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Abstract. Reinforcement learning agents can successfully learn in a variety of
difficult tasks. A fundamental problem is that they learn slowly in complex envi-
ronments, inspiring the development of speedup methods such as transfer learn-
ing. Transfer improves learning by reusing learned behaviors in similar tasks, usu-
ally via an inter-task mapping, which defines how a pair of tasks are related. This
paper proposes a novel transfer learning technique to autonomously construct an
inter-task mapping by using a novel combinations of sparse coding, sparse pro-
jection learning, and sparse pseudo-inputs gaussian processes. Experiments show
successful transfer of information between two very different domains: the moun-
tain car and the pole swing-up task. This paper empirically shows that the learned
inter-task mapping can be successfully used to (1) improve the performance of a
learned policy on a fixed number of samples, (2) reduce the learning times needed
by the algorithms to converge to a policy on a fixed number of samples, and (3)
converge faster to a near-optimal policy given a large amount of samples.

1 Introduction
Reinforcement Learning (RL) is a popular framework that allows agents to solve sequential-
action selection tasks with minimal feedback. Unfortunately, RL agents may learn slowly
in large or complex environments due to the computational effort needed to attain an
acceptable performing policy. Transfer Learning [16] (TL) is one technique used to
cope with this difficulty by providing a good starting prior for the RL agent attained in
a related source task.

The source task can thus differ from the target task in many ways. If the tasks have
different representations of state or action spaces, some type of mapping between the
task is required. This inter-task mapping matches each state/action pair of the source
task to its corresponding state/action pair in the target facilitating transfer. While there
have been a number of successes in using such a mapping, the approaches are typically
hand-coded and may require substantial human knowledge [18, 16]. Our contributions
in this paper are twofold. First, we propose a novel scheme to automatically learn an
inter-task mapping between two tasks. Second, we introduce the new Transfer Least
Squares Policy Iteration (TrLSPI) algorithm for transfer between tasks of continuous
state spaces and discrete action spaces.

To the best of our knowledge, this paper shows the first successful attempts to au-
tomatically transfer between two very different RL benchmarks. Namely, we conduct
experiments to automatically transfer from the Mountain Car to the Pole Swing-up



problem. Our results show (1) improved performance on a fixed number of samples, (2)
a reduction in the convergence times to attain a policy on a fixed number of samples,
and (3) a reduction in the time needed to attain a near-optimal policy on a large amount
of samples.

The rest of the paper proceeds as follows. Related work is discussed next in Sec-
tion 2. Background information is presented in Section 3. Section 4 describes how
an inter-task mapping can be learned between two tasks by leveraging sparse coding,
sparse projection learning and sparse pseudo-input gaussian processes. In Section 5, we
introduce our novel TrLSPI algorithm showing how the learned mapping can be used to
transfer information between a source task and target task. Experiments of transfer be-
tween two very different tasks is presented in Section 6. Section 7 presents a discussion
on the scope and applicability of our framework. Section 8 concludes with a discussion
of future work.

2 Related Work
In the past few years there has been a significant amount of work done in transfer
learning for RL tasks. This section outlines the most related work and contrasts it with
the work in this paper.

The majority of current transfer learning work in RL assumes that either 1) the
two agents are very similar and no mapping is needed, or 2) the inter-task mapping is
provided by a human. For instance, [18] transfers advice and [16] transfers Q-values —
both methods assume that a mapping between the state and action variables in the two
tasks has been provided. Another approach is to frame different tasks as having a shared
agent space [4], so that no explicit mapping is needed. However, this requires that the
agent acting in both tasks share the same actions and a human to map new sensors back
into the agent space. The primary contrast between these methods and the current work
is that we are interested in learning a mapping between states and actions in pairs of
tasks, rather than assuming that it is provided or unnecessary.

Our previous work [1] required the presence of hand-coded shared features to au-
tomatically learn the inter-task mapping. This work extends the previous approach to
overcome the need for a predefined common subspace to determine the inter-task map-
ping.

There has been recent work that approaches fully autonomous transfer. For exam-
ple, semantic knowledge about state features between two tasks may be used [8, 5],
background knowledge about the range or type of state variables can be used [13, 17],
or transition models for each possible mapping could be generated and tested [14].
Transfer learning has also been successful across different domains, e.g., using a sim-
ple discrete, deterministic task to improve learning on a complex, continuous, noisy
task [15]. However, there are currently no general methods to learn an inter-task map-
ping without requiring (1) background knowledge, which is not typically present in RL
settings, or (2) an expensive analysis of an exponential number of inter-task mappings.
This paper overcomes these problems by automatically discovering high level features
and using them to conduct transfer within reasonable time requirements.

Unlike all other existing methods (to the best of our knowledge) and complemen-
tary to our previous work [1, 14, 15], we assume differences among all the variables of
Markov Decision Processes describing the source and target tasks, and focus on learning



an inter-state mapping, rather than a state-variable mapping. Additionally, our frame-
work can use state-dependent action mappings, allowing flexibility that other existing
algorithms do not.

3 Background

This section provides the reader with a short overview of Reinforcement Learning,
Gaussian Processes, Sparse Coding, Transfer Learning and other learning methods used
in this paper.

3.1 Reinforcement Learning (RL)
In a RL problem, an agent must decide how to sequentially select actions to maxi-
mize its expected long term reward [12, 2]. Such problems are typically formalized as
Markov decision processes (MDPs). An MDP is defined by 〈S,A, P,R, γ〉, where S is
the (potentially infinite) set of states, A is the set of all possible actions that the agent
may execute, P : S × A → S is a state transition probability function describing the
transition dynamics, R : S → R is the reward function measuring the performance of
the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S → A is defined as a
mapping from a state to an action. The goal of an RL agent is to improve its policy,
potentially reaching the optimal policy π?:

Q?(s, a) = max
π

E[

∞∑
t=0

γtR(st, at)|s = s0, π] (1)

In tasks with continuous state and/or action spaces, theQ functions and/or policies can-
not be represented in a table format, typically requiring sampling or function approxi-
mation techniques. This paper uses one such technique, Least Squares Policy Iteration
(LSPI), which will be explained next.

3.2 Transfer Learning in RL Tasks
Typically, when using Transfer Learning (TL) in RL tasks, there are a source and target
task [16]. When the source and the target tasks are related, transferring a learned source
behavior should improve learning speed in the target task by providing an informative
prior. The prior will restrict the exploration in the target task by biasing the agent so
that it chooses actions that are better than random exploration, reducing the target task
learning times and improving the overall performance. In our formulation, each of these
tasks is defined as an MDP which is a tuple of 〈S(i), A(i), P (i)(s, a), R(i), γ(i)〉 for
i ∈ {1, 2} where S(i), A(i), P (i)(s, a), R(i) and γ(i) represent the state spaces, action
spaces, state transition probabilities, reward functions and discount factors for each of
the source (i = 1) and target (i = 2) tasks.

The source and the target task may differ in their state spaces and/or action spaces
(as well as other components of the MDP). If transfer is to be useful when such dif-
ferences exist, an inter-task mapping relating these state-action spaces differences [16]
can be used. Our main focus in this paper is the automatic discovery of the inter-task
mapping that enables transfer. The upcoming sections will further clarify the need for
such a mapping as well as describe our novel framework in attaining it.



3.3 Least Squares Policy Iteration
LSPI [6] is an approximate RL algorithm that is considered an actor/critic method.
LSPI is composed of two parts. The first is an evaluation step, Least Squares Temporal
Difference Q-learning (LSTDQ) and the second is a policy improvement step. LSTDQ
is an evaluation step: the algorithm will update the weights representing the policy so
that the new parameters minimize certain error criteria. For example, the LSTDQ could
be set to minimize the Bellman residual error of the projected Bellman equations. Once
this step has finished, LSPI uses the attained weights to improve the policy by taking
greedy actions in the approximated Q-function.

Fig. 1. Least Squares Policy Iteration schematic [6]

Figure 1 highlights the actor and critic organization of LSPI. Since LSPI uses func-
tion approximators to represent theQ-functions and/or policies, there also exist two pro-
jection phases for both theQ-function and the policy, as can been seen in the schematic.
A thorough mathematical treatment may be found elsewhere [6].

3.4 Gaussian Processes
Gaussian Processes (GPs) form a research field by themselves. It is beyond the scope
of this paper to fully detail the mathematical framework. This section briefly explains
GPs and refers the reader elsewhere [10] for a more in-depth treatment.

Parametric models have traditionally been used to solve regression problems be-
cause of their interpretability. These parametric models may face problems when trained
on complex data sets that require highly expressive models. Since the inter-task map-
ping is considered to be an expressively complex relation, GPs were preferred over
simple parametric forms.

GPs are a form of supervised learning used to discover a relation between a given
set of input vectors, x, and output pairs, y. As opposed to normal regression techniques
that perform inference in the weight space, GPs perform inference directly in the func-
tional space, making learning simpler. Since a function can be represented as an infinite
dimensional vector and GPs are distributions over functions, a GP is an extension of a



multidimesional Gaussian distribution into infinite dimensions. Following existing no-
tation [10], if a function is sampled according to a GP we write:

f(x) ∼ GP(m(x), k(x, x
′
)), (2)

wherem(x) and k(x, x
′
) , represent the mean and covariance function that fully specify

a GP.
Learning in a GP setting involves maximizing the marginal likelihood:

log p(y|x) = −1

2
yTK−1y− 1

2
log|K| − n

2
log2π. (3)

Maximizing Equation 3 may be computationally complex as we must invert the co-
variance matrix K, which is of order of O(N3), where N is the number of input points.
Therefore, we use a fast learning technique, Sparse Pseudo-input Gaussian Processes
(SPGP), as proposed elsewhere [11].

3.5 Sparse Pseudo Input Gaussian Processes
SPGPs aim to reduce the complexity of learning and prediction in GPs by parametrizing
the regression model with M << N pseudo-input points, while still preserving the full
Bayesian framework. The covariance of the GP model is parametrized by the location of
the M << N pseudo-inputs. Mathematically, the marginal likelihood to be maximized
is defined as:

p(y|X, X̄) = N (y,KNMK−1M KMN + Λ + σ2I), (4)

X̄ is the matrix formed by the pseudo-inputs with X̄ = {x̄}Mm=1. KNM the covari-
ance matrix formed by the pseudo-inputs and the real inputs as KMN = k(x̄m, xn)
with k(., .) being the covariance kernel. K−1M is the inverse of the covariance matrix
formed among the pseudo inputs with KM = k(x̄m, x̄m). KMN is the covariance ma-
trix formed by the pseudo-inpunts and the real inputs. Λ is a diagonal matrix having the
diagonal entries λn = knn − kTnK−1M kn. The noise variance and the identity matrix are
represented by σ and I respectively.

Existing results [11] show a complexity reduction in the training cost (i.e., the cost
of finding the parameters of the covariances) to O(M2N) and in the prediction cost
(i.e., prediction on a new set of inputs) to O(M2). The results further demonstrate that
the SPGPs framework can fully match normal GPs with small M (i.e., few pseudo-
inputs), successfully producing very sparse solutions. A full mathematical treatment
may be found elsewhere [11].

3.6 Sparse Coding
Sparse Coding (SC) [7] is an unsupervised learning technique used to find a high level
representation for a given set of unlabeled input data. It does this by discovering a
succinct over-complete basis for the provided data set. Given m k-dimensional vectors,
ζ, SC aims to find a set of n basis vectors, b, and activations, a, with n > k such
that ζ ≈

∑n
j=1 a

(i)
j bj , where i and j represent the number of input data patterns and

number of bases, respectively. SC begins by assuming a Gaussian and a sparse prior
on the reconstruction error (ζ(i) −

∑n
j=1 a

(i)
j bj) and on the activations, solving the

following an optimization problem:



min
{bj},{a(i)j }

m∑
i=1

1

2σ2
||ζ(i) −

n∑
j=1

bja
(i)
j ||

2
2

(5)

+β

m∑
i=1

n∑
j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c, ∀j = {1, 2, . . . , n}

The problem presented in Equation 5 is considered to be a “hard” optimization
problem as it is not jointly convex (i.e., in the activations and bases). However, fast and
efficient optimization algorithms exist [7] and were used in our work, as described in
Section 4.1.

4 Learning the Inter-Task Mapping
In order to automatically construct an inter-task mapping, χ, relating two different
MDPs, we propose a novel framework utilizing sparse coding, a L1 projection scheme,
and sparse pseudo-input Gaussian processes. Each of these methods is necessary to
solve a problem that is inherent to TL in RL tasks. We approach the problem of learn-
ing the inter-task mapping, χ, as a supervised learning problem. As χ is a mapping
relating state-action triplets from the source with the target task, related triplets should
be provided as training data points. Unfortunately, this is itself a hard problem — it
is not trivial for the user to describe what state triplets in the source task correspond
to what in the target task. We therefore approach this problem by automatically trans-
forming the problem spaces (i.e., the state-action spaces of the two tasks) into a higher
representational space through SC, projecting the target task data onto those attained
bases and then utilizing a Euclidean distance measure to gauge similarity (Section 4.2).
At this stage, the data set is ready and is to be provided to the regressor to construct the
inter-task mapping. Many regression techniques could be applied to the approach but
we chose to use a non-parametric approximation scheme because of its generalization
advantages.

The following sections further clarify each of the above steps and explain the tech-
nicalities involved.

4.1 The need for an Inter-Task Mapping
For transfer between different but related MDPs to be possible, an inter-task mapping
is essential [16]. The source and target MDPs may differ in the state and/or action
spaces. If the transfer scheme is to be successful, there must be a mapping function
that can overcome the differences of the MDPs. Traditionally, such a mapping was
thought to be a one-to-one mapping between the state/action variables representing the
tasks [16]. Differing from the traditional way, we think of such a mapping to be a
function that relates state-action successor state triplets from the source with the target
task. In other words, our inter-task mapping is more than just a one-to-one mapping
between the state and/or action spaces of the MDPs. It also includes other terms that
are automatically discovered by our global approximators, which ultimately enhances
the transfer approach.



Mathematically, χ : Ss × As × Ss → St × At × St, where S and A represent the
state space and the action space of the source and the target task, respectively.

The inter-task learning framework can conceptually be split into three essential
parts. The first is the dimensional unification of both the source and target task state-
action spaces of the MDPs. The second is the automatic discovery of a high dimen-
sional informative space of the source task. This is achieved through SC, as described
in Section 4.2, ensuring that transfer is conducted in a high representational space of
the source task. In order to use a similarity measure among different patterns, the data
should be present in the same space. That is why the target task samples still need to be
projected to the attained high representational space of the source. This is done using
sparse projection learning, described in Section 4.3. The third and final step is to ap-
proximate the inter-task mapping via a non-parametric regression technique, explained
in Section 4.4.

4.2 Sparse Coding Transfer for RL
As described in Section 3.6, SC is an efficient way to discover higher level information
in a given unlabeled data set. We use SC to solve two inherent problems in transfer
learning for RL tasks. The first is to unify the dimensions of the state action spaces of
the two different MDPs. The second is to discover a higher level representation for the
attained bases and activations of the source task state-action spaces. This step guaran-
tees that our scheme works with the “best” available representation/information space
of the source task.

Unifying the Source and Target Dimensions Our problem commences by first uni-
fying the dimensions of the state action spaces of the two MDPs, an essential step for
discovering the inter-task mapping. After this step has finished, any existing TL in RL
technique may be used. However, this paper goes further and proposes a new transfer
framework based on the attained bases and activations, described in Section 5.

This “dimensional unification” process is described in Algorithm 1. In short, Algo-
rithm 1 sparse codes random samples from the source task constrained by learning the
same number of bases (dt) as those of the target task.

The algorithms proposed elsewhere [7] solve Equation 6 in line 3 of Algorithm 1.
After this stage is done, new activations and bases describing the samples are attained.3

Note that, these newly attained samples—described as a linear combinations of the
bases and activations (i.e. Ab)—do not yet relate anything to the target task ones. The
target task samples still need to be projected towards these bases. This is done as de-
scribed in Section 4.3.

After Algorithm 1 is finished, new features in the source task state action spaces
are discovered. This is reasonable as TL typically transfers between a low dimensional
source task to a high dimensional target task. Here, SC is determining new bases that
are of a higher number than the original state action dimensions in the source task.
If successful, new patterns and representations are discovered in the source task state-
action spaces. These new features describe new representations not anticipated by the

3 Please note that while writing Algorithm 1 it was assumed that the dimensions of the source
task ds are lower than those of the target task dt. But it is worth noting that it works as well
for the other cases.



Algorithm 1 Sparse Coding Transfer Reinforcement Learning

Require: Source MDP samples {〈ss, as, s
′
s〉}mi=1, Target MDP samples {〈st, at, s

′
t〉}fj=1

1: Calculate ds and dt which are the dimensions of each of the state action spaces of the MDPs
2: Sparse code the source by solving:
3:

min
{bj},{a

(i)
j }

m∑
i=1

1

2σ2
||〈ss, as, s

′
s〉(i) −

dt∑
j=1

bja
(i)
j ||

2
2

(6)

+β

m∑
i=1

dt∑
j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c, ∀j = {1, 2, . . . , dt}

4: Solve the problem of Equation 6 using the algorithm proposed in [7]
5: Return the Activation matrix (A ∈ Rm×dt ) and the Bases (b ∈ Rdt×1)

original dimensions. Therefore, this new information can be used to help and guide the
transfer learning scheme.

High Information Representation After dimensional unification, as described in the
previous section, SC is again used to discover a succinct higher informational/representational
bases of the activations than the unified dimensional spaces. This insures that our trans-
fer approach operates in the “richest” space described through the samples. This is done
in a similar framework to that in Section 4.2 and is described in Algorithm 2.

Algorithm 2 Succinct High Information Representation of MDPs
Require: Activations acquired through Algorithm 1, Number of new high dimensional bases dn
1: Represent the activations in the dn bases by solving the following problem using the algo-

rithm in [7]:
2:

min
{zj},{c

(i)
j }

m∑
i=1

1

2σ2
||〈a1:dt〉

(i) −
dn∑
j=1

zjc(i)j ||
2
2

(7)

+β

m∑
i=1

dn∑
j=1

||c(i)j ||1

s.t. ||zj ||22 ≤ o, ∀j = {1, 2, . . . , dn}

3: return Return new activations C ∈ Rm×dn and bases z ∈ Rdn×1

The idea presented by Algorithm 2 is to sparse code the activations, representing the
original samples of the MDPs, to a higher representational space, dn.4 This stage should

4 In our experiments we have set dn to be 100, a relatively high number.



guarantee that we project the samples of the source task MDP into a high informational
space where a similarity measure can be used to find a relation between the source and
target task triplets. Noting that there are no restrictions on the number of bases to be
determined: unneeded bases have an activation of zero once the SC problem has been
solved.

At this stage, the source state action spaces are described in a rich informational
space determined by the newly discovered bases and activations. The next step is to
project the target task samples to that space described by Z so that triplet can be ordered
and the inter-task mapping approximated.

4.3 L1 Sparse Projection Learning
Once the above stages have finished, the source samples are described via the activations
generated in Algorithm 2. However, target task samples still have no relationship to the
learned activations. In other words, the bases and activations that have been attained
successfully describe high informational patterns and representations in the source task
state-action spaces but do not represent the target state-action spaces. Since we are
seeking a similarity correspondence between the source and target task triplets, the
target task samples should be represented in the high informational space of the source
task.

Therefore, the next step is to learn a sparse projection to project the target task
samples onto the Z basis representing the source task MDP. In other words, the goal
now is to learn a sparse projection that is capable of representing the random target task
samples as a combination of some activations, automatically learned, and the Z bases
generated by Algorithm 2. The overall scheme is described in Algorithm 3, where the
activations are learned by solving the L1 regularized least squares optimization problem
of Equation 8. This optimization problem guarantees that the attained activations are as
sparse as possible and is solved using the interior point method [3].

At this stage all the samples from both the target and source task are projected to
the same space described by the sparse coded vectors Z. The next step will be to order
the data points from both the source and the target task so to approximate the inter-task
mapping.

Algorithm 3 Reflecting Target Task Samples
Require: Sparse Coded Bases Z generated by Algorithm 2, Target MDP samples
{〈st, at, s

′
t〉}fi=1

1: for i = 1→ f do
2: Represent the target data patterns in the sparse coded bases, Z, by solving:
3:

φ̂(i)(〈st, at, s
′
t〉) = argmin

φ(i)
||〈st, at, s

′
t〉 −

dn∑
j=1

φ
(i)
j zj ||22 (8)

+β||φ(i)||1

4: end for
5: return Activations Φ



4.4 Similarity Measure and Inter-Task Mapping Approximation
As mentioned previously,we tackle the problem of learning an inter-task mapping via
supervised learning. Since χ maps triplets from the source task to their corresponding
triplets in the target task, the problem at this stage is to attain the training patterns to
approximate χ.

After reaching the rich space representing the random samples of the 2 MDPs (i.e.,
Z), an Euclidean distance measure is used to compare triplets, providing a data set
to the regressor (i.e, SPGPs) to approximate the inter-task mapping χ. This similarity
measure is used to determine the correspondence of the source and target tasks triplets.
Once applied, the similarity measure will seek the triplets of the source task closest
to those of the target task and map them together as being inputs and outputs for the
regression algorithm, respectively. This is shown in line 2 of Algorithm 4. Since the
similarity measure is used in the sparse coded spaces, the distance is calculated using
the attained activation (C and Φ) rather than the samples themselves. Therefore, the
scheme has to trace the data back to the original dimensions of the state-action pairs of
the MDPs.

There are few restrictions on the function approximation techniques to could be
used. We use nonparametric regression and with Sparse Gaussian Processes technique [11].
We prefer Sparse Gaussian Processes rather than normal Gaussian Processes regression
technique as the latter may have problems dealing with large data sets. To better clarify,
consider the learning phase of a GP that involves minimizing Equation 3. It is clear that
the inversion of the covariance matrix, K, is required on each iteration with complexity
O(n3), where n is the number of samples. Additionally, the minimization algorithm
(Conjugate Gradient Descent [9]) may get stuck in a local minimum of Equation 3, a
common problem in function approximation schemes and minimization problems.

Algorithm 4 Similarity Measure & Inter-Task mapping approximation
Require: Sparse Coded Basis Z, Sparse Coded Activations of the source task C ∈ Rm×dn ,

Projected Target Task activations φ ∈ Rm×dn
1: for all φ do
2: Calculate the closest activation in C minimizing the Euclidean/similarity distance mea-

sure.
3: end for
4: Correspond the triplets with the minimum similarity measure as being inputs and outputs to

create a data set D
5: Approximate the Inter-task mapping, χ using SPGPs
6: return The approximated Inter-task mapping χ

5 Transfer Scheme
Assuming there exists a “good enough” policy, π?s for the source task, we propose a
novel transfer algorithm for pairs of tasks with continuous state spaces and discrete
action spaces, titled Transfer Least Squares Policy Iteration.

This section describes the novel transfer scheme and reflects on the details and
technicalities of the approach.



5.1 Transfer Least Squares Policy Iteration

Algorithm 5 can be split into two sections. The first determines χ (of Section 4), using
source task samples5 (from π?s ). The second provides those samples for the evaluation
phase of the LSPI algorithm (LSTDQ) as a start, to learn on and improve the policy on
the target task. The intuition here is that if the tasks are similar and if the inter-task map-
ping is “good enough”, then those samples will bias the target task controller towards
choosing good actions and restricting its area of exploration thus reducing learning
times and increasing performance.

Algorithm 5 TrLSPI

Require: Source MDP samples {〈ss, as, s
′
s〉}mi=1, Target MDP samples {〈st, at, s

′
t}, Number

for re-samples ns, close to optimal policy for the source system π?s , State action basis func-
tions for the target task ψ1, . . . , ψk

1: Unify the Dimensions using Algorithm 1
2: Discover High Informational Representation using Algorithm 2
3: Sparse Project the target task samples using Algorithm 3
4: Use a similarity measure to attain the data set and approximate χ using Algorithm 4
5: Randomly Sample ns Source task triplets 〈ss, as, s

′
s〉ns
i=1 greedily in the optimal policy π?s ,

set of state-dependent basis function ψ1, . . . , ψk : St ×At → R
6: for i = 1→ ns do
7: Find the corresponding target task triplets as 〈s(i)t , a

(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: end for
9: Find the closest triplet in the initial samples to the ones predicted by χ

10: Use LSTDQ described by [6] to evaluate those samples
11: Learn and Improve Policy till convergence using LSPI [6]
12: return Learned Policy π?target

Provided that the tasks are related, Algorithm 5 is capable of attaining a good start-
ing behavior for the target task. The performance of this policy depends on the state
space region where those samples were provided. In other words, it is not possible to
achieve near-optimal performance with a small number of samples that are in regions
far from the goal state.6 Therefore, if the agent has to seek a near-optimal policy, then
either a new sampling step using the current policy should be added to Algorithm 5, or
a large amount of samples should be provided. It is worth noting that it is not necessary
for the algorithm to be provided by a model for the system to perform that sampling.
A black box generative model taking inputs being states and actions and producing
outputs of successor states and rewards is sufficient.

6 Experiments & Results

Two very different tasks were chosen to evaluate the proposed framework, the RL bech-
mark tasks Mountain Car (MC) and Pole Swing-Up (see Figure 4).

5 If using an approximate RL algorithm in the source task, the policy would not be optimal rather
a near-optimal one which works as well.

6 This is a problem that is inherit to LSPI and not to our TrLSPI algorithm.



The control objective of MC, the source task, is to drive the car up the hill (Figure 2).
The difficulty is that gravity is stronger than the car’s motor—even at maximum throttle
the car can not directly reach the top of the hill. The solution is to first move away
from the target to the opposite side of the hill and then accumulate enough energy to
reach the top of the hill. The dynamics of the car are described via two continuous state
variables (x, ẋ) representing the position and velocity of the center of gravity of the car,
respectively. The input action takes on three distinct values: maximum throttle forward
(+1), zero throttle (0), and maximum throttle reverse (-1). The car is rewarded by +1
once it reaches the top of the hill, −1 if it hits the wall, and zero elsewhere.

Fig. 2. Mountain Car Fig. 3. Pole Swing-Up

Fig. 4. Mountain Car to Pole Swing-up Transfer

The target task is the Pole Swing-up problem described in Figure 3. The control
goal of the pole swing-up system is balancing the pole in an upright position (i.e.,
θ = θ̇ = 0). The allowed actions are (+1) for full throttle right and (-1) for full throttle
left. The reward function of the system consisted of two parts: (1) cos(θ), which yields
its maximum value of +1 at the upright position of the pole, and (2) −1 if the cart hits
the boundaries of the track. The angle was restricted to be within |θ| < π

9 while the
position was restricted to |x| < 3.

As clear from the description, the two MDPs representing the tasks are significantly
different. The source and target task have different state spaces, action spaces, transi-
tion probabilities, and reward functions. No previous work can learn to autonomously
transfer between such different tasks.

Our framework requires an optimal policy in the MC source task, π?MC . SARSA(λ) [12]
is used to learn π?MC . The policy, once learned, was then used to randomly sample dif-
ferent numbers of initial states of task, to be used by χ. We started with 5000 and 2000
randomly sampled states (using a random policy) for the Mountain Car and the Pole
Swing-up, respectively. These samples were used by the algorithm described in Sec-
tion 4 to attain the inter-task mapping χ. After χ has been learned, different amounts
of samples were sampled from the source task using the optimal policy π?MC . Specifi-
cally, we have sampled 500, 1000,. . . 20000 states as input to the TrLSPI algorithm to
measure performance and convergence times.
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Fig. 5. Transfer Results on the Pole Swing-up task.

Our results show both an increase in the performance on a fixed number of samples
and a decrease in the convergence times in both a predefined number of samples and
to attain an optimal policy. We measured the performance as the number of successful
steps to control the pole in an upright position on a given fixed amount of samples.
Another performance measure was the convergence times of the algorithm to a policy
on a given fixed number of samples and to learn a near-optimal policy of the target
task. The graph of Figure 5 summarizes the results attained applying our framework on
different number of transferred samples and compares them with those attained through
normal LSPI learning scheme. The graph in Figure 5 clearly shows an increase in the
number of control steps in the case of the transferred samples compared to a random
sampling scheme. For example it can be seen that at a small number of samples, e.g.
2000, our transfer scheme was able to attain an average of 600 control steps with about
400 for the random case. This performance increases with the number of samples to
reach 800 steps at 4000 transferred samples. The random case needed to be provided by
9000 samples to attain such an 800 steps performance. Finally, the transferred algorithm
and the random selection scheme seem to converge, on a large amount of samples 20000
to the same number of control steps, about 1300. This leads to the following conclusion:

Conclusion 1: TrLSPI has provided a better distribution of samples compared to
random policy in the target task.

The other improvement we report is the decrease in the convergence times, repre-
sented by the number of iterations in LSPI, provided a fixed amount of transferred sam-
pled. To better clarify, LSPI was able to converge faster once provided the transferred
samples compared to a random sample data set. For example, it took LSPI 7 iterations
to converge provided 5000 transferred samples with 12 iterations for the random case.
Further the algorithm converged within 14 iteration provided 20000 transferred samples
while it took it about 21 for the random case.

Conclusion 2: TrLSPI converged faster provided a fixed amount of samples.



Finally, LSPI was able to converge to an acceptable policy within a 22.5 minutes
after being provided a random data set, compared to 17 minutes with the transferred
data set7. Calculating χ took an additional 3.7 minutes.

Conclusion 3: TrLSPI converged faster to sub-optimal policy compared to a random
selection scheme.

7 Discussion & Scope of the Framework
We speculate that the framework we propose is applicable to any model-free TL in
RL problem with continuous state spaces and discrete action spaces, covering many
real world RL problems. The framework has the advantage of automatically finding the
inter-task functional mapping using SC and any “good” regression technique. But there
is one potential weakness, as discussed next.

Our framework should work correctly when the two tasks at hand are semantically
similar, as the rewards of the two systems were not taken into account in the explained
scheme. For instance, consider the transfer example between the same robot but with
opposite reward tasks. In other words, the robot have the same transitions in the two
tasks but have to reach two opposite states.

Our mapping scheme of Section 4, once applied, will produce a one-to-one mapping
from the source to the target task. In other words, since the two tasks have the same state
and action spaces, the mapping that will be a one-to-one, mapping the same state action
successor state triplets of the two tasks together. Therefore, the transition of the robots
to the rewardable/ un-rewardable states will map together. Since the optimal policies of
the two robots are opposite, it is easy to see that in this case the target task has been
provided with a “bad” biased starting policy which will worsen the agents performance
rather than enhancing it. Another name for this problem is negative transfer, which is
a well known problem in TL for RL tasks. We think that our approach will be able to
avoid this scheme once the rewards are added to the similarity measure generating the
training set to approximate the inter-task mapping χ. The improvement of this measure
to incorporate the rewards is out of the scope of this paper and will be looked at in
details in our future work.

8 Conclusions & Future Work
This paper has presented a novel technique for transfer learning in reinforcement learn-
ing tasks. Our framework may be applied to pairs of reinforcement learning problems
with continuous state spaces and discrete action spaces. The main contributions of this
paper are (1) the novel method of automatically attaining the inter-task mapping, χ
and (2) the new TrLSPI algorithm for tasks with continuous state spaces and discrete
actions. We approached the problem by framing the approximation of the inter-task
mapping as a supervised learning problem that was solved using Sparse Pseudo Input
Gaussian Processes. Sparse Coding, accompanied with a similarity measure, was used
to determine the data set required by the regressor for approximating χ. Our results
demonstrate successful transfer between two very different tasks, the mountain car to
the pole swing-up task. Success was measured both in an increase in learning perfor-
mance as well as a reduction in convergence time. We speculate that the process usefully

7 Our experiments were performed on a 2.8 Ghz Intel Core i7



restricts exploration in the target task and that the transferred state quality resulting from
our scheme.

There are many exciting directions for future work. First, we will compare different
distance metrics and demonstrate their effects on the overall performance of the algo-
rithm. Second, the distance measure will be improved by incorporating the rewards in
the framework, helping to avoid the problem of negative transfer, as well as reflect upon
a criterion for TL in RL.
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