive, they start to dance in order

to communicate the location of the source. Using this dance, bees recruit other colony

members for a specific food source. The more bees adopt a certain transportation path,

the more bees will eventually perform the same dance. Since few dances will not attract

enough bees, the best transportation path will eventually prevail.

We draw inspiration from these insect behaviors with the goal to create emergent

intelligent systems for distributed coordination that can be deployed in real-world set-

tings on physical platforms. One of the physical platforms we will consider in this

chapter is the e-puck robot that has moderate resources such as limited sensing, com-

putation, and actuation capabilities (Mondada et al., 2009). Another platform we will
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consider is the Turtlebot robot that has more extensive resources, contains advanced

cameras and carries a general purpose computer (Willow Garage, 2014). We will

overview some of our multi-robot swarm experiments in this chapter using simula-

tions and the real robotic platforms, e-puck and Turtlebot robots. Finally, we will

describe how the future trend of swarm robotics is moving toward heterogeneity

among robots in a swarm.

The remainder of this chapter is structured as follows. Section 13.2 provides the

required background on biological inspirations used in this chapter and reviews the

related work in the areas of coordination in multi-robot systems. Section 13.3 describes

the ant-inspired coordination principle, whereas Section 13.4 shows bee-inspired coor-

dination principles and is split into two parts: (1) Section 13.4.1 covers the foraging

behavior of honeybees and (2) Section 13.4.2 exploits pheromone signaling process in

honeybees. Future trends of bio-inspired coordination on multi-robot platforms are pre-

sented in Section 13.5. Themain conclusion of this research is presented in Section 13.6.
13.2 Background

This section provides the required background knowledge to understand the remainder

of this chapter. It is divided into two main parts: Section 13.2.1 explains underlying bio-

logical inspirations of ant and bee colonies in detail, whereas Section 13.2.2 discusses

related work on coordination and coverage in multi-robot and distributed network sys-

tems (e.g., sensor nets) based on bio-inspired principles.
13.2.1 Biological inspirations

This section provides the required background knowledge of three different biological

inspirations used in this chapter. We start by introducing stigmergic behavior of ants,

continue with foraging behaviors of honeybees, and end with the pheromone signaling

mechanism for queen bee selection within honeybee colonies.

13.2.1.1 Stigmergic behavior of ants

Most of the research in swarm intelligence revolves around the behavior of ants

(Dorigo and St€utzle, 2004; Dorigo and Blumb, 2005; Dorigo et al., 2006b). The prin-

ciple is simple yet elegant: ants deposit a pheromone trail on the path they take during

travel. Using this trail, they are able to navigate toward their nest or food and com-

municate with their peers. More specifically, ants employ an indirect recruitment

strategy by accumulating pheromone trails.When a trail gets strong enough, other ants

are attracted to it and will follow this trail toward a food destination. The more ants

follow a trail, the more pheromone is accumulated and, in turn, the trail becomes more

attractive for being followed. This is known as the autocatalytic process. Since long

paths take more time to traverse, it will require more ants to sustain a long path. As a

consequence, short paths will eventually prevail (see Figure 13.1a). We explain the

details of stigmergic coordination algorithm in Section 13.3.
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Figure 13.1 Biological inspiration (a) ants exploring two paths; the shortest path prevails. (b)

Honeybee waggle dance communicating a PI vector. (c) Lévy flight and path integration.
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13.2.1.2 Foraging behavior of honeybees

Foraging honeybees display two types of behavior, i.e., recruitment and navigation. In

order to recruit other colony members for food sources, honeybees inform their nest

mates of the distance and direction of these food sources by means of a waggling

dance performed on the vertical combs in the hive. This dance (i.e., the bee language)

consists of a series of alternating left-hand and right-hand loops, interspersed by a seg-

ment in which the bee waggles her abdomen from side to side. The duration of the

waggle phase is a measure of the distance to the food. The angle between the sun

and the axis of a bee’s waggle segment on the vertical comb represents the azimuthal

angle between the sun and a target location, i.e., the direction in which a recruit should

fly (see Figure 13.1b and c). Other members of the colony can adopt the “advertise-

ment” for a food source. The decision mechanism for adopting an “advertised” food-

source location by a potential recruit is not completely understood. It is considered that

the recruitment among bees is a function of the quality of the food source.

Different species of social insects, such as honeybees and desert ants, make use of

non-pheromone-based navigation. Non-pheromone-based navigation mainly consists

of Path Integration (PI), which is the continuous update of a vector by integrating all

angles steered, and all distances covered (Collett et al., 1998). A PI vector represents

the insect’s knowledge of direction and distance toward its destination. To construct a

PI vector, the insect does not use a mathematical vector summation, but employs a

computationally simple approximation (Collett et al., 1998). Using this approxima-

tion, the insect is able to return to its destination directly. More precisely, when the

path is unobstructed, the insect solves the problem optimally. However, when the path

is obstructed, the insect has to fall back on other strategies such as exploration or land-

mark navigation (Cheng et al., 1987; Collett et al., 2002) to solve the problem. Obvi-

ously, bees are able to fly, i.e., when they encounter an obstacle, they can mostly

choose to fly over it. However, even if the path is unobstructed, bees tend to navigate

over the entire path using landmarks. The landmarks divide the entire path into seg-

ments and each landmark has a PI vector associated with it. This behavior decreases
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navigation errors and ensures robustness. We refer to a home-pointing PI vector as a

Home Vector (HV). PI is used in both exploration and exploitation. During explora-

tion, insects constantly update their HV. It is however not used as an exploration strat-

egy. During exploitation, the insects update both their HV and the PI vectors

indicating the food source and use these vectors as guidance to a destination.

Section 13.4.1 defines foraging-inspired robot coordination algorithm in details.
13.2.1.3 Pheromone signaling behavior of honeybees

The queen bee selection mechanism in honeybee colonies is used to orchestrate the

colony by assigning responsibilities to each individual. Roberts (1986) explains the

process of larvae differentiation in beehives as an example of such orchestration. Bees

have developed a special hormonal system to ensure every beehive has a queen, which

maintains the stability of the colony and orchestrates the behavior of all other bees.

Throughout its life, a queen bee stimulates a pheromone called Queen Mandibular

Pheromone (QMP), which makes the worker bees aware of its presence as a queen.

This hormonal mechanism works as follows: the worker bees lick the queen bee

and pass the pheromone on to the others. If there is no pheromone passed through

the worker bees anymore, this will be an indicator that the queen is dead or has dis-

appeared. In that case, emergency queen cells will be created and workers will select a

larva to be fed with large amounts of the royalactin protein (Roberts, 1986). That pro-

tein induces the differentiation of honeybee larvae into a new queen. If worker bees

keep receiving the pheromone, they will be aware that there is a queen bee to orches-

trate the colony and will take no action toward building emergency queen cells.

We describe our BeePCo algorithm in detail based on the analogy described in

Table 13.1 (see Caliskanelli et al., 2014). Accordingly, the role of queen bee denotes

a robot that is responsible for managing the execution of all service requests it

receives. Throughout Section 13.4.2, we will refer to such a robot as Queen Robot

(QR). They can dynamically differentiate from other robots to indicate their duties

for redundancy control (by tuning the pheromone level parameter). However, for

the BeePCo algorithm presented in this chapter, we allow all the robots to be QRs

and we focus on using pheromones as a way of indicating covered arena area rather

than role differentiation for redundancy control (unlike in our previous work on

WSNs; Caliskanelli et al., 2012b).
Table 13.1 Correlation between bees’ pheromone stimulation
and multi-robot systems

Bee’s pheromone stimulation Multi-robot systems

Queen bee Robot responsible for processing services

Worker bees Robots

Pheromone level Parameter used for queen robot selection

Lifetime of bee Operation lifetime of the robot
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13.2.2 Related work

This section gives an overview of relevant literature that has described, analyzed, and

deployed bio-inspired coordination techniques for multi-robot systems. It is split into

three main parts: we start with a generic definition of the multi-robot coverage prob-

lem and overview some examples, we continue by providing significant examples of

ant inspired and bee-inspired techniques that are used to solve complex problems (i.e.,

MAC level routing, load balancing, task allocation and resource scheduling, network

coverage, etc.) in the broad research area of autonomous, distributed, and networked

systems.
13.2.2.1 Coordination and coverage techniques

The concept of coverage is a metric for evaluating robotic systems, which was first

introduced by Gage (1992). He defined three basic types of coverage: blanket cover-

age, in which the objective is to achieve node formation, which maximizes the total

detection area; barrier coverage, which aims to minimize the probability of undetected

intrusion through the barrier; and sweep or repetitive coverage with the goal to cover

all accessible interest points in a given environment over time, while maximizing the

rate of visits over all points and minimizing the total distance traveled by all robots.

Blanket coverage is most common for the deployment of mobile sensor networks in

an unknown environment; the sensor nodes are initially placed in a compact config-

uration, where the nodes are trying to spread out such that the area covered by the

network is maximized. One example for such a use case is a hazardous material leak

in a damaged structure. Mobile sensor nodes equipped with chemical sensors spread

out from an initial position to gather information about location and concentration of

the hazard. Due to the fact that the communication infrastructure could be damaged,

the nodes have to insure their own network structure even if single nodes get lost or

destroyed.Many approaches in this field are based on the potential field technique first

introduced by Khatib (1985).

Barrier and repetitive coverage problems originate from the computational geom-

etry Art Gallery Problem (El-Sherbeny, 2010) and its variant for mobile guard, the

Watchman Route Problem (Packer, 2008).

In robotics, repetitive-coverage can be described as a problem where a team of

robots has to visit multiple points of interests (POI) in a known environment fre-

quently, to perform certain tasks. The goal of such algorithms is to keep the average

visit frequency over all POIs high, while achieving a minimal total traveled distance

and a balanced workload over all robots. Typical real-world use cases for such prob-

lems are patrolling, lawn mowing and chemical spill cleanup.

Another important form of multi-robot coverage is terrain coverage or multi-robot

exploration. It can be defined as a problem where a robot tries to visit each and every

location in a continuous bounded unknown environment by avoiding obstacles and

perform defined tasks as proposed by Correll and Martinoli (2006), Gabriely and

Rimon (2003), and Pirzadeh and Snyder (1990). A terrain coverage algorithm must

generate a coverage path, which is a chain of motion steps for a robot; the optimal
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coverage path takes minimal time and guarantee to cover the entire terrain and per-

form the task efficiently.
13.2.2.2 Ant-inspired techniques

Ant-based multi-robot coverage is highly inspired by the notion of stigmergic com-

munication introduced by Dorigo (1992). The basic idea underlying this form of com-

munication is that pheromones are used as a medium for transmitting messages among

artificial ants. During the past few years, variants of Dorigo’s method, known as ant

colony optimization, have been developed, and it has been shown that it allows for

very efficient distributed control and optimization in a variety of problem domains

(Dorigo et al., 2006a). Wagner et al. (1999) were the first, who invested stigmergic

multi-robot coordination for covering/patrolling the environment. In their approach,

the robots were supposed to be able to (1) deposit chemical odor traces and (2) eval-

uate the strength of smell at every point they reach. Based on these assumptions, they

used robots to model an unmapped environment as a graph, and they proposed basic

graph search algorithms (such as Depth-First-Search and Breadth-First-Search) for

solving robotic coverage problems. Many other researchers used this graph-based

modeling scheme in order to design solutions for multi-robot patrolling/covering

problems, e.g., Elor and Bruckstein (2009, 2010), Glad et al. (2008, 2010), and

Yanovski et al. (2003).

In contrast to the mentioned graph-based techniques, a geometrical framework can

also be used for addressing the swarm robotic coverage problem. One of the most

important geometric techniques is Voronoi-based coverage that has been introduced

for solving robot coverage problems (e.g., see Cortes et al., 2004, 2005; Schwager

et al., 2011, 2009). These Voronoi-based techniques aim at devising coverage algo-

rithms, which work according to the following basic rule: Each vehicle moves toward
the center of its Voronoi region. Based on this rule, many researchers have proposed

modified covering approaches, which are adaptable to changes in the environment and

are provably convergent (e.g., Schwager et al., 2009; Breitenmoser et al., 2010). How-

ever, all these geometrical algorithms require a group of robots with the capability of

direct communication and in most of the cases also need very complex mathematical

computations (e.g., calculating margins and center of mass for an individual Voronoi

region), which limits their potential real-world usage. In Section 13.3, we show how

robots can use stigmergic and Voronoi-like coverages with a very simple technique.

Another related research topic is focused on the “real” implementation of stigmer-

gic communication in real-world experiments. For example, chemical substances such

as ethanol (C2H5OH) are used instead of natural pheromones by Fujisawa et al. (2008).

However, with recent developments in communication technology, electrical devices

such as Radio Frequency Identification Devices (RFIDs) have gained much interest

for such applications. Johansson and Saffiotti (2009) and Herianto et al. (2007) used

RFIDs for mapping and exploring an unknown environment. Moreover, Ziparo et al.

(2007) proposed a coordinated exploration and multi-robot SLAM for large teams of

rescue robots by using RFIDs as environment features.
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13.2.2.3 Bee-inspired techniques

Bee Colony Optimization (BCO) was introduced independently by Lemmens et al.

(Lemmens et al., 2007a,b; Lemmens and Tuyls, 2012) and by Karaboga et al.

(Karaboga, 2010; Karaboga and Basturk, 2008). Unlike ACO (which is only inspired

from the notion of stigmergic communication), scientists are inspired byvarious behav-

iors of bees: foraging behavior in Lemmens et al. (Lemmens et al., 2011; Lemmens,

2011), Beehive protocol (Wedde et al., 2004), BeeSensor (Saleem and Farooq,

2007), bees mating procedure (Senthilkumar and Chandrasekaran, 2011; Sahoo

et al., 2013), and pheromone signaling mechanism in PS (Caliskanelli et al., 2013).

Karaboga et al. (Karaboga, 2010; Karaboga and Basturk, 2008) introduced the

Artificial Bee Colony (ABC) algorithm in which bees represent the search agents

and their environment represents the potential solutions. In their work, the high-quality

candidate solutions represent a pollen source which encourages further exploration of

the region by additional bee agents. In the networking context, protocols have been

developed in which network packets are treated as biologically inspired agents.

Karaboga et al. improved their technique in Akay and Karaboga (2009) by tuning its

parameters and modifying their initial work (Karaboga and Basturk, 2007). In the

Beehive protocol (Wedde et al., 2004), packets search for efficient routes through an

IP network in a process modeled after the foraging behavior of bees. Similar work tar-

geted specifically atWSNs isBeeSensor (SaleemandFarooq, 2007) inwhich routing is

performed via classes of packets following different types of bee behavior: for example

as scouts and foragers. The redundancy introduced by BeeSensor is capable of increas-

ing the proportion of delivered packets compared toAODV (Perkins and Royer, 1999),

although it experiences increased latency due to the possibility for bee packets to select

suboptimal routes during exploration. A general framework through which a set of

biological agents can attempt to simultaneously satisfy multiple possibly conflicting

objectives (such as latency, energy efficiency, and delivery success in a WSN) is

provided inMONSOON (Boonma and Suzuki, 2008). Previous work has also mapped

the bee colonymodelmore directly toWSNhardware,with individual nodes represent-

ing individual bees, status within the hive corresponding to node responsibilities, and

signaling chemicals corresponding to data packets.

Recent work has applied bee protocols specifically to WSN load balancing

(Senthilkumar and Chandrasekaran, 2011), which is inspired by the bees mating pro-

cedure. This approach focuses on cluster set-up communication overheads by restrict-

ing the communications with bee mating election algorithm. Removing the redundant

communications inside the cluster increases the successful delivery ratio while

decreasing the latency.

Caliskanelli et al. explore the pheromone signaling mechanism in honeybee colo-

nies in Caliskanelli et al. (2012a, 2013) to solve the load balancing (i.e., to distribute

the network load among processing elements) and redundancy control issues in large-

scale WSNs. Caliskanelli and Indrusiak improved their parameter-rich technique in

Caliskanelli and Indrusiak (2013a) by tuning its parameters and modifying their initial

work (Caliskanelli et al., 2013). Later on, they applied pheromone signaling process

on WSRNs (Wireless Sensor Robot Networks) in Caliskanelli and Indrusiak (2014).
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13.3 Ant-inspired multi-robot coordination

This section describes the concept of Ant-Inspired Multi Robot Coordination,

stigmergy, and introduces an interesting case study called Stigmergic Coverage

(StiCo), which is based on the principle of ants’ pheromone-based communication.

This case study includes the multi-robot coordination principle, simulations, experi-

ments, and also the modeling of StiCo.

In stigmergic coordination, the environment is used as a medium to transfer infor-

mation among agents: agents deposit traces in the environment in order to send

different types of signals, encoded with the source location, to the other agents.

The accumulation of traces in the environment provides a shared memory, which

allows memoryless simple agents to coordinate easily, while agents might not have

any self-awareness of other agents. Furthermore, the use of stigmergic communication

allows for coordination among agents of different types, as well studied by Dorigo

et al. (2012) in the Swarmanoid project and also adopted to explain the softly

heterogeneous swarms by Ranjbar-Sahraei et al. (2013a). In short, the use of stigmer-

gic communication results in high robustness and adaptability, an extremely easy

implementation at the microscopic level and yet very efficient at the macroscopic

level.
13.3.1 Case study

The StiCo approach follows the principle of indirect, stigmergic coordination to estab-

lish a simple but efficient coverage of the environment. In contrast to the classical

stigmergic coordination in Ant System (AS), where (1) agents have a tendency to

move straight with minor deviations and (2) traces act as sources of attraction, in StiCo

robots orbit in circles, instead of moving straight, and the traces have repulsive char-

acteristics instead of attracting the agents. These two differences turn the path-finding

characteristic of AS into efficient area coverage of StiCo.

The robustness, scalability, and functional extensibility (see the work by Ranjbar-

Sahraei et al., 2012a) make StiCo an interesting alternative to Voronoi-based and

graph-based multi-robot coverage approaches, which currently are dominant in the

field. Moreover, because of these features, StiCo has a broad application potential.

The multi-robot coverage experiment can be used for various monitoring, rescue,

and patrolling missions.
13.3.1.1 StiCo principle

In StiCo, robots are equipped with two simple sensors (in the front-left and front-right

directions like an ant antenna), capable of detecting immediate traces. Each robot

orbits in a circle with a predetermined radius. Based on the circling direction (CW

or CCW), one sensor would be considered as the interior sensor and the other one

as the exterior one. When the interior sensor detects pheromone, the robot changes

its circling direction immediately as shown in Figure 13.2a–c. Otherwise, if exterior
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Figure 13.2 StiCo coordination principle: (a) Robots circle around. (b) The right robot detects

pheromone. (c) The right robot changes circling direction.
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sensor detects pheromone, the robot continues rotating in the same direction until it

does not detect pheromone anymore. The amount of pheromone deposited by each

robot can practically be adjusted based on pheromone evaporation rates, in a way that

robots do not collide with their own pheromones. For further information on StiCo

principle, see the work by Ranjbar-Sahraei et al. (2012c).
13.3.1.2 Simulation of StiCo

In order to demonstrate the performance of StiCo, first we translate the previously

mentioned rules into an algorithm as shown in Algorithm 1.

The StiCo algorithm is simulated with identical robots in a 40 m�40 m field. The

linear velocity of each robot is 2 m/s, and the angular velocity is set to�1.0 rad/s.

Further details of the simulation environment are provided by Ranjbar-Sahraei

et al. (2012b). The coverage algorithm for 40 robots that move based on StiCo is illus-

trated in Figure 13.3.

In order to demonstrate potential capabilities of this simple algorithm, we consider

a nonconvex unknown environment as shown in Figure 13.4a. This environment can
(a) (b)

Figure 13.3 Evolution of StiCo in a simple environment (blue shadows are deposited traces).

(a) Initial snapshot. (b) Final snapshot.
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Figure 13.4 Evolution of StiCo in a complex environment. In this simulation, artificial

pheromones are deposited on the margins of obstacles to make them detectable for robots.

(a) Initial snapshot. (b) Intermediate snapshot. (c) Final snapshot.
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represent a devastated area after earthquake or a street map in an emergency condition.

Forty robots are initiated at the center of the environment. The coverage steps are illus-

trated in Figure 13.4a–c.
13.3.1.3 Experiments on StiCo

Motivated by the technique proposed by Kronemann and Hafner (2010), Ranjbar-

Sahraei et al. (2013b) have designed a test bed as shown in Figure 13.5. This test

bed provides the capability of stigmergic communication to the robots of a swarm.
Figure 13.5 Darkroom with glow-in-the-dark floor, where the e-puck robots circle around and

emit UV light onto the floor.
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Algorithm 1 StiCo algorithm

Require: Each robot can deposit/detect pheromone trails
Initialize: Choose circling direction (CW/CCW)
loop
while (no pheromone is detected) do

Circle around
deposit pheromone

end while
if (interior sensor detects pheromone) then

Reverse the circling direction
else

while (pheromone is detected) do
Rotate

end while
end if

end loop

In this setting, the floor is covered by a glow-in-the-dark foil (i.e., a foil covered by

phosphorescent material, which absorbs UV light and reemits the absorbed light at a

lower intensity for up to several minutes after the original excitation), and robots are

equipped with UV-LEDs pointing toward the floor. Therefore, as robots move around,

they leave glowing trails behind themselves. Furthermore, for detection of these trails,

in contrast to the simple method used by Kronemann and Hafner (2010), in which

photosensors were used to detect glowing trails, the e-puck’s on-board camera is used

to detect the trails. By capturing an image and applying a green filter to it, the detailed

pattern of green trails in the image are extracted and these patterns are used to measure

the presence of trail and also its density over different locations.

Implementation of the StiCo coverage approach with real robots is shown in

Figure 13.6a–f.
Figure 13.6 Vision-based stigmergic coverage using glowing trails. (a)–(c) Three robots

converging into a stable configuration and forming three singular territories. (d)–(f) Five robots

converging into a stable configuration and forming five singular territories.
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13.3.1.4 Mathematical modeling of StiCo

Due to the simplicity of StiCo’s rules for individual robots and the overall complex,

yet efficient, behavior of the swarm, many of the classical modeling techniques such

as the state-space representation (e.g., used by Ranjbar-Sahraei et al., 2014, to model

behaviors in a social network) cannot be used. Instead, the probabilistic modeling

techniques studied by Martinoli et al. (2004) and Lerman et al. (2005) are the best

fit to such swarm robotic systems.

Ranjbar-Sahraei et al. (2013d) proposed to consider the number of singular robot

territories (i.e., the circular region bounded with a single robot traces) as the perfor-

mance criterion for StiCo. Let us define the state Cn, n¼1, 2,. . .,M for the case that

there are n singular territories in the environment. Then, we need a mathematical

expression to compute the probability of transition from state Cn1 to state Cn2, in

one iteration. This probability is denoted by Pn1,n2. The first step for computing prob-

ability Pn1,n2 is to partition a general state Cn to all of its possible configurations (the

word partition refers to a concept of number theory). The configuration Cn
Ta1,Ta2, ...,Tak

denotes a configuration in state Cn, in which Tai denotes existence of one ai-tuple in
the configuration. If we define Qn(K) as the probability that a swarm be in state Cn in

K-th iteration, then the discrete state transition model can be written as
Q1 K + 1ð Þ
Q2 K + 1ð Þ

..

.

QM K + 1ð Þ

2
6664

3
7775¼

P1,1 � � � PM,1

..

. . .
. ..

.
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2
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3
75

Q1 Kð Þ
Q2 Kð Þ

..

.

QM Kð Þ

2
6664

3
7775 (13.1)

omputing P , , which is the transition from Cn to Cn�1, the chance that a sin-
For c n n�1

gular territory becomes a member of a double group should be computed. Let L(M, n)
be a function that computes number of possible configurations of M territories, in

which exactly n of them are singular. Then, consider the t-th configuration of Cn as
Cn
T1,T1, ...,T1|fflfflfflffl{zfflfflfflffl}

n

,T2,T2, ...,T2|fflfflfflffl{zfflfflfflffl}
rt

,Ta1t ,Ta2t , ...,Takt
(13.2)

probability for transitions from the t-th configuration of Cn to one of the config-
The

urations of Cn�1, Cn+1, and Cn+2 are computed as Pn,n�1, Pn,n+1, and Pn,n+2, respec-

tively. Finally, if we ignore the probability for transition from Cn state to the states Ci,

in which i<n�1 or i>n+2, then the probability for remaining in the same state is
Pn,n ¼ 1�Pn,n+ 1�Pn,n + 2�Pn,n�1 (13.3)

der to check the conditions of fundamental Ergodic Theorem for Markov chains
In or

on Pmatrix, these conditions are simply explained as: (1) P should be stochastic: The

values of P must be within the range (0, 1) and each column (or row) sums to 1. (2) P
should be irreducible: From each state of our system, it must be possible to get to any

other state. (3) P should be aperiodic: The graph represented by P should not be
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Figure 13.7 Model verification (a) convergence probability in different iterations (MM:

Macroscopic Model, CS: Computer Simulations, RE: Real Experiments). (b) Effects of swarm

size on convergence time.
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bipartite. The first condition holds based on the fact that each probability is in the

range of (0, 1), and Equation (13.3), which shows each column sums to 1. The two

other conditions can be easily checked with constructing the graph represented by

P. Therefore, P is a Markov chain, which can denote a stationary configurationY
¼ lim

i!1
Pi �Q 0ð Þ, where Q(0) can be any initial probability distribution for initial

configuration.
13.3.1.5 Comparison of model, simulations, and experiments

Three groups of 4, 8, and 20 robots are initialized at the center of an environment. For

each group, the probability of being in the final stationary configuration, Q(�), is first
computed using the macroscopic model, then computed by using computer simula-

tions, and finally by using real robot experiments. The results of computing the con-

vergence probability are illustrated in Figure 13.7a. The presented results show that

the macroscopic model can estimate the behavior of StiCo for robotic swarms of var-

ious sizes. As shown in Figure 13.7b, the convergence speed of StiCo increases lin-

early with growth of the swarm population.
13.4 Bee-inspired multi-robot coordination

This section describes our bee-inspired multi-robot coordination algorithms and is

split into two parts. Section 13.4.1 presents foraging behavior-inspired approach,

whereas Section 13.4.2 explains the pheromone signaling-inspired approach to solve

multi-robot coordination problem.
13.4.1 Bee-inspired biomimicry foraging

In this section, we describe the bees foraging behavior-inspired algorithm, and we

illustrate the direct usage of the principles of foraging inspired coordination in swarm

intelligence on multi-robot systems. For this set of experiments, we use two types of
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robot systems: (1) robots with limited resources (e-pucks) and (2) robots with

extended resources (Turtlebots). Furthermore, we present results of these two imple-

mentations on both robot platforms, discuss the use of sensors for robot localization,

camera and video processing for object detection, and the means for having local

communication between robots. For further details about our foraging coordination
approach, please see Alers et al. (2011, 2013a,b, 2014b,c) and Lemmens et al. (2011).
13.4.1.1 Case study

In our approach, recruitment behavior is implemented in analogy with biological bees’

dance behavior. Agents share information on previous search experience (i.e., the

direction and distance toward a certain food source) only when they are in the hive.

Agents in the hive can then decide whether to exploit previous search experience

obtained from other agents in the hive, or to exploit their own search experience, if

available. As mentioned earlier, bees use an unknown decision mechanism to decide

whether to exploit another bee’s experience.

The general structure of our bee-inspired algorithm is quite similar to that of algo-

rithms in ASs. It implements both recruitment and navigation behavior and consists of

three functions.
13.4.1.2 Bee-inspired algorithm

First, a procedure calledManageBeesActivity() handles agents’ activity based on their

internal state. Each agent is in one of six internal states. In each state, a specific behav-

ior is performed. Agent state “AtHome” indicates that the agent is located at the hive.

While in this state, the agent determines to which new state it will go. Agent state

“StayAtHome” also indicates that the agent is located at the hive. However, while

in this state it will remain there unless there is previous search experience available

to exploit. Previous search experience is represented by a PI vector indicating a food

source. If such experience is available, the agent will leave the hive to exploit the pre-

vious search experience. Agent state “Exploitation” indicates that the agent is exploit-

ing previous search experience. An agent either exploits its own search experience or

acquires a PI vector from other agents inside the hive. The agent determines which cell

to move to in order to match the PI vector indicating the food source. Agent state

“Exploration” indicates that the agent is exploring its environment in search for food.

Agent state “HeadHome” indicates that the agent is heading home without carrying

any food. The agent reaches home by following its Homing Vector (HV). The HV

is a PI vector indicating the hive. From the moment an agent starts its foraging trip,

this HV is continuously calculated for each agent. Agent state “CarryingFood” indi-

cates that the agent has found food and that it is carrying the food back toward the hive.

The agent’s return path depends on the same HV as with agent state “HeadHome.”

Next come the experiments, which show how a group of real robots can coordinate

using bee-inspired algorithm.
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13.4.1.3 Experiments using robots with limited resources (e-pucks)

The bee foraging experiments show the effectiveness of the embodied foraging behav-

ior in a swarm of e-pucks. In Figure 13.8, we present the stages that the experiment

goes through. The goal of the experiment is to show that each separate behavior actu-

ally works in an embodied swarm. Therefore, the experiment starts with a swarm of

e-pucks surrounding the hive (see Figure 13.8a). Figure 13.8b shows the stage in

which a portion of the swarm starts foraging while others remain around the hive,

waiting for the information to exploit. Figure 13.8c presents the situation in which

an exploring e-puck finds food and returns to the hive by using its constructed PI

vector. Once returned to the nest, the e-puck communicates its PI findings by means

of a virtual dance. The hive collects these experiences and offers these to recruits.

Finally, Figure 13.8d gives the situation in which other e-pucks communicated

with the hive and have attained the PI vector toward the food source and are traveling

to the food source guided by this PI vector. A demonstration movie can be found

online.1
Experiments using robots with extended resources (Turtlebots)
In this set of experiments, we introduce the swarm robotics with extended resources.

These swarms use general purpose computers, high quality and advanced video cam-

eras, 3D sensors for mapping (e.g., laser range finders), accurate wheel encoders that

make enhanced odometry possible, fused data of accelerometers, and a gyroscope.

The Turtlebot platform is a robot with extended resources. This robot is equipped

with a laptop with core-i3 CPU for computation that is running the Robot Operating

System2 framework. As a main sensing unit, the Turtlebot is equipped with a Kinect

sensor. The full RGBD information is used to detect and locate ARmarkers. For static

obstacle detection, we only use the depth information of the sensor together with three
(a)
Hive Hive Hive Hive

Food Food Food Food

(b) (c) (d)

Figure 13.8 The four stages of Biomimicry Foraging. (a) All robots start at the nest location.

(b) The robots randomly disperse through the environment looking for a food location. (c) A robot

that has found food returns to the nest location by the shortest possible path. (d) The food location

is communicated to other robots and they start to exploit this food source.

1 http://swarmlab.unimaas.nl/papers/bnaic2011demo/.
2 http://www.ros.org/.

http://swarmlab.unimaas.nl/papers/bnaic2011demo/
http://www.ros.org/
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bumpers that are located in the front half of the robot. Furthermore, the robot estimates

its position by integrating the wheel odometry and gyro information. Hence, nomap of

the environment is built and the only known reference point is the target location

marker. This can lead to the problem that if the odometry is faulty, the robot does

not always find the target location back. As a solution, the robots fall back into a search

mode, if this is the case. Another solution could be to implement a Northstar-like nav-

igation system, by providing a fixed frame of reference, which is almost always visible

from any location.

To enable visual robot-robot detection, we equipped every Turtlebot with six

unique markers, which are oriented in a way that at least one marker is visible from

any angle. To track and decode these markers, we make use of a toolkit called

ALVAR; more specifically, we use the ROS wrapper3 of this library. We use a cus-

tomized bundle detection method to determine the center of the detected robot depen-

dent on the decoded markers. Kalman filtering is applied to get better and more stable

readings and consequently a more accurate estimate of the detected robot’s position,

heading, and speed. These parameters are used again for collision avoidance.

Communication is realized over Wi-Fi with a UDP connection to each Turtlebot

using the LCM library.4 Even though global communication would be possible, we

limit the communication such that every robot listens only to its own channel. To sim-

ulate local communication, the robots can only communicate with another robot when

it is in view and in close proximity, i.e., less than 1 m away.

In order to avoid robot to robot collisions, we rely on themarker detection to predict

positions and speeds of the other robots. This information can be used to efficiently

compute a noncolliding speed vector as we have developed previously in Claes et al.

(2012). In contrast to this previous approach, in which the robot-robot detection was

avoided by using a global reference frame and broadcasting the positions to all robots

via Wi-Fi, solely the marker detection and the predictions using a Kalman filter are

used. This means that a few collisions still might occur due to failure to detect the

markers of the other robots and additionally, there are certain configurations in which

the robots cannot see each other due to the field of view of the Kinect sensor, e.g.,

when two robots drive in a V-shape toward each other, the field of view of the Kinect

is too narrow to detect the other robot.

As shown by Alers et al. (2014a), multiple Turtlebots perform a foraging task, i.e.,

starting at the Hive (H) location and randomly exploring the unknown environment for

a specific Food (F) location. This is shown in Figure 13.9. Another way of locating a

food location is by asking bypassing robots for a known food location, which is done

by simulating local communication over Wi-Fi. When the source is found, the robot

starts to exploit this source, i.e., driving from the food to the hive location until the

food is depleted or a better source is found. A video showing this demonstration

can be found in the online material.5
3 http://wiki.ros.org/ar_track_alvar.
4 https://code.google.com/p/lcm/.
5 http://swarmlab.unimaas.nl/papers/aamas-2014-foraging.

http://wiki.ros.org/ar_track_alvar
https://code.google.com/p/lcm/
http://swarmlab.unimaas.nl/papers/aamas-2014-foraging
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Figure 13.9 Multi-robot foraging using swarm robots with extended resources. (a) All robots

start at the hive (H) location. (b) Robots are exploring the unknown environment randomly.

The left two robots have found the food (F) location and are foraging between the hive and

the food location. (c) All robots have converged to foraging behavior.
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13.4.2 Bee-inspired pheromone signaling

In this section, we show some initial outcomes of the honeybee-inspired pheromone

signaling method that allows a team of robots to maximize the total area covered in an

environment in a distributed manner.

The same pheromone signaling method is applied to the multi-robot coverage prob-

lem as is introduced in Caliskanelli et al. (2014). The proposed coverage technique is

inspired by the behavior described in Section 13.2. The role of queen bee denotes a

robot that is responsible for managing the execution of all service requests it receives.

Throughout this chapter, we will refer these robots as QR, and their responsibility (ser-

vice) is to patrol in the field. The basic strategy of the algorithm is based on the peri-

odic transmission of pheromones by QRs, and its retransmission by recipients to their

neighbors. The pheromone level at each robot decays with time and with distance to

the source. All robots accumulate pheromone received from other QRs and if at a par-

ticular time the pheromone level of a robot is below a given threshold, this robot will

differentiate itself into a QR. To make it clear, the threshold we used for this work is

0 and as such all the robots are QRs at all times. Although we do not particularly ben-

efit from robot differentiation in this work (unlike our previous research on WSNs

Caliskanelli et al., 2012a, 2013), we still describe the differentiation process for the

sake of completeness and to provide a base for our future work on multi-robot cov-

erage. In the BeePCo technique, the level of pheromone indicates the resource usage

and robot density in a particular area of the network. Areas in the robotic arena that

have lower level of pheromone at a given time demonstrate less resource usage, and

less robot density as opposed to other parts of the network. This means, areas with low

pheromone level have either a low coverage or not covered at all. Some preliminary

performance experiments are shown in the next sections.
13.4.2.1 Case study

To evaluate the performance of BeePCo, we have designed a three-tier system-level

simulation model that represents the application layer (consisting of tasks), platform

layer (consisting of robots), and the mapper (that maps the tasks from the application

layer to the platform layer). Our system-level simulator, Fast, is written in Java, and it
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is an abstract simulator—trading accuracy for efficiency, scalability, and flexibility.

For further details about Fast, please see Caliskanelli et al. (2012a, 2013).

The set of experiments in this section aims to show the area coverage and network

connectivity of the proposed BeePCo technique. Area coverage in this study is

referred to as maximization of the total area covered by the sensors of the involved

robot(s), as defined by Gage (1992). On the other hand, network connectivity refers

to the ability to transfer data between robots. As the proposed technique is more suit-

able for noncritical applications, we focus on participial network connectivity instead

of full connectivity. The simulation setup consists of a system of 40 robots, each hav-

ing a sensing and communication radius of 25 cm. The application arena size is set to

300 cm�300 cm, where the robots are initially deployed randomly in the center of the

arena, in a square region of size 5 cm�5 cm. We examine two different scenarios:

l BeePCo with network assurance represents a case where the robots try to keep the wireless

communication channels alive throughout the simulation. This restricts robots to move too

far away from each other. The algorithm is forcing robots to move backward if a robot is not

connected to at least one other robot in the arena. This scenario is developed to be used for

applications where events are expected to be reported to the sink, such as patrolling.
l BeePCo without network assurance represents a case where a maximum spread of the robots

on the arena is required in order to maximize area coverage.

Figure 13.10 shows the spread of 40 robots when network assurance is required from

the BeePCo algorithm. Figure 13.10a–c represents the layout of the robots and their
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Figure 13.10 Spread of an MRS of 40 robots: (a)–(c) area coverage and (d)–(f) connectivity of

the communication links when network connectivity is assured by BeePCo.
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spread over the arena incrementally. The area that is covered by each robot is plotted

by a blue circle indicating the transmission range of each robot, and is normalized with

the surface of the arena. Figure 13.10d–f shows how the active wireless communica-

tion links between the robots evolve as time elapses. Robots are deployed in the mid-

dle of the arena in the initial stage as shown in Figure 13.10a and d. In the initial stage,

coverage is very low, whereas connectivity is very high. As time passes by, robots start

spreading in the arena as shown in Figure 13.10b and e; the area coverage increases

where the network connectivity remains high. At the end of the simulation, robots

spread out as much as they can while trying to keep the wireless communication chan-

nels active as shown in Figure 13.10c and f.

Figure 13.11 illustrates the spread of the robots when network connectivity is not

assured. Similar to Figure 13.10, area coverage and connectivity are inspected on an

arena with 40 robots. In this set of experiments, we use the same setup as shown in

Figure 13.10. Figure 13.11a and d shows the initial stage of the robots after deploy-

ment. As can be seen from Figure 13.11a, the BeePCo algorithm without network

assurance performs very similar to (Figure 13.10a and d) BeePCo algorithm with net-

work assurance. Later on as the simulation evolves, Figure 13.11b and e starts spread-

ing wider as opposed to Figure 13.10b and e. By the end of the simulation, robots are

spread all along the arena where the area coverage gets very high as shown in

Figure 13.11c. Unlike the area coverage, network connectivity is lost almost entirely.
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Figure 13.11 Spread of an MRS of 40 robots: (a)–(c) area coverage and (d)–(f) connectivity of

the communication links when network connectivity is assured by BeePCo.
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Figure 13.12 Experimental results: (a) and (c) % area coverage, (b) and (d) % network

connectivity with different number of robots in an MRS.
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Dramatic difference in the network connectivity is observed between Figures 13.10f

and 13.11f.

The results shown in Figure 13.12 are based on 30 different runs over six different

configurations (with and without network assurance each with the three alternatives

for the number of robots in the environment), in a total of 180 simulation runs to

ensure the statistical significance. Each run simulated the case study for 13 weeks,

to illustrate the long-term effects of the spread of the BeePCo coverage algorithm

based on bees’ pheromone signaling process. MaxCo results are based on mathemat-

ical calculations based on the total transmission area over total area.

Figure 13.12 shows the percentage of the area coverage (a) and (c) and the percent-

age of network connectivity (b) and (d). BeePCo algorithm to illustrate the effects of

the number of the robots on two different scenarios: with and without the network

assurance. In addition to experiments shown in Figures 13.10 and 13.11, the number

of robots is varied (with 20 and 30) and experiments are held while the simulation

setup is kept the same. Our observations are as follows:

Independent from the network assurance, the area coverage increases as the num-

ber of the robots increase. This behavior is shown in Figure 13.12a and c on BeePCo
algorithm and MaxCo; area coverage achieves highest percentage with 40 robots.

Area coverage is approximately 10% more when network connectivity is not assured

in all three ranges of number of robots. Network connectivity is very low when net-

work is not assured as shown in Figure 13.12d and is irrelevant from the number of the

robots. Figure 13.12a exhibits that BeePCo algorithm with network assurance
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increases network connectivity 50% more than BeePCo with no network assurance.

This does not reflect on area coverage, which we believe is the benefit of BeePCowith
network assurance. The performance difference in terms of area coverage between

BeePCo with and without network assurance is less than 10% in a system with 20

robots. Although this difference increases up to 15% as the number of robots

increases, we believe BeePCo with network assurance brings much more benefit

(as opposed to BeePCo without network assurance) in terms of connectivity by 50%.
13.5 Future trends

Polymorphism is a known phenomenon in biological systems, meaning that various

forms or types of individuals are seen among the members of a single species. This

phenomenon can be seen in many different expressions in nature, ranging from poly-

morphic ants and birds (with differences in, e.g., size, color, and strength) to different

blood types in humans. Natural polymorphism can be categorized into discrete vari-

ations (e.g., blood groups) and continuous ones (e.g., smooth height variations in

human population).

Recently, heterogeneity of agents has attracted the attention of different research

communities in computer science, artificial intelligence, and robotics. For example,

Montes de Oca et al. (2009) have studied various types of heterogeneity that can

be ascribed to particle swarm optimizers and have shown how this can improve the

efficiency of computational techniques. Heterogeneity of complex networks has been

also studied, e.g., by Moreno et al. (2002), where the dynamics of epidemics in com-

plex heterogeneous architectures are investigated.

Recently, heterogeneity has found its way to swarm robotics as well. Dorigo et al.

(2012) have introduced a distributed robotic swarm, namely Swarmanoid, which con-
sists of three different robot types (eye-bots, hand-bots, and foot-bots). Such struc-

tures, in which different robots have different capabilities and different goals, refer

to the hard heterogeneity in swarms. On the other hand, softly heterogeneous swarm

robotics introduced by Ranjbar-Sahraei et al. (2013a) refer to the situation in which a

group of similar robots all have the same goals but slightly different levels of capa-

bility. As an example of such systems, consider a scenario in which a group of simple

robots try to uniformly disperse in an unknown environment. Each robot can simply

compute its distance with the neighboring robots and after computing the borders of its

own territory, moves toward the center of the territory. Gradually, all robots make a

uniform coverage in the area (i.e., known as Voronoi coverage). This approach can be

very efficient in convex environments. However, as soon as nonconvexities such as

obstacles are added to the environment, this approach fails as robots get stuck behind

the obstacles (i.e., reaching the local optimum in a coverage problem). For this spe-

cific problem, Staňková et al. (2013) and Ranjbar-Sahraei et al. (2013c) proposed and

extended a coverage method, namely StaCo, based on the concept of Stackelberg

game, which uses soft heterogeneity in a swarm to overcome the problem of local

optima.
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The concept of heterogeneity in robotic swarms suggests that these swarms can

perform better than the long-established uniform swarms in various scenarios. For

instance, they can perform both exploration and exploitation of an environment in

a rescue mission, or can act highly flexibly in passing obstacles and nonconvexities

in a flocking mission. In short, inspired by polymorphism in biological organisms,

using this concept of heterogeneity in robotic swarms is a promising practice for over-

coming the available limitations in swarm robotics.
13.6 Conclusions

Coordination is a key challenge when deploying teams of distributed multi-robot sys-

tems. Lightweight interactions among robots (i.e., wireless communications) are not

only a desired feature for such platforms; they are a great need. Furthermore, simple

yet effective algorithms that avoid complex heavy computations are desirable in

multi-robot systems. Therefore, bio-inspired solutions for the challenging problem

of multi-robot coordination are gaining more importance. In this chapter, we presented

an overview of our work on ant- and bee-inspired coordination principles for coordi-

nation in multi-robot systems.

In Section 13.3, we described our ant-inspired StiCo approach and illustrate its

effectiveness on a case study of deployed e-pucks. We illustrated the performance

of the StiCo approach using a dark room that allows emission of UV light on the floor.

The glowing trails of the robots are captured by on-board cameras of e-pucks. Exper-

imental results showed that simple communication principle of ants can be used to

address the multi-robot coordination problem.

In Section 13.4.1, we presented the bee-inspired foraging algorithm to solve the

coordination problem of multi-robot systems. We showed the impact of the foraging

algorithm on two different experimental setups: (1) a swarm of robots with limited

resources (e-pucks) and (2) a swarm of robots with extended resources (Turtlebots).

The experiments served as a proof of concept: First, we showed how the bee-inspired

mechanism can be used in a real-life autonomous robotic swarm, which mimics the

basic foraging behavior of bees. Second, by the direct deployment of bee-inspired

algorithms onto a robot swarm, scalability, robustness, and efficiency on foraging

tasks in more complex and dynamic environments were investigated.

In Section 13.4.2, we explained the bee-inspired pheromone signaling mechanism to

address coordination in multi-robot systems. We explored its performance conse-

quences on a case study using a system-level simulator, Fast. We illustrated the spread

of a multi-robot system of 40 robots using the BeePCo algorithm with and without the

network connectivity assurance. We report area coverage and communication links for

both scenarios. Illustrations of both scenarios showed that the pheromone signaling

algorithm can be used to address the coordination and coverage problem in multi-robot

systems.We also showed that the BeePCo algorithm achieves larger coverage when the

network connectivity is not assured (for one-shot applications, i.e., fast exploration of an

unknown environment) as opposed to scenarios when the network connectivity is

assured (where events are expected to be reported, i.e., long-term periodic patrolling).
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