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Abstract—Ecological Momentary Assessment (EMA) tech-
niques gain more ground in studies and data collection among
different disciplines. Decision tree algorithms and their ensemble
variants are widely used for classifying this type of data,
since they are easy to use and provide satisfactory results.
However, most of these algorithms do not take into account
the multiple levels (per-subject, per-day, etc.) in which EMA
data are organized. In this paper we explore how the EMA
data organization can be taken into account when dealing with
decision trees and specifically how a combination of bagging
and boosting can be utilized in a classification task. A new
algorithm called BBT (standing for Bagged Boosted Trees) is
proposed which is enhanced by an over/under sampling method
leading to better estimates of the conditional class probability
function. BBT’s necessity and effects are demonstrated using
both simulated datasets and real-world EMA data collected
using a mobile application following the eating behavior of 100
people. Experimental analysis shows that BBT leads to clear
improvements with respect to prediction error reduction and
conditional class probability estimation.

Index Terms—Ecological Momentary Assessment, Classifica-
tion Trees, Bagging, Boosting

I. INTRODUCTION

Decision trees (classification or regression) have been
widely used for exploring and predicting different categories of
datasets. Tree ensembles (based on bagging or boosting) have
been utilized in order to overcome the two main disadvantages
of single decision trees, namely their moderate accuracy and
the difficulty to scale for big datasets.

This work will focus on classification trees and how their
ensembles can be utilized in order to set up a prediction
environment using Ecological Momentary Assessment (EMA)
data from a real-world study. EMA [1] refers to a collection
of methods used in many different disciplines by which a
research subject (i.e. human, plant, sample depending on the
study) repeatedly reports on specific variables measured close
in time to experience and in the subject’s natural environment
(e.g. experiencing food craving is measured again and again
on the same subject). EMA aims to minimize recall bias,
maximize ecological validity and allow microscopic analysis
of influence behavior in real-world contexts. EMA data have
a different structure than normal data and account for several
dependencies between them, since e.g. many samples belong

to the same subject so they are expected to be correlated.
However, most decision trees that deal with EMA data do not
take these specificities into account.

This paper combines boosted trees with a form of bagging
that creates bootstrap samples which take into account the
correlation in within-subject data. Moreover, the boosting
algorithm is modified so as to provide an optimal number of
trees taking into account the bagging function. Also, problems
related to the calculation of the conditional class probability
function are tackled: classifying at the 1/2 quantile is not
always optimal for classification problems and also sometimes
a trained classifier has to be mapped to a base rate for the two
classes different than the one in the training data.

The rest of the paper is organized as follows: Section II
presents related work and Section III introduces the proposed
Bagged Boosted Trees method to classify EMA data. Experi-
mental results are presented in Section IV and finally Section
V concludes the paper.

II. RELATED WORK

EMA data particular type of structure is a major focus in
order to analyse this kind of data. Classical statistics often
assume that observations are drawn from the same general
population and are independent and identically distributed [2].
This is not the standard for EMA data and most decision tree
algorithms do not take that into account when treating these
data [3], despite many improvements (like combinations of
multiple trees) have already been proposed [4].

Many efforts have been made to adjust and further improve
decision trees. Convex-optimization methods have been used
in cases like neural trees where the objective function com-
putes the errors before non-linear activation functions instead
of after them as is usually the case. In this way, the local
optimum avoidance is ensured and global optimum is obtained
by solving a square system of linear equations [5].

Bagging [6] involves having each tree in the ensemble
vote with equal weight. In order to promote model variance,
bagging trains each model in the ensemble using a randomly
drawn subset of the training set. As an example, the random
forest algorithm [7] combines random decision trees with
bagging to achieve very high classification accuracy. Boosting



[8] involves incrementally building an ensemble by training
each new model instance to emphasize the training instances
that previous models mis-classified. Major differences between
bagging and boosting are that (a) boosting changes the distri-
bution of training data based on the performance of classifiers
created up to that point (bagging acts stochastically) and
(b) bagging uses equal weight voting while boosting uses a
function of the performance of a classifier as a weight for
voting.

Boosted trees have been shown to provide best results in
supervised problems [9]. They have been modified in order to
provide accurate results for class probability estimation [10]
and have also been applied to many domains [11]. Bagged
trees are used extensively in statistics and provide a plurality
voting classification criterion [12].

There are limited studies on combining bagging and boost-
ing. Authors in [13] apply this combination but only to
regression trees due to the nature of the algorithm (use of
alternate bias-variance reduction approaches). For classifica-
tion problems, authors in [14] propose a combination of both
approaches using a voting criterion of bagging and boosting
ensembles using C4.5 algorithm [15] as a base classifier.
Their results show improvement of 15% on average. Work in
[16] has also utilized a combination of bagging and boosting
with imbalanced data handling and variable preprocessing.
Their results are promising but not satisfactory when it comes
to aggressive down-sampling and concerns are raised about
the number of bagging iterations. However, none of these
approaches have been applied to longitudinal data or take into
account the EMA structure.

On the other hand, there have been some efforts to apply
decision tree based methods to EMA data [17] in order to
overcome dependencies between data but results were not
promising. Other approaches that have been developed include
the introduction of random factors (to account for the variabil-
ity within the data) but on the one hand they are only applied to
regression trees ([18], [19], [20]), and on the other hand they
do not use bagging or boosting for improving performance.
Work in current paper aims at bridging this gap by combining
bagging and boosting with the longitudinal data structure.

III. THE PROPOSED ALGORITHM

A. Growing Bagged Boosted Trees (BBT)

Let the training data be x1, ..., xn and y1, ..., yn where each
xi is a d-dimensional vector and yi ∈ {−1, 1} is the associated
observed class label. To justify generalization, it is usually
assumed that training data as well as any test data are iid
samples from some population of (x, y) pairs. Our goal is to
predict ŷi given xi where in the case of classification problems
we apply logistic regression rules, i.e., 1/(1+exp(−ŷi) is the
predicted probability of the instance belonging to the positive
class. Learning is achieved through a model (say Θ) and that
has a clear objective to minimize:

Obj(Θ) = L(Θ) + Ω(Θ) (1)

where L measures the training loss, i.e., how well model fits
on training data and Ω is the regularization which measures
the complexity of the model. Since we are dealing with a
classification problem, logistic regression takes the following
form:

Obj(Θ) =
∑n
i=1[yiln(1 + e−w

T xi)+

+(1− yi)ln(1 + ew
T xi)] + λ||w||2

(2)

where w are the regression weights and λ is the regulariza-
tion parameter.

Large classification trees have high variance and low bias
[21] and are therefore well suited to enhancement by ensemble
methods like bagging or boosting. The proposed method,
namely BBT (Bagged Boosted Trees) is described below.

The first step to fit a BBT is to select the loss function,
which in the case of a classification problem is defined by
Equation 2. Parameters to be selected include the number of
trees to be grown in sequence, the shrinkage (or learning) rate,
the size of individual trees and the fraction of the training
data sampled. There are several guides on how to select these
parameters [22], since they need to be selected in advance by
the user. Shrinking (or learning rates) rates of 0.1 to 0.001
are values that are normally used and generally smaller values
yield lower prediction error (PE) but require proportionally
more computation [23]. The fraction of training data sampled
is typically set in the range (0.4−0.6) and is rarely varied [24].
In our case, after the parameter selection, we grow the Boosted
Bagged Trees (BBT) (say using M trees) on the training data
using the following process and by growing single Boosted
Trees (BT):

1) Divide the data into B (typically 5 − 10) subsets and
construct B training data sets each of which omits one
of the B subsets (the ‘out-of-bag’ data). See Section
III-B for the method to select the subsets

2) Grow B BT; one for each of the B training sets.
3) Calculate the PE for each BT for tree sizes 1 to M from

the corresponding out-of-bag data and pool across the B
boosted trees. Predictions for new data are computed by
first predicting each of the component trees and then
aggregate the predictions (e.g., by averaging), like in
bagging.

4) The minimum PE estimates the optimum number of
trees m∗ for the BT. The estimated PE of the single
BT obtained by cross-validation can thus also be used
to estimate PE for the BBT. BBT thus require minimal
additional computation beyond estimation of m∗.

5) Reduce the number of trees for each BT to m∗.
It has been observed repeatedly that the performance of the

procedure, with respect to prediction error, is quite insensitive
to the choice of M and tends to result in small error rates
(relative to competing methods) across a wide range of appli-
cations, especially in high dimensions [26]. In many real-world
examples, large values of M work very well [27].

The (general) algorithm for boosting (used to grow the BT
and based on AdaBoost [8]) is as follows. First let F0(xi) = 0



for all xi and initialize weights wi = 1/d for i = 1, ..., d. Then
repeat the following for m = 1, ...,M for each one of the B
BT:

• Fit the decision tree gm to the training data sample using
weights wi where gm maps each xi to -1 or 1.

• Compute:
- the weighted error rate εm =

∑n
i=1 wiI{yi 6= gm(xi)}

- half its log-odds and derive αm = 1
2 log 1−εm

εm
• Let Fm = Fm−1 + αmgm.
• Replace the weights wi with wi = wie

−αmgm(xi)yi and
then renormalize by replacing each wi by wi/(

∑
wi).

Given the fact that we are solving a classification problem,
we are exploring a way to connect the score function of BBT
(i.e., Fm(x)) and additive logistic regression. Following [28]’s
work, we use as an estimate pm(x) of the Conditional Class
Probability Function (CCPF) p(x) that can be obtained from
Fm through a logistic link function:

pm(x) = pm(y = 1|x) =
1

1 + exp(−2Fm(x))
(3)

Using this link function, it has been shown [29] that the
exponential loss of boosting process can be mapped to a score
function (or loss function) on the probabilities similar to a
maximum likelihood criterion, which can be used instead of
Equation 2 to estimate the fitness of CCPF. This means that
each iteration of boosting uses the current probability estimates
to minimize this criterion (see the actual formula in Section
IV) and this process is followed on every step.

Two issues arise with the introduction of BBT. The first one
is how to part the dataset in order to construct the B BT and
the second is how to handle the CCPF in order to correctly
estimate the probability of a sample to belong to the positive
class. These issues are handled in the following subsections
and highlight the advantages of BBT for EMA data compared
to other algorithms.

B. Selecting subsets of EMA data

Lately, in many medical/heath related applications, longitu-
dinal datasets are available. Bagging and boosting algorithms
do not consider any dependency structure in the data, which
can clearly have a negative effect on the classification per-
formance, because e.g. observations can be highly correlated
since they stem of the same person [30]. Here, we further
elaborate the idea of subject based bootstrapping [17]) and
introduce a refined strategy in order to correctly select subsets
of EMA data used in building the BBT.

We will focus on examples deriving from the dataset used in
experiments (see Section IV) but the same process can easily
be extended to any other EMA data with longitudinal struc-
ture. We consider that data points are consisted of repeated
measurements belonging to P different subjects and use the
following notation for the dataset:

L =
{

(y
j(i)
i , x

j(i)
i )

}
i = 1, ..., P j(i) = 1, ..., Ji

(4)

where x
j(i)
i = (x

j(i)
i1 , ..., x

j(i)
id ) is a d-dimensional predictor

vector, yj(i)i ∈ {−1, 1} is the class variable for the equivalent
vector and Ji denotes the number of data samples per person
i.

In order to create learning sets for the individual boosted
trees (BT), B bootstrap samples of the set of subjects S =
1, ..., P are drawn with the drawn subjects denoted as i∗. To
create the learning set we introduce the strategy S according
to which one observation is drawn per subject. Thus, learning
sets L∗

b,s of the B individual trees are defined as:

L∗
b,s = {(xi, yi), i = 1, ..., P}

b = 1, ..., B
(5)

where:

• (xi, yi) consists of the d-dimensional measurement xi
and class variable yi,

• i is an index for the subjects included in the subset,
• P is the number of subjects,

Above process summarizes step 1 in the algorithm presented
in Section III-A. The strategy where one random observation
is used per tree is supported by relevant literature [17] but also
is based on a simple rationale: When only one observation per
subject is selected, the probability that different observations
are used for the training of different trees is increased, although
the same subjects might be selected which further reduces
similarity between trees. By this way, we manage to incorpo-
rate advantages of subject based bootstrapping and observation
based bootstrapping into the final BBT ensemble. Also, this
approach can be applied to unbalanced data points per subject.

C. Balancing the data and CCPF computing

Classifying at the 1/2 quantile of the CCPF works well for
binary classification problems but in the case of EMA data,
sometimes classification with unequal costs or, equivalently,
classification at quantiles other than 1/2 is needed. Strategies
about correctly computing the CCPF are considered by
over/under-sampling using the following process that converts
a median classifier (like the BT in our case) into a q-classifier.
The steps are the following:

• Let N+1 and N−1 be the marginal counts of positive
and negative classes respectively. Choose values for
k+1,k−1 > 0 so that k+1

k−1
= N+1

N−1
/ q
1−q .

• Pick k+1 samples from the training set for which yi = 1
such that each observation has the same chance of being
selected.

• Pick k−1 samples for which yi = −1 such that each
observation has the same chance of being selected.

• Obtain a classifier using the usual process described
before from the combined sample of k+1 + k−1 points.
Assume its output is a score function Fm(x) such that



Fm(x) > 0 estimates p(x) > 1/2.

• Estimate x as having p(x) > q if Fm(x) > 0.

In the case of k < N (i.e., under-sampling), selection can
be done by random sampling with or without replacement
and in the case of k > N (i.e., over-sampling) selection can
be done either by sampling with replacement or by simply
replicating observations (data augmentation). More details for
this re-weighting/re-sampling scheme can be found in [31].

The next step is to convert the q-classifier to an estimator of
the conditional class probabilities. Algorithm used was based
on [10] and more details can be found there. The goal is
to produce an estimate p̂(x) for the CCPF p(x) given a q-
classifier or more simply the estimation of the region p(x) > q
in which observations are classified in the positive class. First,
a quantization level δ > 2 is fixed. In our experiments, δ
was set to 10, thus our estimate p̂(x) for p(x) at any x will
be one of {0.05, 0.15, ..., 0.95} which requires our algorithm
pipeline to run on nine artificial training datasets. Next, q-
classification is carried out on the data (using our normal
process as described in the previous sections) for the range
of quantiles q = 1/δ, 2/δ, ..., 1− 1/δ. For each q and every x
this provides an estimate of I{p(x) ≥ q} which we will denote
as ∆̂q(x) ∈ {0, 1}. In order to provide an estimate of p(x)
from the quantile-based estimates ∆̂q(x) we use the following
process which ensures monotonicity of the level sets.

1) We begin with the median ∆̂0.5(x).
2) - If ∆̂0.5(x) = 1 then

p̂(x) = min{q > 0.5 : ∆̂q(x) = 0} − 1
2δ . If no such q

is found then ˆp(x) = 1− 1/2δ.
- If ∆̂0.5(x) = 0 then
p̂(x) = max{q < 0.5 : ∆̂q(x) = 1} + 1

2δ . If no such q
is then take ˆp(x) = 1/2δ.

IV. EXPERIMENTS

A. Simulated dataset

As a first way to assess the usefulness and effectiveness
of BBTs we conduct a series of experiments on simulated
datasets, since a large-scale, real-world longitudinal dataset
is not available. Prediction error is mostly used for assessing
performance in longitudinal data, although not extensive re-
search work exists [32]. The datasets contain different number
of subjects (P = 50, 100, 500, 1000 or 2000) and different
number of observations per subject (T = 10, 25, 50 or 100
observations per subject). Datasets created using the transac-
tions dataset of Amazon [33] which originally contains 9484
transactions for 250 distinctive software titles, thus there are
250 different subjects with a varying number of observations
per subject. Target variable (price) was converted to a two-
class classification problem by dichotomizing it using different
ways (in order to create balanced and unbalanced classes)
and also some of the 20 numerical features were converted
to categorical in order to demonstrate performance using both
types of data.

In order to accurately measure out-of-sample performance
for subjects present in the training dataset we use 75% of
observations of P subjects for training and then we predict
future observations for these subjects in order to estimate
the out-of-sample performance (using the rest 25% as testing
sample). During the splitting process, we make sure that there
are enough samples for all subjects both in the training and
the testing dataset.

The exponential loss function is used as a measure to assess
the performance of class probability estimators (as it was
mentioned in Section III-C). The formula used for computing
the loss is shown in the following Equation:

n∗∑
i=1

[
p(x∗i )

√
1− p̂(x∗i )
p̂(x∗i )

+ (1− p(x∗i ))

√
p̂(x∗i )

1− p̂(x∗i )

]
(6)

where p̂ is the estimate probability and p is the actual
probability computed on the hold-out sample x∗i .

Prediction error results can be found in Table I. Standard
optimized implementations of the state-of-the-art algorithms
(Single Classification Tree (SCT), Bagging, Boosting, Random
Forest) were used utilizing “rpart”, “adabag” and “party” pack-
ages in R and for the B&B combine method implementation
details can be found in [16]. For a relatively small number
of P , BBT performs comparably with B&B combination
and better than the other algorithms. As P increases (i.e.
data derive from different subjects), performance of BBT is
improving and outperforms all other methods (B&B combine
included). Experiments were also conducted for different T
values (different observations per subject). For large T , al-
gorithms perform better because there is enough availability
of data for all subjects within the study but for smaller T
performance of BBT is superior. Results for P = 2000 and
different values of T are presented in Table II.

The exponential loss function comparison for different
algorithms is presented in Figure 1. This Figure shows the
results for P = 2000, T = 200 and a relatively unbalanced
target class (70% for positive class and 30% for negative
class) but similar results were obtained for other values as
well. From this Figure it becomes apparent that boosting
algorithms (except for BBT) tend to overfit the loss function,
thus not correctly computing the CCPF (bagging algorithms
were excluded from this experiment as they are not expected
to overfit). When performance of most algorithms improves (in
terms or prediction error) after 200 iterations, the loss function
deteriorates and experiments showed that this trend is more
prevalent when the imbalance in the output class is increasing.

B. Experiments on a real-world EMA dataset

In order to illustrate the effect of BBT, we now apply this
method to our EMA dataset obtained by a study designed by
the authors [34]. The EMA study followed 100 participants
over the course of 14 days. Every day, subjects were randomly
notified by a beeper (random sampling) between 0730 and
2230 with an interval of two hours. Besides that, when they



TABLE I: Prediction Error (%) for different algorithms and
different number of subjects (using all available observations
per subject)

P=50 P=100 P=500 P=1000 P=2000
SCT 0.47 0.46 0.48 0.48 0.49

Bagging 0.41 0.42 0.45 0.44 0.46
Boosting 0.34 0.35 0.37 0.36 0.38

Random Forest 0.34 0.35 0.34 0.32 0.34
B&B Combine 0.32 0.32 0.32 0.33 0.35

BBT 0.34 0.32 0.31 0.29 0.28

TABLE II: Prediction Error (%) for different algorithms and
different number of observations per subject (using P=2000)

T=10 T=25 T=100 T=200
SCT 0.51 0.49 0.44 0.42

Bagging 0.38 0.36 0.44 0.40
Boosting 0.41 0.4 0.38 0.37

Random Forest 0.37 0.38 0.36 0.35
B&B Combine 0.38 0.37 0.34 0.31

BBT 0.33 0.31 0.29 0.28

Fig. 1: Exponential loss for different algorithms for
simulated dataset

were about to eat something they fill out a similar question-
naire which also contained the food information. This process
resulted in an average of 10 responses (including random
samples and eating events) per user per day. The dataset is
multi-level and complex containing information about users
and their eating events, emotions, circumstances, locations for
several time moments during each day that they participated in
the study. An overview of the variables involved in the study
is presented in Table III.

Fig. 2: Data conversion example for early prediction

Each data point is used to predict whether the next data
point (provided that they both occur on the same day) will
be a healthy or an unhealthy eating moment. Figure 2 shows

an example of how data points (belonging to user “pp5”) are
converted and combined in order to enable early prediction
using a classification algorithm.

Fig. 3: Classification tree structure

Using the data points of Figure 2 (from 100 people) as
observations, we want to predict under which conditions
(i.e. combinations of attributes) people are led to unhealthy
eating (class variable, y), thus the BBT will be applied to a
binary classification problem (class can be either “healthy”
or “unhealthy”). There are 9 variables which represent user
status at “current” time-point will be used to predict the eating
event at the “next” time-point. In total, there are 5041 data
points deriving from 100 different users which will be used
for training and testing different decision trees. Splitting to
training and testing was performed according to the method-
ology presented in the previous Subsection (75% training and
25% testing) but also by sampling in a semi-random way in
order to ensure that person-specific data are respectively split
between training and testing. Variance reported is an average
over all different experiments (for all subjects) conducted
(10-fold-cross-validation) and results were found significant.
Also, within-person variances were computed and values were
not significant to be reported (although BBT performed way
better).

A single classification tree (SCT) was fitted to the data with
the size of tree (14 terminal nodes) selected by cross-validation
(Figure 3). The 13 splits were based on five out of the nine
variables and their importance was led by “circ”, “sp cr” and
“time” (around 15%) but also showed substantial variation for
all predictors. Prediction Error (PE) for this SCT was 37.3%.

A series of BBT were then fitted to the data. The first BBT,
comprising trees with 10 splits and using all nine predictors,
had PE of 28.6% which is an important improvement on the
SCT. The partial dependency plots of the single predictors
are presented in Figure 4, along with the importance values
which are depicted on top of each plot and suggest a different



TABLE III: Thinkslim dataset attributes

Attribute Short Discretized values Details
Craving crv Low, Mid, High
Negative Emotions negE No, Yes sad, bored, stressed, angry
Positive Emotions posE Low, Mid, High happy, relaxed
Location loc Home, School, Traveling,

Work, Social, Other
Circumstances circ ComputerRelated Phone / Internet / Computer

Eating Eating / Non-social drinking
HighLevelIn Preparing food, cleaning, sanitary, etc.
HighLevelOut Exercising, hobby, leisure, shopping, etc.
LowLevel Relaxing, waiting, lying in bed, etc.
WatchingTV
Reading Studying, thinking, etc.
Socializing Having a drink, etc.
Outdoors traveling, etc.
Working administration, work activities, etc.

Time of day time morning, noon-afternoon, evening
Weekend week NO, YES
Specific Craving sp cr N, H, U Nothing, Healthy, Unhealthy
Specific Eating sp eat N, H, U Nothing, Healthy, Unhealthy

Fig. 4: Bagged Boosted Tree (BBT) analysis

order than the SCT: They show strong effects for “circ”, “loc”,
“sp cr”, moderate effects for “time”, “crav”, “sp eat” and
“posE”, and weak effects for “week” and “negE”.

Next experiments were done to determine the degree to
which predictors interact in providing the response. Firstly,
“week” and “negE” were dropped from the model and reduced
PE to 23.3%, something that was expected from the partial
dependency plots (since they had the lowest effect). Then, we
fitted a BBT by forcing individual trees having only single
splits (meaning that the estimated response would depend only

on main effects) and the PE was increased to 26.7%, indicating
that interactions accounted for 3.4% of PE. Finally, BBT with
individual trees of two splits (including first-order interactions)
yielded a PE of 25.9%, indicating that interactions higher than
first-order could be neglected.

In the comparison between methods, BBT gave a PE of
23.3%, whereas the single classification tree (37.3%), bagged
trees (28.9%), boosted trees (adaboost) (25.9%) and random
forests (26.8%), all having higher PE than the BBT. Figure
5 summarizes these results and also presents a series of



Fig. 5: Prediction Error for different algorithms and different numbers of subjects

Fig. 6: Exponential loss for different algorithms

experiments made to demonstrate the effectiveness of BBT
when the number of different subjects (P ) involved in the
dataset increases. For relatively small numbers of subjects
(10 or 20) performance of BBT and AdaBoost is comparable
(although variance increases and the dataset becomes too small
for accurate predictions) but as P increases the performance of
BBT is clearly better. As P increases (which means that there
are more subjects in the dataset), complexity of longitudinal
structure increases, thus it is more imperative to take this
into account when classifying longitudinal data. This is the

reason that BBT performs better than all other algorithms as P
increases. However, for small P the effect of different subjects
is smaller and this is the reason that Adaboost performs
slightly better than all other algorithms. It should be noticed
that these observations are in agreement with the results from
the experiments on the simulated datasets. Finally, for each
algorithm the best tinkered (optimized) result using standard
techniques is used for the comparisons in order to overcome
individual algorithmic drawbacks.

Regarding the exponential loss, results for the different
algorithms are shown in Figure 6 from which it is obvious
that B&B combine and Adaboost tend to overfit the loss
function which counterbalances their modest accuracy. This
is not the case for BBT which using the over/under sampling
method described manages to improve the exponential loss
and provides an accurate estimate for the CCPF.

V. CONCLUSION

In this paper an improvement to single trees for handling
classification problems in EMA data was presented, namely
Bagged Boosted Trees (BBT). BBT are able to modify clas-
sification trees and overcome the unsatisfactory performance
characteristics in terms of accuracy and in terms of data
dependency due to the EMA structure. An estimate of the class
probability distribution was presented based on over/under
sampling of data.



BBT can outperform the single classification trees but also
the boosted or bagged trees as well similar models such as
random forests or other combinations of bagging and boosting.
Furthermore, they have the advantage of being able to deal
with multiple categorical data which raises a scalability issue
when dealing with classic models (like generalized linear
models) that are widely used in EMA studies. Moreover, BBT
can tackle potential nonlinearities and interactions in the data,
since these issues are handled through the combination of
many different trees of different sizes.

The experimental results of BBT both on simulated and
real-world EMA data clearly demonstrate improvement with
respect to accuracy in prediction compared to classic decision
tree algorithms, while at the same time a better estimate for
the conditional class probability function is computed. We see
several promising avenues for further improvement and for
continuing research using BBT. Application of BBT to other
EMA datasets but also to more complex data (involving more
numerical or categorical predictors) is a first step to further test
BBT. Moreover, adjustment of boosting in order to implement
weights based on subjects (and not individual observations)
would be an extension with promising results. Finally, faster
training is an issue to look into, since the complexity of
the model is increased and many steps are needed (bagging,
boosting, quantile estimation) in order to achieve the final
result.

ACKNOWLEDGMENT

This study is funded by grant 12028 from Stichting Technis-
che Wetenschappen (STW), Nationaal Initiatief Hersenen en
Cognitie (NIHC), Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek (NWO) and Philips under the Partnership
programme Healthy Lifestyle Solutions.

REFERENCES

[1] S. Shiffman, A. A. Stone, and M. R. Hufford, “Ecological momentary
assessment,” Annu. Rev. Clin. Psychol., vol. 4, pp. 1–32, 2008.

[2] C. N. Scollon, C.-K. Prieto, and E. Diener, “Experience sampling:
promises and pitfalls, strength and weaknesses,” in Assessing well-being.
Springer, 2009, pp. 157–180.

[3] J. E. Spook, T. Paulussen, G. Kok, and P. Van Empelen, “Monitoring
dietary intake and physical activity electronically: feasibility, usability,
and ecological validity of a mobile-based ecological momentary assess-
ment tool,” Journal of medical Internet research, vol. 15, no. 9, p. e214,
2013.

[4] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
classifier systems. Springer, 2000, pp. 1–15.

[5] A. Rani, G. L. Foresti, and C. Micheloni, “A neural tree for classification
using convex objective function,” Pattern Recognition Letters, vol. 68,
pp. 41–47, 2015.

[6] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[7] T. K. Ho, “Random decision forests,” in Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference
on, vol. 1. IEEE, 1995, pp. 278–282.

[8] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in ICML, vol. 96, 1996, pp. 148–156.

[9] R. Caruana and A. Niculescu-Mizil, “An empirical comparison
of supervised learning algorithms,” in Proceedings of the 23rd
International Conference on Machine Learning, ser. ICML ’06. New
York, NY, USA: ACM, 2006, pp. 161–168. [Online]. Available:
http://doi.acm.org/10.1145/1143844.1143865

[10] D. Mease, A. J. Wyner, and A. Buja, “Boosted classification trees and
class probability/quantile estimation,” J. Mach. Learn. Res., vol. 8, pp.
409–439, May 2007.

[11] G. De’Ath, “Boosted trees for ecological modeling and prediction,”
Ecology, vol. 88, no. 1, pp. 243–251, 2007.

[12] C. D. Sutton, “Classification and regression trees, bagging, and boost-
ing,” Handbook of statistics, vol. 24, pp. 303–329, 2005.

[13] Y. L. Suen, P. Melville, and R. J. Mooney, “Combining bias and variance
reduction techniques for regression trees,” in Machine Learning: ECML
2005. Springer, 2005, pp. 741–749.

[14] S. Kotsiantis and P. Pintelas, “Combining bagging and boosting,” In-
ternational Journal of Computational Intelligence, vol. 1, no. 4, pp.
324–333, 2004.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[16] J. Xie, V. Rojkova, S. Pal, and S. Coggeshall, “A combination of boosting
and bagging for kdd cup 2009-fast scoring on a large database.” in KDD
Cup, 2009, pp. 35–43.

[17] W. Adler, S. Potapov, and B. Lausen, “Classification of repeated
measurements data using tree-based ensemble methods,” Computational
Statistics, vol. 26, no. 2, pp. 355–369, 2011.

[18] R. J. Sela and J. S. Simonoff, “RE-EM trees: a data mining approach
for longitudinal and clustered data,” Machine learning, vol. 86, no. 2,
pp. 169–207, 2012.

[19] W.-Y. Loh, W. Zheng et al., “Regression trees for longitudinal and
multiresponse data,” The Annals of Applied Statistics, vol. 7, no. 1, pp.
495–522, 2013.

[20] W. Fu and J. S. Simonoff, “Unbiased regression trees for longitudinal
and clustered data,” Computational Statistics & Data Analysis, vol. 88,
pp. 53–74, 2015.

[21] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Machine learning,
vol. 36, no. 1-2, pp. 105–139, 1999.

[22] M. Kuhn and K. Johnson, Applied predictive modeling. Springer, 2013.
[23] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted

regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–
813, 2008.

[24] M. A. Munson and R. Caruana, “On feature selection, bias-variance, and
bagging,” in Machine Learning and Knowledge Discovery in Databases.
Springer, 2009, pp. 144–159.
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