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a b s t r a c t

This paper introduces a new learning algorithm for human activity recognition capable of simultaneous re-

gression and classification. Building upon conditional restricted Boltzmann machines (CRBMs), Factored four

way conditional restricted Boltzmann machines (FFW-CRBMs) incorporate a new label layer and four-way

interactions among the neurons from the different layers. The additional layer gives the classification nodes

a similar strong multiplicative effect compared to the other layers, and avoids that the classification neurons

are overwhelmed by the (much larger set of) other neurons. This makes FFW-CRBMs capable of performing

activity recognition, prediction and self auto evaluation of classification within one unified framework. As a

second contribution, sequential Markov chain contrastive divergence (SMcCD) is introduced. SMcCD mod-

ifies Contrastive Divergence to compensate for the extra complexity of FFW-CRBMs during training. Two

sets of experiments one on benchmark datasets and one a robotic platform for smart companions show the

effectiveness of FFW-CRBMs.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Robotic support for elderly people requires (possibly among oth-

ers) capabilities such as monitoring and coaching [1,2], e.g., emer-

gency detection and medication reminders, and accurate activity de-

tection is vital for such services. On the monitoring side, a system

that recognises human activity patterns allows for automated health

guidance, as well as providing an objective measure for medical staff.

Specifically, the fashion in which these daily activities are executed

(e.g., speed, fluency) can serve as an important early indicator of pos-

sible problems. Accurate activity recognition is made difficult by the

continuous nature of typical activity scenarios, which makes the task

highly similar to time series prediction.

Much research has been aimed at detecting human activities based

on the output of a variety of low-power, low-bandwidth sensors, such

as passive infrared (PIR) sensors, and power and pressure meters

placed either around the home, or on-body (e.g. accelerometers [3,4]).

The drawback of such an approach lies in the inability to capture
✩ This paper has been recommended for acceptance by G. Sanniti di Baja.
∗ Corresponding author. Tel.: +31 685 342 994.

E-mail address: d.c.mocanu@tue.nl (D.C. Mocanu).
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ufficiently reliable data that allows to differentiate between subtly

ifferent activities. In principle, the most accurate and suited sensors

or activity recognition would be video-cameras in combination with

dvanced computer vision algorithms to interpret the data, but this

pproach leads to significant privacy issues.

As an alternative, we make use of motion capture data. More ex-

ctly, we use a Kinect R© sensor1 to generate a 3D point cloud and to

xtract the human skeleton joints from it. This approach yields rela-

ively easy data to process and, as we will show, sufficient information

o accurately recognise human activities.

Literature provides other techniques that can do both classifica-

ion (i.e. from a set of possible time series categories determine to

hich category a new observation belongs or, in our case, recog-

ise the activity performed by a person during a specific moment of

ime) and time series prediction (i.e. starting from the near history

bservations forecast the next values for a specific time series or,

n our case, forecast the human body’s movements or poses in the

ear future), each of them with their advantages and disadvantages.

mong them, Linear Dynamic Systems such as Autoregression and

alman filters are well suited to model linear time series. Although
1 http://en.wikipedia.org/wiki/Kinect, [Accessed 8th June 2014].
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xtensions for non-linear systems exist, they still have difficulties

ith high non-linearity. Another successful class of time series mod-

ls are hidden Markov models (HMMs). HMM have reached a lot of

uccess in speech recognition. However, HMM models are also less

uited for highly non-linear data and become unwieldy when the

tate space is large.

Recent research has profiled deep learning (DL) methods [5]

s a promising alternative for pattern recognition problems. DL

akes small steps towards mimicking the behaviour of the human

rain [6,7]. It has been successfully applied to, for example, multi-

lass classification [8], collaborative filtering [9] and information re-

rieval [10]. Due to the success of DL based on restricted Boltzman

achines (RBMs) [11] in modelling static data, a number of exten-

ions for modelling time series have been developed. A straight-

orward extension of restricted Boltzmann machines to model time

eries are Temporal RBMs (TRBM) as described in [12]. Conceptually,

TRBM consists of a succession of RBMs (one for each time frame)

ith directed connections between the nodes representing consecu-

ive timeframes. However, a lack of an efficient training method limits

heir application to real-world problems. Conditional RBMs (CRBM)

ropose a different extension of RBMs for modelling time sequences

here two separate visible layers represent (i) the values from N pre-

ious time frames and (ii) those of the current time frame [13]. A

RBM can be viewed as adding AutoRegression to RBMs and hence

re especially suited for modelling linear time variations. They have

een successfully applied to motion capture data. To enable also the

odelling of non-linear time variations, the CRBM concept has been

urther extended by incorporating three-way neural nodes interac-

ions that are connected by a 3-way weight tensor [13]. To overcome

he computational complexity induced by the 3-way weight tensor,

he tensor can be factored resulting in a Factored Conditional RBM

FCRBM) [14]. These FCRBMs have been shown to give excellent re-

ults in modelling and predicting motion capture data. They are able

o predict different human motion styles and combine two different

tyles into a new one.

To our knowledge, FCRBMs represent the current state of the art

or capturing and predicting human motion, and therefore, we chose

hem as a basis for our work on activity recognition. However, the

CRBM is still not optimally suited to classify human motion or ac-

ivities. The reason for this is that the hidden neurons in the FCRBM

re used to model how the next frame of coordinates depends on the

istoric frames. The most natural way to extend the FCRBM to include

lassification capabilities is by letting the hidden neurons gate the in-

eractions between the label and the prediction neurons. This results

n a model with four-way neuron interactions.2

Hence, in this paper we propose a novel model, namely Factored

our Way Conditional Restricted Boltzmann Machine (FFW-CRBM) ca-

able of both classification and prediction of human activity in one

nified framework. An emergent feature of FFW-CRBM, so called self

uto evaluation of the classification performance, may be very useful

n the context of smart companions. It allows the machine to au-

onomously recognise that an activity is undetected and to trigger a

etraining procedure. Due to the complexity of the proposed machine,

he standard training method for DL models is unsuited. As a second

ontribution, we introduce Sequential Markov chain Contrastive Di-

ergence (SMcCD), an adaptation of contrastive divergence (CD) [16].

o illustrate the efficacy and effectiveness of the model, we present

esults from two sets of experiments using real world data originat-

ng from (i) our previous developed smart companion robotic plat-

orm [17] and (ii) a benchmark database for activity recognition [18].

The remaining of this paper is organised as follows. Section 2

resents the mathematical definition of the problem tackled in this
2 Four-way (and higher) interactions are also biologically plausible since they appear

o be necessary to explain the workings of the human brain [15].

w

e

i

rticle. Section 3 presents background knowledge on deep learning

or the benefit of the non-specialist reader. Section 4 details the math-

matical model for the unfactorised version of the proposed method.

ection 5 describes the FFW-CRBM model including the mathemat-

cal modelling. Section 6 describes the experiments performed and

epict the achieved results. Finally, Section 7 concludes and presents

irections of future research.

. Problem definition

In essence, in this paper, we aim at solving time series classifi-

ation and prediction simultaneously in one unified framework. Let

∈ N represent the index of available instances, t ∈ N to denote time,
d a d-dimensional feature space, t − N : t − 1 the temporal window

f observations recorded in the N time steps before t, C = {0, 1, . . . , k}
he set of possible classes, and � the parameters of a generic mathe-

atical model. The targeted problem can then be written as:

Given a data set D = {X(i)
, y(i)} for all instances i, where:

• X(i) ∈ Rd×(t−N:t−1), is a real-valued input matrix consisting of d

rows of features, and N − 1 columns corresponding to the associ-

ated temporal window t − N : t − 1,
• y(i)

t ∈ Rd × C is the corresponding multidimensional output vector

consisting of the d-dimensional real-valued features at time t and

an associated class label (e.g. a robotic companion that recognises

an activity and predict the corresponding human poses to avoid

collision).

etermine p(Y|�; �), with Y = {y(i)} ∀i and � = {X(i)} ∀i represent-

ng the concatenation of all outputs and inputs respectively, such

hat: KL(pmodel(Y|�; �)||pempirical(Y|�)) is minimised. KL represents

he Kullback Leibler divergence between the empirical and approxi-

ated (i.e., model) distributions. This is signified by pmodel(Y|�; �),
hich defines a joint distribution over Rd × C space.

. Background

This section provides background knowledge needed for the re-

ainder of the paper. Firstly, restricted Boltzmann machines (RBMs),

eing at the basis of the proposed technique, are detailed. Secondly,

ontrastive divergence, the algorithm used to fit the RBM’s hyper-

arameters is detailed. Finally, factored conditional restricted Boltz-

ann machines, constituting the main motivation behind this work,

re explained.

.1. Restricted Boltzmann machine

Restricted Boltzmann machines (RBM) [11] are energy-based

odels for unsupervised learning. These models are stochastic with

tochastic nodes and layers, making them less vulnerable to local

inima [14]. Further, due to their neural configurations, RBMs posses

xcellent generalisation capabilities [5].

Formally, an RBM consists of visible and hidden binary layers.

he visible layer represents the data, while the hidden increases the

earning capacity by enlarging the class of distributions that can be

epresented to an arbitrary complexity. This paper uses the following

otation: i represents the indices of the visible layer, j those of the

idden layer, and wij denotes the weight connection between the ith

isible and jth hidden unit. Further, vi and hj denote the state of the ith

isible and jth hidden unit, respectively. Using to the above notation,

he energy function of an RBM is given by:

(v, h) = −
nv∑

i=1

nh∑
j=1

vihjwij −
nv∑

i=1

viai −
nh∑

j=1

hjbj (1)

here, ai and bj represent the biases of the visible and hidden lay-

rs, respectively; nv and nh are the number of neurons in the vis-

ble and hidden layer, respectively. The joint probability of a state
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Fig. 1. Overall schematic of the proposed FW-CRBM showing the four layer configu-

ration of the machine.
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of the hidden and visible layers is defined as: P(v, h) = exp(−E(v,h))
Z

with Z = ∑
x,y exp(−E(x, y)). To determine the probability of a data

point represented by a state v, the marginal probability is used. This

is determined by summing out the state of the hidden layer as:

p(v) = ∑
h P(v, h) =

∑
h(exp(− ∑

i,j vihjwij−
∑

i viai−
∑

j hjbj))

Z . In order to max-

imise the likelihood of the model, the gradients of the energy function

with respect to the weights have to be calculated. Unfortunately, in

RBMs maximum likelihood cannot be straightforwardly applied due

to intractability problems. To circumvent these problems, contrastive

divergence was introduced.

3.2. Contrastive divergence

In contrastive divergence (CD) [16], learning follows the gradient

of:

CDn ∝ DKL(p0(x)||p∞(x))− DKL(pn(x)||p∞(x)) (2)

where, pn(.) is the resulting distribution of a Markov chain running

for n steps. To derive the update rules for wij, the energy function

is re-written in a matrix form as: E(v, h; W) = −h
T
Wv − vTa − h

T
b.

v = [v1, . . . , vnv ] is a binary vector collecting all visible units vi, with

nv the index of the last visible neuron. h = [h1, . . . , hnh
] is a bi-

nary vector collecting all the hidden units hj, with nh the index

of the last hidden neuron. W ∈ Rnh×nv represents the matrix of all

weights wij, a ∈ Rnv ,b ∈ Rnh are vectors containing the biases of

v and h, respectively. Since the visible units are conditionally in-

dependent given the hidden units and vice versa, learning can be

performed using one step Gibbs sampling, which is carried in two

half-steps: (1) update all the hidden units, and (2) update all the

visible units. Thus, in CDn the weight updates are done as follows:

wτ+1
ij

= wτ
ij

+ α(〈〈hjvi〉p(h|v;W)〉0 − 〈hjvi〉n) where τ is the iteration, α

is the learning rate, 〈〈hjvi〉p(h|v;W)〉0 = 1
NI

∑NI
k=1

v(k)
i

P(h(k)
j

= 1|v(k); W)

and 〈hjvi〉n = 1
NI

∑NI
k=1

v(k)(n)
i

P(h(k)(n)
j

= 1|v(k)(n); W)where NI is the to-

tal number of input instances, the superscript (k) shows the kth input

instance. The superscript (n) indicates that the states are obtained af-

ter n iterations of Gibbs sampling from the Markov chain starting at

p0(·).

3.3. Factored conditional restricted Boltzmann machine

Conditional restricted Boltzmann machines (CRBM) [13] are an

extension over RBMs used to model time series data and human

activities. They use an undirected model with binary hidden vari-

ables h, connected to real-valued (i.e. Gaussian) visible ones v. At

each time step t, the hidden and visible nodes receive a connection

from the visible variables of the last N time-steps. The history of

the values up to time t is collected in the real-valued history vec-

tor v<t . It is constructed by starting with the observations recorded

at time step t − N, and after that, by adding sequentially after its

last element, the observations recorded until time step t − 1, where

N represents the size of the temporal window considered. Thus,

v<t = [v1,t−N, ..., vnv,t−N, ..., v1,t−1, ..., vnv,t−1]. We mention that in any

formula in the paper, we note with the subscript ,t the present time

step, and with the subscript ,<t the previous N time steps, for any

vector. The total energy of CRBM is given by:

E =
nv∑

i=1

(âi,t − vi,t)
2

2σ 2
i

−
nh∑

j=1

b̂j,thj,t −
nv∑

i=1

nh∑
j=1

Wij
vi,t

σi

hj,t (3)

where âi,t = ai + ∑nv<t
k=1

Akivk,<t and b̂j,t = bj + ∑nv<t
k=1

Bkjvk,<t represent

the “dynamic biases”, which include the static bias and the contribu-

tion from the past, nv<t = nv(N − 1) is the number of elements in v<t ,

and σi represents the standard deviation.

To predict different types of time series within the same model,

Taylor added three-way interactions between neurons. To reduce the
omputational complexity these three-way interactions are factored,

esulting in factored CRBM (FCRBMs) [13]. Their energy is:

= 1

2

nv∑
i=1

(âi,t − vi,t)
2 −

nh∑
j=1

b̂j,thj,t

−
nF∑

f=1

nv∑
i=1

nh∑
j=1

nz∑
p=1

Wv
if Wh

jf Wz
pf vi,thj,tzp,t (4)

here, Wv, Wh, and Wz, represent the factored visible, factored hid-

en, and factored features weights, respectively. nF is the number

f factors, zt is a vector for the deterministic features layer, and nz

he number of deterministic features. FCRBMs have been success-

ully used to model different styles of human motion and time series

redictions. Interested readers are referred to [14] for a more com-

rehensive discussion.

Although successful, FCRBMs are not capable of performing clas-

ification and predictions in one unified framework. The proposed

ethods, explained next, solve this problem by introducing: (1) an

dditional label layer, and (2) four-way multiplicative interactions

etween neurons.

. Four way conditional restricted Boltzmann machines

FFW-CRBMs are derived by factorizing the weight tensor of the

riginal four-way conditional restricted Boltzmann machine (FW-

RBM). For ease of presentation, this section introduces the full FW-

RBM, which is then factorised leading to the FFW-CRBM in Section 5.

To classify and regenerate human motion, FW-CRBMs make use

f a four layer configuration, shown in Fig. 1. The history layer v<t

escribes past frames of an activity, the present layer vt describes

he current time step (prediction), the hidden layer ht assures that

he machine is complex enough to model the intended activities,

nd the label layer lt guarantees that the machine is capable of classi-

ying different types of activities. These layers are connected using a

ourth order tensor Wijko ∈ Rnv×nh×nv<t ×nl , where nv, nh, nv<t , nl rep-

esent the number of neurons from the present, hidden, history and

abel layers, respectively. Furthermore, each of the present, hidden

nd label layers include a, b, and c biases, respectively.

Formally, an FW-CRBM defines a joint probability over vt ,

t , and lt . This distribution is conditioned by v<t , and the

odel parameters �. Therefore, the probability distribution is

efined as follows: P(vt, ht, lt|v<t,�) = exp(−E(vt ,ht ,lt|v<t ,�))
Z , where,

(vt, ht, lt|v<t,�)represents the total energy of the model detailed in

q. (5), and Z is the normalisation term, called the partition function,

nd calculated according to: Z =
∑

vt ,ht ,lt

exp(−E(vt, ht, lt|v<t,�)).
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Fig. 2. Overall schematic of the proposed FFW-CRBM showing the four layer configu-

ration of the machine as well as the factored weight tensor.
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.1. The energy of FW-CRBMs

FW-CRBMs’ energy function is defined as:

(vt, ht, lt|v<t,�) = −
nv∑

i=1

(vi,t − ai)
2

σi
2

−
nh∑

j=1

hj,tbj

−
nl∑

o=1

lo,tco −
nv∑

i=1

nh∑
j=1

nv<t∑
k=1

nl∑
o=1

Wijko

vi,t

σi

hj,t
vk,<t

σk

lo,t

(5)

here, σi and σk represent the standard deviation for the corre-

ponding neurons from the present and history layer respectively.
nv
i=1

(vi,t−ai)
2

σi
2 ,

∑nh
j=1

hj,tbj,
∑nl

o=1 lo,tco represent the energy contribu-

ions of each of the visible, hidden, and label neurons respectively

nd
∑nv

i=1

∑nh
j=1

∑nv<t
k=1

∑nl
o=1 Wijko

vi,t
σi

hj,t
vk,<t
σk

lo,t describes the contribu-

ion of the weight tensor to the overall energy function.

.2. Probabilistic inference in FW-CRBMs

Since there are no connections between the neurons in the same

ayer, inference can be performed in parallel. The overall input of

ach of the hidden unit sh
j,t

, visible unit sv
i,t

, and labelled unit, sl
o,t is

alculated according to:

sh
j,t =

nv∑
i=1

nv<t∑
k=1

nl∑
o=1

Wijko

vi,t

σi

vk,<t

σk

lo,t (for jth hidden unit) (6)

sv
i,t =

nh∑
j=1

nv<t∑
k=1

nl∑
o=1

Wijkohj,t
vk,<t

σk

lo,t (for ith visible unit) (7)

l
o,t =

nv∑
i=1

nh∑
j=1

nv<t∑
k=1

Wijko

vi,t

σi

hj,t
vk,<t

σk

(for oth labelled unit) (8)

or each of the jth hidden ith visible and oth labelled unit, inference

s performed according to:

p(hj,t = 1|vt, v<t, lt) = sigmoid
( − bj − sh

j,t

)
(9)

p(vi,t = x|ht, v<t, lt) = N
(
ai + sv

i,t, σ
2
i

)
(10)

(lo,t = 1|vt, v<t, ht) = sigmoid
( − co − sl

o,t

)
(11)

here, sigmoid(·) is the sigmoidal function, and N is the Gaussian

istribution.

.3. Learning in FW-CRBMs

The update rules are attained by deriving the energy function with

espect to the free parameters (i.e., the weights tensor, and the biases

f each of the layers) leading to:

Wijko ∝ vk,<t〈vi,thj,tlo,t〉0
− vk,<t〈vi,thj,tlo,t〉K

(12)

ai ∝ 〈vi,t〉0 − 〈vi,t〉K (13)

bj ∝ 〈hj,t〉0
− 〈hj,t〉K

(14)

co ∝ 〈lo,t〉0 − 〈lo,t〉K (15)

ith K being the number of steps of a Markov Chain, Wijko represent-

ng the weights connecting the four layers and ai, bj, and co denoting

he ith bias of the present, the jth bias of the hidden, and the oth bias

f the label layers, respectively.

Although successful, FW-CRBMs incur a computational complex-

ty ofO(n4)making them unsuitable for real-world applications. Next,

he more efficient counter-part, the factored FW-CRBM (i.e., FFW-

RBM) is introduced.
. Factored four way conditional restricted Boltzmann machine

To reduce the computational complexity of FW-CRBM from O(n4)
o O(n2), FFW-CRBM factors the 4th order weight tensor (i.e., Wijko) to

sum of products of second order tensors [19]. A high level schematic

epicting such a factorisation is shown in Fig. 2. Factoring of the four-

ay weight tensor is achieved according to:

ijko =
nF∑

f=1

Wv
if Wh

jf Wv<t

kf
Wl

of (16)

here nF is number of factors and i, j, k, and o represent the indices

f the visible layer neurons vt , the hidden layer neurons ht , the his-

ory layer neurons v<t and the labelled layer neurons lt respectively.

urthermore, Wv, Wh, Wl represent the bidirectional and symmet-

ic weights from the visible, hidden and label layers to the factors,

espectively. Moreover, Wv<t denotes the directed weights from the

istory layer to the factors.

Although, FFW-CRBMs behave similar to FW-CRBMs (i.e., having

wo informational flows, one for classification and one for predic-

ion), the mathematical formalisation needs to be re-derived using

he factored weights of Eq. (16).

.1. Energy for the factored model

In the case of FFW-CRBMs’ energy, the first three terms of Eq. (5)

emain unchanged. However, the fourth term makes use of the fac-

oring in Eq. (16), yielding:

(vt, ht, lt|v<t,�) = −
nv∑

i=1

(vi,t − ai)
2

σi
2

−
nh∑

j=1

hj,tbj −
nl∑

o=1

lo,tco

−
nF∑

f=1

nv∑
i=1

Wv
if

vi,t

σi

nh∑
j=1

Wh
jf hj,t

nv<t∑
k=1

Wv<t

kf

vk,<t

σk

nl∑
o=1

Wl
of lo,t (17)

.2. Probabilistic inference in the factored model

Inference in FFW-CRBMs is conducted in parallel as in the FW-

RBM case. Nonetheless, the inputs, for each of the hidden, visible

nd label nodes are given respectively, by:

sh
j,t =

nF∑
f=1

Wh
jf

nv∑
i=1

Wv
if

vi,t

σi

nnv<t∑
k=1

Wv<t

kf

vk,<t

σk

nl∑
o=1

Wl
of lo,t (18)

sv
i,t =

nF∑
f=1

Wv
if

nh∑
j=1

Wh
jf hj,t

nnv<t∑
k=1

Wv<t

kf

vk,<t

σk

nl∑
o=1

Wl
of lo,t (19)
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Sequential Markov Chain Contrastive Divergence:
Inputs: TD - set of training data;

K - number of Markov Chain steps;

Initialization: � ← N (0, σ 2);
set α, ρ , γ ;

for all epochs do

for each Sample ∈ TD do

%%First Markov Chain to reconstruct vt;

vt ← initialization with 0;

lt = Sample.Label;

v<t = Sample.History;

ht = InferHiddenLayer(vt ,lt ,v<t ,�);

for λ = 0;λ < K;λ + + do

%%Positive phase;

pSt=GetPosStats(ht ,Sample.Present,lt ,v<t ,�);

%%Negative phase;

vt=InferPresentLayer(ht ,lt ,v<t ,�);

ht = InferHiddenLayer(vt ,lt ,v<t ,�);

nSt=GetNegStats(ht ,vt ,lt ,v<t ,�);

�=UpdateWeights(pSt,nSt,�,α,ρ ,γ );

end

%%Second Markov Chain to reconstruct lt;

lt ← initialization with 0;

vt = Sample.Present;

v<t = Sample.History;

ht = InferHiddenLayer(vt ,lt ,v<t ,�);

for λ = 0;λ < K;λ + + do

%%Positive phase;

pSt=GetPosStats(ht ,Sample.Label,vt ,v<t ,�);

%%Negative phase;

lt=InferLabelLayer(ht ,vt ,v<t ,�);

ht = InferHiddenLayer(vt ,lt ,v<t ,�);

nSt=GetNegStats(ht ,vt ,lt ,v<t ,�);

�=UpdateWeights(pSt,nSt,�,α,ρ ,γ );

end

end

end

Algorithm 1: Sequential Markov Chain Contrastive Divergence
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(20)

These are then substituted in Eqs. (9)–(11) for determining the prob-

ability distributions for each of the visible, hidden and label layers.

5.3. Learning in the factored model

This section is devoted to the learning procedure of FFW-CRBMs.

First, the update rules are derived, then an explanation of SMcCD is

detailed.

5.3.1. Update rules

The general update rule for the hyper-parameters � is given by:

�τ+1 = �τ + ρ��τ + α(��τ+1 − γ�τ ) (21)

where τ ,ρ ,α, andγ represent the update number, momentum, learn-

ing rate, and weights decay, respectively. The interested reader is re-

ferred to [20] for a more thorough discussion on the choice of such

parameters. The delta rule for each of the hyper-parameters can be

computed by deriving the energy function from Eq. (17), yielding:

�Wv
if ∝

〈
vi,t

nh∑
j=1

Wh
jf hj,t

nv<t∑
k=1

Wv<t

kf
vk,<t

nl∑
o=1

Wl
of lo,t

〉
0

(22)

−
〈
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nl∑
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Wl
of lo,t

〉
λ
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∝

〈
vk,<t

nh∑
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Wh
jf hj,t

nv∑
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Wv
if vi,t

nl∑
o=1

Wl
of lo,t

〉
0

(23)
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nv∑
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nl∑
o=1

Wl
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〉
λ

�Wl
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〈
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k=1

Wv<t

kf
vk,<t

nh∑
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nv∑
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Wv
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〉
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−
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kf
vk,<t

nh∑
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Wh
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nv∑
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Wv
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〉
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�Wh
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〈
hj,t
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kf
vk,<t

nv∑
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Wv
if vi,t

nl∑
o=1

Wl
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〉
0

(25)

−
〈

hj,t

nv<t∑
k=1

Wv<t

kf
vk,<t

nv∑
i=1

Wv
if vi,t

nl∑
o=1

Wl
of lo,t

〉
λ

�ai ∝ 〈vi,t〉0 − 〈vi,t〉λ (26)

�bj ∝ 〈hj,t〉0
− 〈hj,t〉λ (27)

�co ∝ 〈lo,t〉0 − 〈lo,t〉λ (28)

with λ being a Markov chain step running for a total number of K

steps and starting at the original data distribution.

5.3.2. Sequential Markov chain contrastive divergence

Due to the fact that in the negative phase of the parameters update,

the present and label layers have to be modified abide their common

dependency, common contrastive divergence cannot be directly ap-

plied. To remedy this problem, sequential Markov chain contrastive

divergence (SMcCD) is introduced. SMcCD extends CD by running two

sequential Markov chains as shown in Algorithm 1. The first recon-

structs vt , after the initialisation of all neurons from vt with 0, using

the current machine’s configuration, while fixing the values at the

label and past layers (lt and v<t) to the current training instance.

The second tries to reconstruct the label layer lt from the vt and v<t .

The weights updates are performed at each step of the Markov chain.

After a number of iterations over the training data, the weights (and
hus the FFW-CRBM), representing the minimised energy level, can

hen be used for classification as well as prediction.

.3.3. Self auto evaluation (SAE) of the classification performance

Given that FFW-CRBMs are capable of performing classification

nd prediction using the same free parameters, a three steps proce-

ure, can be used in real time applications to evaluate classification

erformance. Firstly, the machine classifies the current observation

i.e., finding the label lt at time t, based on history, v<t , and present

rames, vt). Secondly, a prediction of the next values on the visible

eurons vt+1 at time t + 1, using the previously obtained label lt , and

istory frames, is performed. Finally, the Root Mean Square Error

RMSE) can be used to compare the prediction vt+1 with the actual

bservation acquired from sensory data.

. Experiments and results

Two sets of experiments were performed to test the proposed

odels. In the first, FFW-CRBMs were used to classify and predict on

keleton data gathered using a Microsoft Kinect
TM

sensor, as shown

n Fig. 3. In the second experiment (i.e., Section 6.2) FFW-CRBM was

ested on the Berkeley multimodal human dataset [18]. Results in each

f the above experiments demonstrate that FFW-CRBMs outperform

tate-of-the-art techniques, such as SVMs [21], CRBMs, and FCRBMs.
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Fig. 3. The overall setup of detecting human activities. On the left a person performs a

certain activity in front of a robot equipped with the Microsoft Kinect
TM

sensor. This is

then encoded using the coordinates of the 15 joints shown on the right.

Fig. 4. Screen-shots with the human skeleton joints for the exercise activities experi-

ment.
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.1. Human activity recognition

In this set of experiments, FFW-CRBMs were tested on real-world

ata acquired through a Microsoft Kinect
TM

sensor operating under

he Robotic Operating System3 (ROS) framework4 installed on our

obot [17]. Two classes of experiments were conducted. In the first,

xercise activities (EA) were performed in front of the Kinect sen-

or and the positions of the joints of the exercising subjects were

ollected. These exercises involved: “body squats” (EA1), “vertical to

orizontal hand movements” (EA2), “opening and closing of arms

hile moving” (EA3), “jumping” (EA4), “leg lunges” (EA5), and “walk-

ng” (EA6), as depicted in Fig. 4. In the second set, a more difficult

cenario was considered. Here, users performed table activities (TA),

hich included: “phoning” (TA1), “typing” (TA2), “eating a sandwich”

TA3), “eating using a knife and a fork” (TA4), “reading” (TA5), and

writing” (TA6). The goals in each of the two experiments were to:

1) classify the activity, (2) predict the human poses for each of

he activities, and (3) assess the SAE procedure. To determine the
3 http://wiki.ros.org/ [Accessed 8th June 2014].
4 Please note, the FW-CRBM is too computationally expensive to apply in real-world

xperiments. It is for this reason, that FFW-CRBM was used.

l

o

m

erformance of the model we used 5-fold cross-validation, by split-

ing the data in 5 folds. Within each fold, to avoid altering the time

eries, we kept the data in their chronological order (i.e. keep the con-

inuity of the human poses when an activity is performed). This split-

ing was helpful to have a ground truth for assessing the multi-step

rediction performance. Results show that FFW-CRBM outperforms

ach of: (1) SVMs (in classification) and (2) CRBMs and FCRBMs (in

rediction).

The inputs were frames of 45 dimensions, corresponding to 15

oints, at a certain time instance t. Each joint is represented in the

hree dimensional space, by the (x, y, z)absolute coordinates. The ori-

in of the coordinates system is situated in the RGB camera of the

inect sensor. The layers of the FFW-CRBM were set to 45 neurons

n the visible layer (one for each of the dimensions), 6 neurons in the

abel layer (one for each of the activities), and 1080 history neurons

n the history layer corresponding to 24 frames. Different values for

he number of hidden neurons and number of factors were tried, by

erforming cross-validation on a small amount of instances picked

andomly from the datasets. As a result, the number of hidden neu-

ons was set to 40 with 40 factors. In this configuration the FFW-CRBM

ad 46 931 weight parameters. The initial learning rate was 10−4 to

uarantee a bounded reconstruction error. The initial number of the

arkov Chain steps in the training phase was set to 10. The initialisa-

ion of the weights was N (0, 0.3). In this model, the four way tensor is

ritten as a product of four two way tensors and 0.34 = 0.0081, which

epresents the usual value for the variance of the weight initialisations

n standard RBMs. Further particularities, such as the momentum and

he weight decay were set to 0.9 and 0.0002 respectively [20]. After

given initial number of iterations, the learning rate was decreased

o 10−5 and the SMcCD steps were increased to 50 and a new set of

terations was started.

.1.1. Classification on EA

In the case of exercise activities, the data set initially consisted

f 3876 instances covering all six activities (i.e. EA1, EA2, EA3, EA4,

A5, EA6). Table 1 reports the classification results and the compari-

on between FFW-CRBM and SVMs using a radial basis function (RBF)

ernel and the default parameters from LIBSVM [22]. It is clear that

FW-CRBM outperforms SVMs. For instance, FFW-CRBM achieved

bout 89% accuracy, compared to 65% for SVMs classifying EA6

i.e., walking).

.1.2. Predictions on EA

In the second phase of this experiment, one-step and multi-step

redictions of human skeleton joint coordinates was considered.

ere, a class label was fixed and the machine re-generates the joints

alues. In other words, given a class label, the task was to determine

he 45-dimensional real valued output on the visible layer. Due to the

roperties of FFW-CRBMs, there is no need to re-train the inverse of

he learned classifier which is nearly impossible with existing tech-

iques such as SVMs. Using the FFW-CRBM, the task was performed

y running a time step in the network to determine the visible unit

alues (i.e., the inverse problem). The results of this re-generation are

hown in Tables 2 and 3, where the errors between the true values

nd the predicted values of FFW-CRBMs, CRBMs, and FCRBMs are pre-

ented with mean and standard deviation, over all testing instances.

he metric used to measure these errors was RMSE.

One-step prediction: From the results shown in Table 2, it is clear

hat FFW-CRBM outperforms current state-of-the-art techniques in

ne-step predictions, where it attains the lowest reconstruction error

f 0.018 compared to 0.036 for FCRBM and 0.106 for normal CRBMs.

Multi-step prediction: In this experiment the machine was al-

owed to progress for a number of steps. Prediction errors for each

f the activities were monitored. In Table 3 the minimum, mean, and

aximum incurred errors over all the activities at 10, 20, . . . , 50 steps,

http://wiki.ros.org/
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Table 1

Confusion matrix in percentages (with mean ± standard deviation) for FFW-CRBM vs. SVM on classifying human

exercise activities. In the top of the table are the FFW-CRBM results, while the bottom represents the SVM results.

Method Activities EA1 EA2 EA3 EA4 EA5 EA6

FFW-CRBM EA1 98 ± 1.5 1.3 ± 0.8 0 0 0 0.7 ± 0.6

EA2 1.3 ± 1.2 98.7 ± 1.2 0 0 0 0

EA3 0.6 ± 0.9 0 94 ± 2.6 1.2 ± 1.1 4.2 ± 0.7 0

EA4 6 ± 1.2 0 0 94 ± 1.2 0 0

EA5 0 0 0 0 98.9 ± 1.1 1.1 ± 1.1

EA6 0 0 7.4 ± 2.1 0 3.6 ± 1.6 89 ± 2.3

SVM EA1 94 ± 2.1 0 0 0 0.7 ± 0.8 5.3 ± 1.9

EA2 8.5 ± 3.1 91.5 ± 3.1 0 0 0 0

EA3 15 ± 2.3 2.3 ± 1.4 82.1 ± 3.4 0 0.6 ± 0.8 0

EA4 47 ± 5.3 1 ± 1.2 0 52 ± 4.7 0 0

EA5 6 ± 1.6 0 0 0 94 ± 1.6 0

EA6 28 ± 2.3 3.1 ± 1.6 0 1.9 ± 1.4 2 ± 1.8 65 ± 2.7

Table 2

One step prediction, RMSE values (with mean ± standard deviation)

of human skeleton joints averaged over all test instances for human

exercise activities using FFW-CRBM, CRBM and FCRBM.

Activities CRBM FCRBM FFW-CRBM

EA1 0.110 ± 0.005 0.054 ± 0.002 0.028 ± 0.008

EA2 0.138 ± 0.003 0.036 ± 0.006 0.018 ± 0.012

EA3 0.106 ± 0.012 0.044 ± 0.021 0.023 ± 0.011

EA4 0.126 ± 0.011 0.094 ± 0.008 0.027 ± 0.014

EA5 0.125 ± 0.004 0.068 ± 0.011 0.026 ± 0.009

EA6 0.123 ± 0.026 0.093 ± 0.007 0.048 ± 0.019

Fig. 5. Self auto evaluation results of FFW-CRBM in the case of human exercise ac-

tivities. For any activity classified correctly, the black histograms show the mean of

the prediction error, and the top red lines represent the standard deviations. The red

histograms show the same, but in the case of wrong classified instances.

T

i

8

6

l

i

are shown for CRBM, FCRBM, and FFW-CRBM. FFW-CRBM outper-

forms the other techniques, having a maximum averaged prediction

error of 0.094 after 50 prediction steps.

6.1.3. Self auto evaluation on EA

In Fig. 5, the results of the SAE procedure are averaged for all joint-

coordinates, over all correctly or incorrectly classified instances for

exercise activities. For any activity, the prediction error of incorrectly

classified instances is at least 2.5 times higher than the prediction

error for correct classified instances, with a maximum of 7 times

bigger for EA6. These demonstrate that as the classification is wrong

the prediction error increases dramatically. In such a scenario, even

a very simple technique, e.g., thresholding, can be adopted to decide

whether to retrain the model, on novel unknown activities.

6.1.4. Classification on TA

The same experiments were repeated in a more difficult scenario.

In table activities there are a lot of similarities between the joint

movements making it harder to differentiate among them. The set-

up of the FFW-CRBM was identical to the previous case. The dataset

however, consisted of 12483 instances. Classification results shown in
Table 3

Multi-step prediction results of CRBM, FCRBM and FFW-CRBM on exercise

incurred errors over all activities at different numbers of prediction steps w

references to colour in this table legend, the reader is referred to the web ve

Prediction
Minimum

CRBM FCRBM FFW-CRBM CRBM FC

10 steps
μ 0.102 0.039 0.022 0.116 0
σ 0.002 0.003 0.004 0.007 0

20 steps
μ 0.112 0.037 0.028 0.121 0
σ 0.004 0.002 0.003 0.008 0

30 steps
μ 0.109 0.038 0.037 0.121 0
σ 0.004 0.002 0.009 0.011 0

40 steps
μ 0.110 0.037 0.035 0.118 0
σ 0.003 0.003 0.012 0.011 0

50 steps
μ 0.110 0.037 0.037 0.119 0
σ 0.006 0.003 0.004 0.012 0
able 4 demonstrate that FFW-CRBM is again capable of outperform-

ng SVMs with RBF kernels where, for instance, FFW-CRBM achieved

1% accuracy compared to 66.5% on TA1 (i.e., phoning).

.1.5. Predictions on TA

Here again, the task was to regenerate joint movements from class

abels. Results are summarised in Table 5 for one step predictions and

n Table 6 for multi-step predictions.
activities. The table represents the minimum, mean and maximum

ith mean (μ) and standard deviation (σ). (For interpretation of the

rsion of this article.)

Mean Maximum
RBM FFW-CRBM CRBM FCRBM FFW-CRBM
.048 0.038 0.128 0.076 0.071
.016 0.021 0.011 0.007 0.021
.046 0.043 0.132 0.083 0.093
.019 0.026 0.011 0.006 0.014
.049 0.047 0.124 0.088 0.077
.021 0.017 0.014 0.005 0.012
.059 0.056 0.131 0.139 0.078
.035 0.028 0.004 0.017 0.016
.086 0.059 0.126 0.332 0.094
.102 0.027 0.006 0.082 0.031
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Table 4

Confusion matrix in percentages (with mean ± standard deviation) for FFW-CRBM versus SVM on classifying human

table activities, clearly manifesting that the former outperforms the latter.

Method Activities TA1 TA2 TA3 TA4 TA5 TA6

FFW-CRBM TA1 81 ± 4.7 4 ± 2.3 9.7 ± 2.6 0 3.6 ± 2.1 1.7 ± 1.2

TA2 2.1 ± 0.8 91.3 ± 3.2 0 2.5 ± 2.9 0 4.1 ± 2.8

TA3 1.4 ± 1.8 2.3 ± 1.9 86.3 ± 4.2 0 4 ± 0.9 6 ± 3.1

TA4 0 0 0 93 ± 4.2 7 ± 4.2 0

TA5 0 0 0 8.5 ± 1.3 91.5 ± 1.3 0

TA6 0.6 ± 0.9 0 0 1.5 ± 1.2 1.8 ± 0.6 96.1 ± 1.6

SVM TA1 66.5 ± 4.2 7 ± 1.6 21 ± 4.3 5.5 ± 3.2 0 0

TA2 7 ± 3.2 78.1 ± 2.6 0 13.7 ± 2.9 0 1.2 ± 1.4

TA3 19.4 ± 3.8 6 ± 2.4 70.2 ± 5.7 3 ± 2.8 1.4 ± 0.6 0

TA4 1.4 ± 1.8 0 3 ± 1.3 82.5 ± 2.6 7.1 ± 1.8 6 ± 3.7

TA5 0 14.1 ± 2.1 3.9 ± 1.2 5 ± 2.7 65 ± 4.2 12 ± 3.1

TA6 0 5 ± 2.1 0 0 7.7 ± 0.9 87.3 ± 1.7

Table 5

One step prediction, RMSE values (with mean ± standard deviation)

of human skeleton joints averaged over all test instances for human

table activities. FFW-CRBM is compared against CRBM and FCRBM

and it outperforms them in almost all cases.

Activities CRBM FCRBM FFW-CRBM

TA1 0.050 ± 0.002 0.032 ± 0.006 0.043 ± 0.005

TA2 0.042 ± 0.006 0.046 ± 0.003 0.022 ± 0.003

TA3 0.070 ± 0.003 0.048 ± 0.001 0.041 ± 0.002

TA4 0.058 ± 0.001 0.051 ± 0.003 0.032 ± 0.006

TA5 0.082 ± 0.004 0.070 ± 0.004 0.018 ± 0.005

TA6 0.063 ± 0.002 0.044 ± 0.003 0.031 ± 0.002
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Fig. 6. Self auto evaluation results of FFW-CRBM in the case of human table activi-

ties. For any activity classified incorrectly, the red histogram show the mean of the

prediction error, and the top black lines represent the standard deviations. The black

histograms show the same, but in the case of correct classified instances.

d

b

p

t

T

u

r

C

ne-step prediction: Results of Table 5 show that FFW-CRBM outper-

orms FCRBMs and CRBMs where, for example, FFW-CRBM achieves a

inimum reconstruction error of 0.018 compared to 0.070 and 0.082

n TA4.

ulti-step prediction: The same experiments were performed for

ulti-step predictions as in the exercise activities case. Prediction

rror results are summarised in Table 6. Also here the proposed

ethod outperforms the state-of-the-art techniques in multi-step

redictions.

.1.6. Self auto evaluation on TA

The SAE procedure was again applied but using TA dataset. In

his case, Fig. 6 confirms the previous results in which, when the

lassification is wrong, the prediction error increases substantially,

ost clearly illustrated for TA5.

.2. Berkeley multimodal human action database

In order to benchmark the classification accuracy of FFW-CRBM

ethod, it was tested on the Berkeley Multimodal Human Action

atabase (MHAD) [18] benchmark. Given the complex nature of this
Table 6

Multi-step prediction results of CRBM, FCRBM and FFW-CRBM on table a

incurred errors over all activities at different numbers of prediction steps w

references to colour in this table legend, the reader is referred to the web ve

Prediction
Minimum

CRBM FCRBM FFW-CRBM CRBM FC

10 steps
μ 0.041 0.036 0.029 0.045 0
σ 0.004 0.005 0.003 0.004 0

20 steps
μ 0.045 0.032 0.028 0.047 0
σ 0.002 0.015 0.006 0.008 0

30 steps
μ 0.041 0.036 0.028 0.043 0
σ 0.003 0.006 0.003 0.004 0

40 steps
μ 0.042 0.038 0.027 0.046 0
σ 0.003 0.009 0.004 0.004 0

50 steps
μ 0.044 0.036 0.030 0.048 0
σ 0.004 0.009 0.003 0.003 0
ataset, such an experiment can better judge the classification ro-

ustness of the proposed method. This dataset contains 11 activities

erformed by 12 persons. The difficulty in this experiment is that the

raining and test data come from different distributions.

Data from the optical mocap containing 93 dimensions was used.

he original data contained around 400 frames per second. To speed

p the learning process the data was split in temporal windows, each

epresented by the mean of 20 original frames. The layers of the FFW-

RBM were set to 93 neurons in the visible layer, 11 neurons in the
ctivities. The table represents the minimum, mean and maximum

ith mean (μ) and standard deviation (σ). (For interpretation of the

rsion of this article.)

Mean Maximum
RBM FFW-CRBM CRBM FCRBM FFW-CRBM
.028 0.027 0.055 0.045 0.038
.007 0.004 0.002 0.006 0.003
.032 0.029 0.051 0.047 0.039
.007 0.004 0.005 0.007 0.003
.039 0.034 0.052 0.045 0.041
.005 0.008 0.003 0.004 0.004
.041 0.033 0.049 0.047 0.041
.006 0.003 0.004 0.005 0.004
.039 0.034 0.051 0.048 0.042
.005 0.006 0.003 0.009 0.006
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Table 7

Classification accuracy on MHAD

database.

Model Accuracy (%)

1-NN classifier [18] 74.82

3-NN classifier [18] 75.55

K-SVM [18] 79.93

FFW-CRBM 81.12 ± 1.3
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labelled layer, and 1860 neurons in the history layer. The number of

hidden neurons was set to 10 with 10 factors. The initial number of

the Markov chain steps in the training phase was set to 10. The ini-

tialisation of the weights was set to N (0, 0.3). The model was trained

for 13 iterations.

The same classification scenario was followed as in [18], in which

the first 7 users were used to train the model and the last 5 users were

used for testing. To assess the stochastic nature of FFW-CRBM and to

compensate the absence of k-fold cross-validation technique in the

original classification scenario, the training/testing procedures were

repeated 10 times. As depicted in Table 7, the accuracy of FFW-CRBM

is higher than the accuracies reported in the original paper.

7. Conclusions and future work

In this paper, a new machine learning technique for activity recog-

nition and prediction is proposed. Factored four way conditional re-

stricted Boltzmann machines, together with an adapted training al-

gorithm SMcCD are capable of: (1) classification, (2) prediction, and

(3) self auto evaluation of their classification performance within one

unified framework. The efficacy and performance of FFW-CRBM has

been demonstrated on real-world data acquired from our previously

developed robotic platform for smart companions and on benchmark

datasets. Results showed that FFW-CRBMs are capable of outperform-

ing current state-of-the-art machine learning algorithms in both clas-

sification and regression.

Even though FFW-CRBMs are successful, the choice of their pa-

rameters such as the number of hidden units, the learning rate or the

number of factors might be troublesome, as is the case for other ma-

chine learning algorithms. Furthermore, computational complexity

in case of a very large number of the past frames might be potentially

a problem. Both drawbacks present opportunities for future explo-

rations.
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